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ABSTRACT

In this paper we present an algorithm to compute all unira-
tional fields of transcendence degree one containing a given
finite set of multivariate rational functions. In particular,
we provide an algorithm to decompose a multivariate ratio-
nal function f of the form f = g(h), where g is a univariate
rational function and h a multivariate one.

1. INTRODUCTION

Let K be an arbitrary field and K(x) = K(z1, ..., z,) be the
rational function field in the variables x = (x1,...,2n). A
unirational field over K is an intermediate field F between
K and K(x). We know that any unirational field is finitely
generated over K (see [6]). In the following whenever we talk
about “computing an intermediate field” we mean that such
finite set of generators is to be calculated. The problem of
finding unirational fields is a classical one. In this paper we
are looking for unirational fields F over K of transcendence
degree one over K, tr.deg(F/K) = 1.

In the univariate case, the problem can be stated as follows:
given univariate rational functions fi,..., fm € K(y), we
wish to know if there exists a proper intermediate field F
such that K(f1,..., fm) CF C K(y); and in the affirmative
case, to compute it. By the classical Liiroth theorem (see
[14]) the problem is divided in two parts: first to compute f
such that K(f1,..., fm) = K(f), and second to decompose
the rational function f, i.e., to find g,h € K(y) such that,
F = K(h) with f = g(h). Constructive proofs of Liiroth’s
theorem can be found in [7], [12] and [1]. Algorithms for
decomposition of univariate rational functions can be found
in [17] and [1].

In the multivariate case, the problem is: given fi,..., fm
in K(x) we wish to know if there exists a proper inter-
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mediate field F such that K(f1,..., fm) C F C K(x) with
tr.deg(F/K) = 1; and in the affirmative case, to compute it.
A central result is the following generalization of Liiroth’s
theorem:

THEOREM 1 (EXTENDED LUROTH’S THEOREM). Let IF be
a field such that K C F C K(x). If tr.deg(F/K) = 1, then
there exists f € K(x) such that F = K(f).

Such an f is called a Liiroth’s generator of the field F. This
theorem was first proved in [2] for characteristic zero and in
[4] in general, see also [11] Theorem 3. Using Grobner basis
computation, the paper [5] provides an algorithm to com-
pute a Liiroth’s generator, if it exits. See also [9] for another
algorithmic proof of this result. In this paper we present a
new algorithm, which only requires to compute gecd’s, to de-
tect if a unirational field has transcendence degree 1 and, in
the affirmative case, to compute a Liiroth’s generator. We
also present a constructive proof of the above theorem for
polynomials (see [8]): if the unirational field contains a non-
constant polynomial, then it is generated by a polynomial.

By the Extended Liiroth’s theorem, to find an intermediate
field of transcendence degree one is equivalent to the follow-
ing: first to find a Liiroth’s generator f,i.e., K(f1,..., fm) =
K(f), if it exists, and second to decompose the multivariate
rational function f, i.e., to find g € K(y) and h € K(x)
such that f = g(h) in a nontrivial way. The pair (g,h)
is called a uni—multivariate decomposition of f. We present
two algorithms to compute a nontrivial uni-multivariate de-
composition of a multivariate rational function, if it exits.

This paper is divided in four sections. In section 2 we state
the proof of the Extended Liiroth’s theorem and its poly-
nomial version. In section 3 we present and analyze two
algorithms to compute a uni—-multivariate decomposition of
a rational function, if it exists. In section 4 we discuss the
performance of these algorithms.
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.., fm) if it exists, more-
over we detect if F contains a non-constant polynomial, and
in the affirmative case we find a generating polynomial. We
start with the following definition:



DEFINITION 1. Let p € K[z1,...,Zn,Y1,-.-,Yn] = K[x,¥]
be a mon—constant polynomial. We say that p is near—
separated if there exist non—constant polynomials r1,s1 €
Kx] = Klz1,...,z] and 2,52 € K[y] = Ky1,...,ynl,
such that neither r1,s1 are associated, nor ra,S2 are asso-
ciated and p = riss — r2s1. In the particular case when
p = 7"(.1»'1,. "7$n)5(y17"'7yn) - S(LZ'l,...7$n)r(y1,...7yn),
we say that p is a symmetric near—separated polyno-
mial. We say that (r,s) is a symmetric near—separated
representation of p.

In this paper, deg,, . will denote the total degree with
respect to the variables z1,...,z, and deg will denote the
total degree with respect to all the variables. Also, given a
rational function f we will also de note as f,, fq the numer-
ator and denominator of f, respectively.

