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Abstract

Nonlinear congruential pseudorandom number generators can have
unexpectedly short periods. Shamir and Tsaban introduced the class
of counter-dependent generators which admit much longer periods.
In this paper, using a technique developed by Niederreiter and Sh-
parlinski, we present discrepancy bounds for sequences of s-tuples
of successive pseudorandom numbers generated by counter-dependent
generators modulo a composite M.

1 Introduction

In this paper we study some distribution properties of counter-dependent
nonlinear congruential pseudorandom number generators introduced by [17]
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and defined by a recurrence congruence modulo an integer M of the form
Uns1 = f(up,n) (mod M), 0<wu, <M-—1, n=0,1,..., (1)

with some initial value ug, where f(X,Y) € Zy[X,Y] is a polynomial over
the residue ring Z), = Z/MZ.

It is obvious that the sequence (1) eventually becomes periodic with some
period t < M?. Throughout this paper we assume that this sequence is purely
periodic, that is, u, = u,4; beginning with n = 0, otherwise we consider a
shift of the original sequence.

In the case that f(X,Y) = h(X) € Zy[X] does not depend on the sec-
ond variable we get the well-studied nonlinear congruential pseudorandom
number generators, see [4, 6, 8, 13] for the distribution of the elements and
for the distribution of powers in prime fields see [15]. However, in this case
the period t is at most M and it is possible that the generated sequences
have unexpectedly short period as it is noted in [17]. In the case that
fX)Y) = g(X)+Y € Zy[X,Y] we get the counter-assisted nonlinear
congruential pseudorandom number generators defined in [17]. These gener-

ators are special nonlinear congruential pseudorandom number generators of
order 2 defined by

un—‘rl:f(un)un—l) (mOd M)a OSUnSM_]., n:1a27"'

where f(X,Y) = g(X) — g(Y) + X + 1 with some special initial values wug
and u; satisfying u; = g(ug) + 1. The case where the order is non trivial and
M = p is a prime, has been analyzed in [7, 9, 18].

Distribution and structural properties of general counter-dependent nonlin-
ear congruential generators over finite fields have first been analyzed in [5].
Here, we establish results about the distribution about residue rings using a
technique introduced in [13].

The first Section is devoted to introduce some notations and stating known
theorems. In Section 3 we prove results about the distribution of the points

Un, un+s—1>
— 2
(e »

in the s-dimensional unit cube [0, 1)® in terms of a discrepancy bound, where
n runs through a part of the period, n=0,...,. N -1, 1 < N <.



A uniform distribution of these points, i.e., a low discrepancy, is a desirable
feature for pseudorandom numbers in quasi-Monte Carlo methods, see e.g.
(11, 12, 14, 19].

Finally, in Section 4, we show how for some M, we obtain improvements on
these distribution results.

2 Definitions and Auxiliary Results

Given an integer M, we define w(M) to be the number of distinct prime
divisors of M and 7(M) as the number of divisors of M. The first lemma
follows directly from Theorem 317 in [10].

Lemma 1. For every sufficiently large M, the bound
T(M) — MO(l/loglogM)
holds.

This bound holds for suffiently large M, but for most values of M we can
obtain improvements due to Hardy and Ramanujan (see [10]).

Lemma 2. The bound
(M) < (log M)?
holds for all, except o(X) numbers when 1 < M < X.

For a sequence of N points

L'=(Yim,--- ,757n)5:1 (3)

of the half-open interval [0, 1)%, denote by Ar its discrepancy, that is,

Tr(B)
N

Ar = sup
BC[0,1)*

151

where T1(B) is the number of points of the sequence I' which hit the box
B= [041;61) X ... X [Oés,ﬁs) - [O, 1)8
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and the supremum is taken over all such boxes. For an integer vector a =
(a1,...,as) € Z° we put

al = s o rta) = [[mox{la 1) (4)
Also, denote by ged(ay, . ..,an_1) the greatest common divisor of the inte-
gers oy, . .., an_1. We need the Erdos—Turan—Koksma inequality (see Theo-

rem 1.21 of [3]) for the discrepancy of a sequence of points of the s-dimensional
unit cube, which we present in the following form.

Lemma 3. There exists a constant Cy > 0 depending only on the dimension
s such that, for any integer L > 1, for the discrepancy of a sequence of
points (3) the bound

1 1 1

r(a)

N s
Z exp <2m' Z aj7j7n>

n=1 j=1

o<lal<L

holds, where |a|, r(a) are defined by (4) and the sum is taken over all integer
vectors
a=(ay,...,a5) € Z°

with 0 < |a|] < L.
The currently best value of C is given in [2]. We put
en(z) = exp(2miz/M).