In the following theorem we give some basic properties of
near—separated polynomials, for later use.

THEOREM 2. Let p € K[x,y] be a near—separated polyno-
mial and 71, S1,7r2, 82 as in the above definition. Then

(i) If ged(r1,s1) = 1 and ged(re, s2) = 1, p has no factors
in K[x] or K[y].

(ii) deg,, . ., p=max{degri,deg s1} and deg, ., . DP=
maz{deg r2,deg s2}.

(iii) If p is symmetric and (a1,...,a,) € K" wverifies
p(T1,.. ., Tn,01,...,an) # 0, then there exists (r,s),
a symmetric near—separated representation of p, such
that
rlat,...,an) =0 and s(ai,...,an) =1

10, ,J0

(iv) If p is symmetric, the coefficient of z,°vy;° in p is the
near—separated polynomial

@iy bjy — big ajg,

where a; is the coefficient of x}, in r and b; is the co-
efficient of x}, in s.

PROOF. (i) Suppose v € K|zi,...,zy] is a non—constant
factor of p. Then there exists ¢ such that deg, v > 1.
Without loss of generality we will suppose that ¢ = 1. Let
a be a root of v, considering p as a univariate polynomial
in the variable z1, in a suitable extension of K[zz,...,zx].
If « is a root of any of the polynomials 71 or si, then it is
also a root of the other. This is a contradiction, because
ged(r1,81) = 1. Therefore a is neither a root of r1 nor of
s1. Then,

7"1(&,1’2,...,(1)7;) — T2(y17"'7y7l) c K.
si(a, z2,...,Tn) s2(Y1, -5 Yn)

A contradiction again, since 72, s2 are not associated in K.
(ii) If deg r1 # deg s1, the equality is trivial. Otherwise,
if deg r1 = deg s1 > deg,, ., p, the terms with greatest
degree with respect to z1,...,x, vanish. This is a contra-
diction, because r2, s2 are not associated. The proof is the
same for 7z, s2.
(iii) Let (r, s) be a representation of p.

— If r(aa,...,an) = 0, since p(z1,...,Tn,Q1,...,an) # 0,
we have s(a1,...,a,) # 0. Then we have a new near—
separated representation:

(rs(al,...,an), ﬁ) .

— If s(a1,...,an) = 0, then the representation (—s,r) we
are in the previous case.

— If r(aa,...,an),s(a1,...,an) # 0, then we consider the

representation

S
rs(ar,...,«x —Ssriay,...,x —— ] .
< ( 1, ) n) ( 1, ’ n), s(oq,...,an))

(iv) This is a simple routine confirmation. []

Now, we state an important theorem that relates uni—-multi-
variate decompositions to near—separated polynomials, that
is proved in [10]:

THEOREM 3. Let A = K(x) and B = K(y) be rational func-
tion fields over K. Let f,h € A and f';h’ € B be non—
constant rational functions. Then the following statements
are equivalent:

A) There ezists a rational function g € K(t) satisfying f =
g(h) and f" = g(R').

B) h— k' divides f — f' in A ®x B.

As a consequence, a rational function f € K(x) verifies f =
g(h) for some g, h if and only if hn(x) ha(y) — ha(x) hn(y)
divides fn(x) fa(y) — fa(x) fu(y)-

Given an admissible monomial ordering > in a polynomial
ring and a nonzero polynomial G in that ring, we denote by
Im G the leading monomial of G with respect to > and lc G
its leading coefficient.

ALGORITHM 1.
, fm € K(x).

Output: f € K(x) such that K(f) =F = K(f1,...
it exists. Otherwise, returns null.

Input: fi,...

afm)) Zf

A Let > be a graded lexicographical ordering for
Y= (Y1,-.-,Yn). Leti=m.

C Compute H; = ged({Fx, k=1,...,i}) with lc H; = 1.
D - IfH; =1, RETURN NULL (F does not have tran-

scendence degree 1 over K).

— If there exists j € {1,...,i} such that lm H; =
Im Fj, then RETURN f;.

— Otherwise, let fit1 be a coefficient of H; in F\ K.
Increase © and go to B.



Correctness proof. If F has transcendence degree 1 over
K, we can write F = K(f). By Theorem 3,

Jn(y) — f(x) fa(y)

divides H; for any i. Therefore, H; is non—constant if a
Liiroth generator exists.

If there are ¢, j such that lm H; = Im F}, then Fj is a greatest

common divisor of {Fi,k =1,...,i}. Therefore, F; divides
Fy, for every k. Fix such a k. Let ¢ = fkn(y){Fj},s =
fkd(y){Fj} the normal form with respect to the monomial

ordering >; then there exist p, q,r, s € F[y] such that

fin(y) =p(¥)Fi — q(y)
Jia(y) =r(y)Fi — s(y)

where Im F; does not divide any monomial of ¢ or s. By
theorem 2(i), ¢, s # 0. By the definition in step B,

Fy = Fi(p—r fir(x) = (¢ =5 fr(x)).

Hence F; divides ¢ — s fx(z1,...,2n) and we conclude that
q — s fr(x) = 0, since otherwise we would get that lm Fj
dividesIm (¢g—s fx(z1,...,2n)), which contradicts the choice

of the polynomials ¢,s. Thus fix(z1,...,2n) = % e F =
K(f3)-

Now we suppose that Im H; < lm Fj for all k. Again, fix
a value for k. Then there exists a C' € F[y] \ F such that
Fr = H;C. Let d,a be the lowest common multiples of the
denominators of the coefficients of H; and C, respectively.
Then D = H;d,C’' = aC € K[x,y]. Since H; is monic, the
polynomial D is primitive. Then,

SN

a9 Jral) — a0 fra) = 2 < i,

and by theorem 2,

Fen(¥) Fra(x) = frn (%) fra(y) = DC,

C € K[x,y]. On one hand, D ¢ K[y], thus D (and H;) have
a non—constant coefficient. On the other hand, C' ¢ K[y],
then the non—constant coefficients of D in the ring K(x)[y]
have smaller degree than that of fx(x). The choice of d
assures that the coefficients of H have smaller degree than
fr. Summarizing, there exists a coefficient a € F of H; that
can be added to the list of generators and has smaller degree
than them. If tr.deg (F/K) = 1, H; is non—constant for all
i, and the generator has smaller degree than the others.
Therefore, the algorithm ends in a finite number of steps.

Finally, we note that complexity is dominated in the step C
by computing gcd’s of multivariate polynomials, so the al-
gorithm is polynomial in the degree of the rational functions
and in n (see [16]).

From the fact that the Liiroth generator can be found with
only some gcd computations, we obtain that if f is a Liiroth
generator of K(f1,..., fn) then it is also a Liiroth generator
of K'(f1,..., fn) for any field extension K’ of K, K C K.

EXAMPLE 1. Let Q(f1, f2) C Q(z,y, z) where
y2at — 22?2 + 22t 4+ 2% — 222+ 22

yrd — yxrz — yza? + 2%y

fi=

vzt — 2202z 4 y222

fo=

22 — 222 + yad — yrz + 22 — yza? + 22y’
Let

F; = fi, (s, t,u) — fi(x,y,2) fig(s, t,u), i=1,2.
Compute

2 2
Hy = ged(Fy, Fo) = —tu 4+ %t + ry Zqur r y+zy3.
T—2z T—z

Since lIm He < lm F; with respect to the lexicographical or-
dering s >t > u, we take a non—constant coefficient of Ha:

2
f3=2Y72Y Now
xr—z

2, 2
ngftqusZtery Zqur :ry—i—zys
Tr—z

r—z

and Hs = F3, since H3 = Ha. The algorithm returns fs, a
Liiroth generator of Q(f1, f2).

It is important to highlight that when the field F contains a
non—constant polynomial you can compute a polynomial as a
generator, and this generator neither depends on the ground
field K. This result was proved in [8], for zero characteristic.
A general proof can be found in [11].

ALGORITHM 2.
Input: fi,..., fm € K(x).

Output: f € K[x] such that K(f) =F = K(f1,...
it exists. Otherwise, returns null.

7fm)5 Zf

A Compute a Liroth generator f of K(f1,...
gorithm 1.

, fm) using Al-

B Let s be the degree of f'.

— If s > deg f}, and f, is not constant, return null.
Otherwise, let f = 1/f'.

— If s > deg f; and f} is not constant, return null.
Otherwise, let f = f'.