For a polynomial f(X,Y) € Zy[X,Y] of total degree d we define the se-
quence of polynomials fi(X,Y) € Z[X,Y] by the recurrence relation

fk+1(X7Y):f(fk<X7Y>7Y+k)7 k:()ul? ) (5>
where fo(X,Y) = X. It is clear that deg fi < d* and that
Untk = fr (Up,m) .

This allows us to state the following Lemma:



Lemma 4. Let f(X,Y) € Zy[X,Y] be a polynomial of local degree in X of
value d,, > 2 modulo every prime divisor p of M and fi,(X,Y) is defined as

in (5). Then the local degree in X of f,gp)(X, Y) = fr(X,Y) (mod p) equals
di k=0,1,....
p? ) )

Proof. 1t is trivial to see that
FPXY) = PP (X,Y),Y +k—1)  (mod p).

So, using Lemma 3 of [5], we arrive at the desired result O

The following Lemma is the 2-dimensional version of Theorem 2.6 in [1] in a
slightly weaker form.

Lemma 5. Let f(X,Y) be a polynomial with integer coefficients with the ged
of all of them, except the constant term, is one and total degree d then the

bound
M

Z eM(f(xv y))

z,y=1

< 614d32w(M) (T(M>>M271/d

holds.

This now allows us to state and prove the following Lemma.

Lemma 6. Let f(X,Y) be a polynomial with integer coefficients and total
degree d. Then the bound

M

S eu(f(x,9))

T,y=1

< €l4d(T(M/G))5M2_1/dG1/d

holds, where G is the ged of all the coefficients of f except the constant term.

Proof. Let fa(x,y) = (f(x,y) — f(0,0))/G and m = M /G. Then,

Y enlf(@y)| =D em(flx,y) = £(0,0)| = G*| > em<fc<a:,y>>‘.

Now fa(X,Y) satisfies the conditions in Lemma 5, so:

< G2el4d32w(m)7_(m) <m>271/d

> enlfole.y))

z,y=1

G2

and noting 2*(™ < 7(m), the result follows. O
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Now, we are going to introduce some results about the sequence fi(X,Y)
that we will have to use in the proofs.

Lemma 7. Let f(X,Y) € Zy[X,Y] be a polynomial of local degree in X,
d, > 2 modulo every prime divisor p of M and let

1 D1 Do

aj (fi+i(X,Y) = fir(X,Y)) = Z Z Bi,i, XYY,

11=012=0

S

I
=)

J
Then, for any k # 1, the equality
ng(Blo, BOl; Ce 7BD1D27 M) = ng(O,O7 ey g1, M)

holds.

Proof. The main ideas of the proof come from Lemma 5 in [4]. We put
A =a;/G,j=0,...,s—1and m = M/G, where G = gcd(ay, ..., as_1, M).
In particular,

ng(A()?"'aAs—lam) =L (6)

It is enough to show that

—_

HIXY) = 3" A, (o, (X.Y) = oy (X))

J

Il
o

is not a constant polynomial modulo any prime p|m. We take f® to be the
reduction of f modulo p. By our assumption, the local degree of X in f® is
d, > 2. Denote by f,gp) as in Lemma 4 and H®(X,Y) as H(X,Y) mod p.
Thus,

s—1

HO(X,Y) = 3 A (fI(X,Y) = f2(XY))  (mod p).

J=0

Let h be the largest j = 1,...,s with gcd(A4;,p) = 1 (we see from (6) that
such h exists). Then, by Lemma 4, for & > [ the polynomial H®(X,Y) has
local degree in X exactly d’;*h, finishing the proof. a



3 Discrepancy Bound

Let the sequence (u,) generated by (1) be purely periodic with an arbitrary

period t. For an integer vector a = (ag,...,as—1) € Z* we introduce the
exponential sum
N-1 s—1
= (S3 E QiUn+j | -
n=0 7=0

Theorem 8. Let the sequence (uy,), given by (1) with a polynomial
f(X,Y) e Zy[X,Y] with f(X,Y) of total degree d and local degree in X, at
least 2 modulo every prime divisor p of M, be purely periodic with period t,
andt > N > 1, then the bound

max ]Sa( ) =0 (N1/2M(logloglog(M/G))*l/Q)

ng( As— 1
holds, where the zmplzed constant depends only on s and d.