— Let f,(ls)/,fds)/ be the homogeneous components of
(s)!
degree s of fl, f, respectively. Let a = * If

O
fa
a or f, — af} are not constant, return null.
1
Otherwise, let f = of.
y—a

Correctness proof. Once a Liiroth’s generator has been
computed, take a generator f with degree m such that if

f:%and

fu = FO e O,
fa :fés)+...+fc(l0>,



the sum in homogeneous polynomials, then either fa(ls) =0
(s)
n
or Z K.
£

If p € K(f) is a polynomial, then there exists g € K(y) with
ary” + -+ ao

degree r such that p = g(f). If g = by 4+ 0o
; +bo

_afitetaofi
brf;rz++b0f§ ,
ar(fS 4 f) 4

_ +ao(f§” + -+ 1)
br(f8) 4 )

+bo(fy7 + o+ fO)

Since p is a polynomial, the degree of the previous denomi-
nator is smaller than the degree of the numerator. Therefore

be”(IS)T + .+ bof(gs)r = 0.

Iffd‘s):Othean:Oandp: a',-fn+..,+a0fd

Hence f4 divides the numerator of p, and therefore divides
frn. This proves that f is a polynomial.

/)

()
d

If, on the contrary, c(lS) #0, ga ( ) = 0. Contradiction,

f(S)
since o~ ¢ K.
(s)
fa

3. TWOUNI-MULTIVARIATE DECOMPO-

SITION ALGORITHMS
We define the degree of a rational function f = f,/fs €
K(x) as deg f = max {deg fn,deg fa} if gcd(fn, fa) = 1.
The following definition was introduced in [15] for polyno-
mials.

DEFINITION 2. Let f,h € K(x) and g € K(y) such that
f =g(h). Then we say that (g,h) is a uni-multivariate de-
composition of f. It is non-trivial if 1 < deg h < deg f. The
rational function is uni-multivariate decomposable if there
exits a non-trivial decomposition.

If f is a polynomial having a nontrivial uni-multivariate de-
composition, then by Algorithm 2 we get that there exits a
uni-multivariate decomposition (g, h) with g and h polyno-
mials. The paper [15] provides an algorithm to compute a
nontrivial uni-multivariate decomposition of a polynomial f
of degree m that only requires O(nm(m + 1)" log m) arith-
metic operations in the ground field K.

The known techniques for decomposition all divide the prob-
lem into two parts. Given f, in order to find a decomposition

f=g(h),
1. one first computes candidates h,

2. then computes g given h.

Determining g from f and h is a subfield membership prob-
lem. The paper [13] gives a solution to this part. We also
present another faster method, that only requires solving a

Falbroa fi= 4+ bofiH)

linear system of equations. Usually, the harder step is to find
candidates for h. One goal in decomposition is to have com-
ponents of smaller degree than the composed polynomial.
This will be the case here.

3.1 Preliminary results

First, we state some results that will be used in the algo-
rithms presented later. On the properties to highlight out
of uni-multivariate decomposition is the good behaviour of
the degree with respect to this composition.

THEOREM 4. Let g € K(y) and h € K(x), and f = g(h).
Then deg f = deg g - deg h.

PROOF. Let g = 9% and h = :—" with ged(gn, g4) = 1 and
d

gd
gcd(hn, ha) = 1. Then there exist polynomials A, B € K[y]
such that

gn(y) A(y) + ga(y) B(y) = 1.

Homogenizing the polynomials g¢., g4, A, B we obtain, re-
spectively, the bivariate polynomials gn(y1,y2), ga(y1,y2),

Z(yl Y2), é(yl ,y2) verifying

Gn(y1,y2) Ay, y2) ys + Ga(yr,y2) B(yi,v2) y2 =y’

with either uw = 0 or v = 0 and w =max{u, v}. Therefore,
Gn(hn, ha) A, ha) b + Ga(hn, ha) B(hn, ha) By = hY.

If d is an irreducible factor of gcd(gn(hn,ha),ga(hn, ha)),
then d divides hg. On the other hand, d divides gn(hn, hq)
and gq(hn, ha); this implies that d divides h,. As a conse-
quence, gcd(gn (hn, ha), ga(hn, hq)) = 1. So,

gn(hn» hd)
Ga(hn, ha)

is in reduced form. Without loss of generality, we can take
deg gn = rn > rq =deg gq with

f= hq, la| = |deg hy, — deg hal

gn(y) = ar, y'" + -+ +ao
gd(y) = de y"d 4+ -+ bo.

Then, deg f = max {deg Gu(hn, ha), deg Galhn, ha) By~
and

Gl ha) = an B+ + a0kl
gd(hn, hd) - brdh:;,d 4+ -+ boh;d.

If deg Gn(hn,hq) = rndeg h, we immediately obtain that
deg f = deg gdeg h. If deg gn(hn,hd) < rndeg h, then
s = deg hy,, = deg hq. Write

ho =B + BTV 4 R
ha=hS) + RS 4 Rl

where hY ), h(dj ) are the homogeneous components of h,, and
hq with degree j, respectively. Since the degree decreases,
(s)

deg ﬁn(hgf),h((;)) = 0 and deg gn (hn> = 0. Therefore,

K
h(S)
hz) € K. In this case, you can take b’ € K(x) a rational
d

function with deg h = degh’, deg h), # deg h) and such
that f = ¢'(h’) for some ¢’ € K(y) with deg g = deg g¢'.
Under these hypothesis, we proved before that deg f =
deg g’ deg h' = deg gdeg h. [



COROLLARY 1. Let g = gn/ga with gn = auy” + - - +
ao, ga = buy’+- - -+bo and h = hy /hq verifying ged(gn, ga) =
ged(hn, ha) = 1. If f = fo/fa = g(h) with

fn=(auhyi+---+aohg) h;naX{vfu,o}
fa= (buhy + - +bohY) hzlnax{u—u,o}

then ged(fn, fa) = 1.
PROOF. It is easy to prove that
deg fn,deg f4 < max{u,v}  max{deg hn,deg hq}.

If ged(fn, fa) # 1, then deg f < deg gdeg h, contradicting
theorem 4. [

COROLLARY 2. Given f and h, if there exists g such that
f =g(h), then g is unique. Furthermore, it can be computed
from f and h by solving a linear system of equations.

PrOOF. If f = gi(h) = g2(h), then (g1 — g2)(h) = 0, and
by theorem 4, deg (g1 — g2) = 0, thus g1 — g2 is constant.
It is then clear that it must be 0, that is, g1 = g2. Again
by theorem 4, the degree of g is determined by those of f
and h. We can write g as a function with the corresponding
degree and undetermined coefficients. Equating to zero the
coeflicients of the numerator of f — g(h), we obtain a linear
homogeneous system of equations in the coefficients of g. If
we compute a non—trivial solution to this system, we find

g. O

DEFINITION 3. Let f € K(x) be a rational function. Two
uni-multivariate decompositions (g,h) and (¢',h’) of f are
equivalent if there exists a composition unit | € K(y), i.e.,
deg | = 1, such that h = 1(h').

COROLLARY 3. Let f € K(x) be a non—constant rational
function. Then the equivalence classes of uni—-multivariate
decompositions of f correspond bijectively to intermediate
fields F, K(f) C F C K(x), with transcendence degree 1 over
K.

ProoF. The bijection is

o], f=9(h)} — {K(f) CF,(F/K)=1}.
(9, )] — F=K(h)

Suppose we have a uni-multivariate decomposition (g, h) of
f. Since f = g(h), F = K(h) is an intermediate field of
K(f) € K(x) with transcendence degree 1 over K. Also, if
(¢',h') is equivalent to (g, h), h = I(h") for some composition
unit I € K(y). Consequently, ' = 17*(h) and K(h) = K(R').
Let (g,h) and (¢’,h’) be two uni-multivariate decomposi-
tions of f such that K(h) = K(h'). Then there exists ratio-
nal functions I,1" € K(y) such that h = [(h') and b’ =1'(h).
By theorem 4, deg I(I') = 1 and deg | = deg I' = 1.
By the uniqueness (see Corollary 2) of the left component,
y = I('). So, ! € K(y) is a composition unit and (g, h),
(¢',h') are equivalent. By Theorem 1, there exist h € K(x)
and g € K(y) such that F = K(h) and f = g(h). O

3.2 First algorithm

We now proceed with the first algorithm for computing can-
didates h = hy,/hg. This algorithm is based on Theorem
3. Since hn(x) hq(y) — ha(x) hn(y) divides fn(x) fa(y) —
fa(x) fn(y), one can compute candidates for h from f merely
looking at the near-separated divisors H = r(x) s(y) —

r(y)s(x). Next, the problem is: given a multivariate polyno-
mial H = (x,y), how can one determine if it is a symmetric
near-separated polynomial? This is a consequence of theo-
rem 2:

COROLLARY 4. Given a polynomial p € K[x, y], it is pos-
sible to find a near—separated representation (r,s) € K[x]?
of p, if it exists, by solving a linear system of equations with
coefficients in K. Moreover, any other solution (r',s") of this
linear system of equations gives an equivalent decomposition.

ALGORITHM 3.
Input: f e K(x).

Output: A uni—multivariate decomposition (g, h) of f, if it
exists.