Proof. Select any a = (ag, ...,as_1) € Z° with ged(ag, ...,as_1, M) =G. It
is obvious that for any integer £ > 0 we have

N-1 s—1
- E €n E AjUn+k+j
n=0 §=0

Therefore, for any integer K > 1,
K|Sa(N)| < W + K2,

< 2k.

where

N—-1K-1 s—1
= §:§:eM § AjUn-tk+j

n=0 k=0 7=0

Accordingly, we obtain

w? < Nz: Kz: (ia [ )
< i fiti (Un; 2
=0 | k= Jj=0
M K-1 s—1 2
< N Z ZeM <Zajfk:+j (%y)>

7=0

= N Z ey (Zaj (fers (2, y) = fiey (3379))) :

j=0



If k = [, then the inner sum is trivially equal to M?. There are K such sums.
Otherwise, using Lemma 4, the polynomial Zj;é a; (fetj (2, y) — fins (z,9))
is nonconstant and has total degree at most d®**~2. Hence we can apply
Lemmas 6 and 7 together with Lemma 1 to the inner sum, obtaining the
upper bound

K+s—2 _ K+s—2 K+s—2
ecod M2 1/d +5c¢1/loglog(M/G) Gl/d

for at most K2 sums and positive constants ¢y, ¢;. Hence,

W2 < KNM2 + KQNecodK+S_2MZfl/dK+S_2+501/loglog(M/G)Gl/dK+S_2 (7>

Now, without too much loss of generality we may assume d®*5=2 > 2. Next
we put K = [cglogloglog(M/G)], for some constant ¢y to guarantee that
the first term dominates and the result follows. O

Next, let Dg(NN) denote the discrepancy of the points defined in 2 in the s-
dimensional unit cube [0, 1)*. Using the last theorem, we proof the following:

Theorem 9. If the sequence (u,), given by (1) with a polynomial

f(X,Y) € Zy[X,Y] with f(X,Y) of total degree d and local degree in X at
least 2 modulo every prime divisor of M, is purely periodic with period t and
t> N > 1, then the bound

Dy(N) = O (N~"?M (log log log log M)* / (log log log M)"/?)
holds, where the implied constant depends only on s and d.

Proof. The statement follows from Lemma 3, taken with
L= (N1/2M*1(log log log M)l/zw

and the bound of Theorem 8, where all occurring G = ged(ay, . . ., as, M) are
at most L. 0

4 Improvements on bounds for some M

In this section we will show that for some values of M, we can improve our
bounds. Let Sa(N) and Ds(N) be defined as before.
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Theorem 10. Let the sequence (uy,), given by (1) with a polynomial f(X,Y) €
Zy [ X, Y] with f(X,Y) of total degree d and local degree in X, at least 2 mod-
ulo every prime divisor of M, be purely periodic with periodt andt > N > 1.
Also suppose that

(M) < (log M)®.
Then the bound

max - |Sa(N)| =0 (N1/2M(10g log(M/G))—l/z)

ged(ao,...,as—1,M

holds, where the implied constant depends only on s and d.

Proof. The proof is basically the same as for Theorem 8, except we use the
smaller bound for 7(M/) instead of Lemma 1. Hence (7), becomes:

W2 S KNM2 + KQNecodK+s—2 <log(M/G))1OM271/dK+S—2Gl/d}(+s_2

and putting K = [c;loglog(M/G)], for some constant ¢; to guarantee that
the first term dominates, the result then follows. O

Recalling Lemma 2 we obtain:

Corollary 11. Let A a positive integer number and the sequence (uy,), given
by (1) with a polynomial

F(X,Y) € Zy[X,Y] with f(X,Y) of total degree d and local degree in X at
least 2 modulo every prime divisor of M, be purely periodic with period t and
t > N > 1, then for all M < A, except o(A) of them, the bound

max [Sa(N)|=0 (NY2M (loglog(M/G))~"/?)

£0d (a0, a5 1,M)=

holds, where the implied constant depends only on s and d.

These last two theorems now allow us to prove stronger bounds on the dis-
crepancy. Using Theorem 10 we get the following result:



Theorem 12. Let the sequence (uy,), given by (1) with a polynomial
F(X,Y) € Zy[X,Y] with f(X,Y) of total degree d and local degree in X at
least 2 modulo every prime divisor of M, be purely periodic with period t and
t> N > 1. Also suppose that M satisfies the inequality

(M) < (log M)*.
Then the bound
Dy(N) = O (N~*2M (log log log M)*/(log log M)"/?)
holds, where the implied constant depends only on s and d.
Proof. The statement follows from Lemma 3, taken with
L= [N'"2M"(loglog M)"/?]

and the bound of Theorem 10, where all occurring G = ged(ay, .. ., as, M)
are at most L. O

Combinating the last Theorem and Lemma 1:

Corollary 13. Let A a positive integer number. If the sequence (u,), given
by (1) with a polynomial f(X,Y) € Zy [ X, Y| with f(X,Y) of total degree d
and local degree in X at least 2 modulo every prime divisor of M, be purely
periodic with period t and t > N > 1, then for all M < A but o(A) choices
of them, the bound

Dy(N) =0 (N""2M (logloglog M)*/(loglog M)"/?)

holds, where the implied constant depends only on s and d.

5 Open Questions

We remark that the technique used in [16] can not be employed here. It
would be useful if an improvement using such or a similar method could be
found.
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