A Factor the symmetric polynomial

p = fu(¥) fa(y) = fa(x) fa(y)

Let D = {Hx,...,Hpn} the set of factors of p (up to
product by constants). Let i = 1.

B Check if H; is a symmetric near—separated polynomial.
If H = r(x) s(y) — r(y) s(x), then h = Tisa right—
S
component for f; compute the left component g by solv-
ing a linear system (see Corollary 2) and RETURN
(g, h).

C Ifi < m, then increase i and go to B. Otherwise, RE-
TURN NULL (f is uni—multivariate indecomposable).

EXAMPLE 2. Let
fo= 42'y? — 8237 + 82%yx + 422" — 829°x
+4x? — 222y + 229 — 22 + 10.

The factorization of the polynomial f(x,y,z) — f(s,t,u) is

2 (22 — 14 2s — 2ut® + 2u’t — 2zy° + 22°y)
(:c—s+22y—zy2—u2t+ut2)4

The first factor fi = 2&—1+2s—2ut? +2u?t—22y% +22%y is
not symmetric near—separated because f1(x,y,z,x,y,z) # 0.
On the other hand, the second factor fo = x—s+2%y— 2y —
u’t 4+ ut? does satisfy fo(x,y,2,x,y,2) = 0. Note that by a
previous remark, the components of the decomposition can be
considered as polynomials. Then fo can be written as fo =
h(ZIJ, Y, Z) - h(37 12 u)' Taklng h(.’I}, Y, Z) = f2($, Y, 2, 0,0, 0) =
x4+ 22y —2y?, we check that it satisfies the previous equation
(see theorem 2). The left component g is also a polynomial,
and by theorem 4, has degree 2. Solving the equation f =
g(h) we have the multi—univariate decomposition.:

(4252 —2t+10,z + 22y — zyQ).
[

XAMPLE o. e = — w
E 3. Let f" ith
d
fn = y2x2—|—2x2y22—2y6z+z4x2—222xy5+y10
—81z2 — 450zyz — 625222,
fa = y2x2—|—2x2y22—2y6z+z4x2—222xy5+y10

—162x% — 900zyz — 12509722

We look for all the intermediate fields of Q(f) C Q(z,y, 2)
with transcendence degree 1 over Q. First, we will factor the
polynomial

fn(x,y,z) fd(s7t7u) - fn(87t7u) fd(xayaz) = 7625]"1 f27



where
flz—mtz U+ 55 D xtd — zsty — 2u? sy + zt5 — 52%55,225
295 zu’s — %xys — zyut — —,xts + 35 sy + uty ,
fsz:vtz u — —mt5 + zsty + zu? sy — zt5 752—5xz s
2

+ =TU"S — —mys zyut + —xter —sy +uty

We have fi(z,y,z,x,y,2) # 0, thus fi is not symmetric
near—separated. On the other hand, fa(x,y,z,2,y,z) = 0.
Moreover,

fo = —zt5y+uty5+ <—%t5—t22u—yut)x
9 5 2
+ zty+25y + zu y)s
9 9 9 9
— e+ Ly L
Tt T E e 25y>

We check that f2 is symmetric near—separated, by solving a
linear system of equations. Define

9 , 9 9
1 - —__7 9
fa(z,y,2,1,0,0) = r(z,y, 2) %% ~ 58 y+25y
(220 Ner L
“\"25° " 25Y 25Y

Next, we compute so(y, z) such that

%y so(t,u) — %t so(y, z) = —2t°y + uty®.
5 25
Let so(y,z) = as(2)y° + -+ + ao(2). Then a1 = 9 # and
ap = a2z = a3 = aq4 = a5 = 0. Hence, so = %r)zy and
— 2
s1(y,z) = (v, Z)T(Z(E?E,t:)t) €0 _ 1, Thuss ==z + gzy

s(1,0,0) = 1 and (r,
resentation of p:

s) is a symmetric near—separated rep-

ro o= 72:17227g + 9
T T Tyt o5y’
s = x—&—?zy.

Now we compute g, which is a univariate function with de-
gree 2. Solving the corresponding linear system of equations
we obtain

_ 625t° — 6561
©625¢2 — 13122°

3.3 Second algorithm

For this algorithm, we suppose that K has sufficiently many
elements. If it is not the case, then we can decompose f
in an algebraic extension K[w] of K, and then check if it is
equivalent to a decomposition with coefficients in K; this last
step can be done by solving a system of linear equations in
the same fashion as the computation of g. The algorithm is
based on Corollary 1; we will need several technical results
too.

LEMMA 1. Let f € K(x). Then for any admissible mono-
mial ordering > there are units u € K(y), vi € K(z;), i =
1,...,n such that, if f = f, /fd_uof(m,...,vn), then
Im f, >Im fy, £,(0,....0)'= 0 and £,(0,...,0) 0.

PROOF. Let > be any admissible monomial ordering. Let

u1 € K(y) be a unit such that fi = fi, / fia = w1 (f) verifies
Im fi, >Im fi14. Such a unit always exists:

— Iflm f, <lm fq, let ux = 1/y.

lc fn

—Iflm f, =1m fq4, let us = Ic fa

(1/y)o(y— )

— Iflm f,, > 1m fq4, let ux = y.

Let @« = (ai,...,an) € K" such that fig(a) # 0 (such
a «a exists if K has sufficiently many elements). Let v; =
T; + (67 7 = 1,...,7’L and f2 = f2n/f2d = fl(vl,...,vn).

Then f24(0,...,0) # 0, and we can take
_ fan(0,...,0)

=g — 22\ )

f24(0,...,0)

so that f =wo f(v1,...,v,) verifies all the conditions. [

LEMMA 2. Let i,j,k € N with i < j < k, P,Q € K[z] and
> an admissible monomial ordering such that Im P >1m Q.
Then Im P?Q*~7 > Im P'Q"~

LemMMA 3. Let f = f,/fs € K(x) such that Im f, >
Im f,, f,00,...,0) = 0 and f,4(0,...,0) # 0. Then, for
every uni-multivariate decomposition f = g(h) there exists
an equivalent decomposition f = g(h) withg = g,,/g,,deg g,
deg G, and §,,(0) = 0 (thus 5,(0) £ 0).

PROOF. As in the proof of Lemma 1, there exists a unit u;
such that if h1 = u(h) = hin/h14, then h1,(0,...,0) = 0.
Let g1 = g(u™) = (auy™ + -4+ a0)/(boy’ + - - +bo). Then

= auhi, +

f=

-+ a’ohzltd v—u
bl + -+ bohi,

and by Corollary 1, f; = (bohy + - - - 4 bohlg) R 170,
As £4(0,...,0) # 0 and hi,(0, .,0) = 0 we must have
h14(0,...,0) # 0. But f,(0,...,0) =0 and f, = (auh{, +

-+ aoh )hmaz{v u.0} , thus ap = 0. Next, we will prove
that there is an equlvalent decomposition verifying the con-
dition on the degrees of the left—component. To that end, we
will consider three cases. Let > be any admissible monomial
ordering and w = deg g1 = max{u,v}.

— If Im hi, < Ilm hi14 then using repeatedly Lemma 2,
Im £, =1lm hi,hY; " <lm Ay =1m f,
which contradicts our hypothesis.

— If Im h1, > lm hyg4, then applying Lemma 2,

lm h hmaz{v u,0}
lmh h'maa:{u v 0}

m f, =
Im f; =

As lm f, > lm f, by hypothesis, by Lemma 2 again
we must have u > v, that is, deg g1, > deg g14.

— If Im hi, = Ilm hig then, as in Lemma 1, we can cancel
the leading monomial of h14 with a unit u2 on the left,
so that f = ga (h2) with Im hg, > lm hog which is the
previous case.

O

Let f = g(h) be a uni-multivariate decomposition of f with
f=Ffa/fa,g = (auy” + -+ a0)/(boy” + -+ + bo) and

>



h = hn/hq. By the previous lemma, we can suppose v > v
and g(0) =0, i.e. ap = 0. Then, as

awh + -+ ath,hy ™"

(boh + - - + bohy)hy ™"

we have that h, | f» and hq| fq. This is the key to the fol-
lowing algorithm.

f=

ALGORITHM 4.
Input: f e K(x).

Output: (g,h) a uni—-multivariate decomposition of f, if it

ex1sts.
A Compute u,v1,...,v, as in Lemma 1. Let
f="Tu/Fa=wuo f(vr,...,00)
B Factor f,, and f,. Let D = {(A1,B1),...,(Am, Bm)}

be the set of pairs (A, B) such that A, B divide f,,, f,4
respectively (up to product by constants). Let i = 1.

C Check if there exists g € K(y) with f = g(A;/B;); if such
a g exists, RETURN (u™'(g),h(vi',...,v2")).

D Ifi < m, increase i and go to C, otherwise RETURN
NULL (f is uni-multivariate indecomposable).

EXAMPLE 4. Let
[ o= 4z%9? — 8235 + 82%yx + 42%y* — 8zy’x
+4x? — 222y + 22y% — 22 4+ 10

as in Ezample 2. We take u = t — 10 € K(t) and v =
T,v2 =y,v3 = 2. Then

T = 4z%® —82%y° + 82%yx + 42%y* — 829z
+4z? — 222y + 2292 — 2z

We factor f = 2(z + 2%y — zy?) (2 — 1 + 22y — 22°). We
first take the candidate (z + 2z°y — zy*). We have to check
if there are values of ay,as for which g = ast® + a1t verifies
f=gx+22y—2y%). We find the solution az = 4,a1 = —2.
Thus f = (4% — 2t + 10)(x + 2%y — zy?).

EXAMPLE 5. Let f = an with
d
fo = y?2? 4 22%y2% — 2%z + 2%2? — 222000
+y10 — 8122 — 450zyz — 6251222,
fa = vy?2? 4 22%yz% — 2%z + 2%2? — 22200

+yt% — 16222 — 900zyz — 1250y%22,

as in Example 3. Let > be the pure lexicographical ordering
withy >« > z. Then Im f, =1m fq = y'°. Following the
proof of lemma 1, let ux = 1/(t — 1), then ui(f) = fin/f1d
with

fin = vy2a? +22%y2? — 282 + 2%a? — 22720
+y1% — 16222 — 900zyz — 12509222,
fia = 8lz? 4 450zyz + 625y222.

Now, let a« = (1,0,0), so that the denominator of the previ-
ous expression is non—zero at the point a. Then fan/foa =
u(f (@ +1,y,2)) with

fon = vy22® + 2%z + y? + 20y + 4y + 292>
—252 — 2y + 21? + 22z + 2t — 222298
—22%9% + 410 — 16222 — 324z — 162
—900zyz — 900yz — 12509222,

foa = 81z 4+ 162z + 81 4 450zyz + 450y2z + 625y222.

Table 1: Average computing times (in seconds)

n d | Alg3 Fact. Alg 4 Fact.
2 10| 3217  23.15 | 27.03 22.44
2 25| 6820 46.34 | 51.10  40.33
2 30| 89.40 6248 | 91.22  71.06
4 8 | 54.37 3856 | 32.07 25.47
4 25| 89.75 6595 | 64.41  46.72
4 30| 156.87 110.30 | 134.60 99.87
8 10 | 234.90 162.89 | 156.12 116.66
8 25| 349.44 23541 | 341.11 276.85
8 30| 654.72 454.36 | 678.89 511.01

As f2r(0,0,0) = —162 and f24(0,0,0) = 81, if us =t + 2,
we have that

L
fa

verifies the conditions of Lemma 3. We factor f, and f,:

uz(ur(f(z+1,y,2))) = f =

zn - (z2+z2a7+y+my—y5)2,
o = (92 +9+25y2)°.
As the degree is multiplicative and deg f = 10, and also

Im A, > lm hg, the possible values of h.,hq are

hn = 22+z2m+y+wy—y5,
ha € {1,924+ 9+ 25yz, (92 + 9 + 25y2)*}

To check them, let g = %Igolt. We substitute h in g and
solve the homogeneous linear system obtained by comparing

the coefficients with those of f.

— If hg = 1, there is only the trivial solution, thus h is not
a candidate for f.

— If ha = 92 + 9 + 25yz, we get the non-trivial solution
az =bo = 1,a1 = b1 =0, thus f has a uni—-multivariate
decomposition

- —1/= 7 - t2 22aztyz—y®
(ur (uy ' (9)) » Bz = 1,9,2) = (525, Zaoiss,2)-

— If hg = (9z + 9+ 25y2)?, the only solution is the trivial
one.

Therefore, any uni—-multivariate decomposition of f is equiv-
alent to the decomposition (g, h) computed before.

4. PERFORMANCE

Both algorithms run in exponential time, since the number
of candidates to be tested is, in the worst case, exponen-
tial in the degree of the input; the rest of the steps in both
algorithms are in polynomial time. However, in practical
examples it seems that most of the time is spent in the fac-
torization of the associated symmetric near—separated poly-
nomial, in Algorithm 3, or the numerator and denominator
in Algorithm 4. We show in Table 1 the average times ob-
tained by running implementations of these algorithms in
Maple VI (see [3]) on a collection of random functions. The
parameters are the number of variables n and the degree of
the rational function d. We have also included the factor-
ization times for each algorithm.
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