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Abstract. In this paper we present the Maple package Cadecom which
is designed for performing computations in rational function fields. The
main objects that Cadecom deals with are multivariate rational functions
over any computable field, and the key tool are the functional decompo-
sition algorithms. The functional decomposition problem has many ap-
plications in computer science, engineering (CAGD), pure mathematics
or robotics. We motivate the interest of this program package by present-
ing applications on computing roots, simplifying sine–cosine equations,
integrating rational functions, computing subfields, computing Gröbner
bases and reparametrizing parametric curves. We also include a short
overview of the package from the Maple system point of view.

1 Introduction

The general functional decomposition problem can be stated as follows: given
f in a class of functions, we want to represent f as a composition of two “sim-
pler” functions g and h in the same class, i.e. f = g ◦ h = g(h). Although
not every function can be decomposed in this manner, when such a decompo-
sition does exist many problems become significantly simpler. Nowadays, this
problem has become more important for the simplification of some algebraic ob-
jects/structures: polynomials, rational functions, sine–cosine equations or more
generally multivariate rational functions module a polynomial ideal. Over the
last ten years, there have been several new results in the area of polynomial
decomposition, see the references in [8].
Univariate polynomial decomposition has applications in computer science, com-
putational algebra, and robotics. In fact, computer algebra system such as AX-
IOM, MAPLE, MATHEMATICA and REDUCE support polynomial decompo-
sition for univariate polynomials. However we do not know a program package
dedicated to functional decomposition algorithms. In this paper we present the
program package CADECOM (Computer Algebra software for functional DE-
COMposition) which is built on the computer algebra system MAPLE and de-
signed for performing computations over rational function fields. The germ of
Cadecom was a collection of procedures (c.f. [3]), which were designed as a help
for the manipulation of univariate rational function fields.



The main objects that Cadecom deals with are multivariate rational functions
over any computable field K, in the sense of the underlying computer algebra
system Maple, that is, all the arithmetic operations have to be available in the
system. Typically, a finite field K = Fq, or the rational numbers K = Q, or a
finite algebraic extension K(α) of K, or a multivariate rational function field
K(x1, . . . , xn).
The key tool of Cadecom are the functional decomposition algorithms. The main
implementations are based on algorithms presented in [4, 9, 22] for decomposing
univariate polynomial and rational functions; in [8] for decomposing multivariate
polynomials in several ways; in [19] for reparametrizing parametric curves and
in [10] for decomposing bivariate polynomials module the unit circle.
We motivate the importance of this program package by presenting some of the
most interesting applications: computing roots, evaluating functions, simplify-
ing sine–cosine equations, integrating rational functions, computing subfields,
computing Gröbner bases and reparametrizing parametric curves. We describe
the functionalities by examples, including the computation time on a personal
computer Macintosh Centris 650.
The structure of the paper is as follows: In Section 2 we present some of the
problems that can be simplified using the package and we illustrate them by
some examples. In Section 3 we outline some aspects on Cadecom’s procedures.

2 Motivation

In this section we present some applications of the package Cadecom and we
illustrate them by some examples.

2.1 Evaluating Functions

Evaluation is a common calculation in mathematics. The evaluation of a func-
tion f in a point requires, in the general case, O(n) multiplications; but if f is
decomposable, it can be computed with O(

√
n) multiplications.

A rational function f(x) ∈ K(x) is called decomposable if there exist two rational
functions g(x), h(x) ∈ K(x) with degree greater than one and such that f(x) =
g(h(x)). The degree of a rational function is the maximum of the degree of
numerator and the degree of the denominator.
For instance, suppose we want to evaluate the rational function

f =
x35 + 5 x28 + 10 x21 − 3 x19 + 10 x14 − 3 x12 + 5 x7 + 1

x19 + x15 + x12

Using the decomp function in Cadecom package we get:
> decomp(f, x); [

3 x4 − 1
x4 (x− 1)

,− x3

x7 + 1

]
time = 60.35 bytes = 7783850.



Then, f = g(h) where h = − x3

x7 + 1
and g =

3 x4 − 1
x4 (x− 1)

.

Evaluation of multivariate polynomials can also be simplified via functional de-
composition. A multivariate polynomial f(x1, . . . , xn) ∈ K[x1, . . . , xn] is uni–
multivariate decomposable if there exist a univariate polynomial g(y) ∈ K[y]
and a multivariate polynomial h(x1, . . . , xn) ∈ K[x1, . . . , xn] with total degree
greater than one and such that f(x1, . . . , xn) = g(h(x1, . . . , xn)).

Given the multivariate polynomial f ∈ K[x, y, z]:

f = 3x4y2 + 6x2y3z + 18x3y + 3z2y4 + 18zy2x + 27x2 + 6x2y + 6zy2 + 18x + 2

Using the umdecompoly function, we get:

> umdecompoly(f, u);[
3u2 + 6u + 2, u = x2y + zy2 + 3x

]
time = 45.21 bytes = 5727569.

2.2 Computing Roots

In general, the equation f(x) = 0 can be numerically solved more efficiently if
f is decomposable. Moreover, in the particular case when f is a polynomial, it
is easier to determine if the zeroes of f can be expressed in terms of radicals.
Suppose we want to find out all the roots of a polynomial f ; if f = g(h), in
general, it would be more effective to compute the roots of g, say α and then
solve the equations h− α. For example, let

f = x6 − 6x5 − 17x4 + 112x3 + 67x2 − 442x + 290

f is an irreducible polynomial over Q[x]. But it is decomposable, this can be
seen using the decompoly code:

> decompoly(f, x); [
x2 + 34x + 290, x3 − 3x2 − 13x

]
time = 1.47, bytes = 133434.

Now we can compute all the roots of f : first solve the equation x2+34x+290 = 0:
we have two roots α = −17 +

√
−1 and its conjugate α; then solve the equation

x3−3x2−13x−α = 0, we get three roots of f , β1, β2 and β3. The other roots of
f are β1, β2 and β3. Summarizing, we can compute the roots of the polynomial
f , with degree 6, solving a second order equation and a third order equation.

Sometimes you come across an irreducible and indecomposable univariate poly-
nomial, but you can still simplify the polynomial equation. We say that a uni-
variate polynomial f(x) ∈ K[x] is ideal decomposable if there exist g(x) and h(x)



in K[x] forming a non–trivial decomposition, g(h(x)), i.e. deg h, deg g < deg f ,
and so that f(x) divides g(h(x)). The ideal decomposition problem is to decide
if f is ideal decomposable; and in the affirmative case compute f̄ , g and h such
that ff̄ = g(h) (c.f. [6]).

Suppose we want to compute the zeroes of the polynomial

f = x6 + 9x4 − 103 + 27x2 + 90x + 52

with rational coefficients. First of all, we check that f is irreducible and inde-
composable. In fact, Maple was unable to compute symbolically the roots of this
polynomial. The idealdecompoly function in Cadecom package give us:

> idealdecompoly(f, x);[
x3 + 9x2 + 27x + 22,

[
x3 + 12x2 + 1128x + 1144, x3 + 3x2 + 3x

]]
time = 567.22, bytes = 67838253.

We have that ff̄ = g(h) where

f̄ = x3 + 9x2 + 27x + 22, g = x3 + 12x2 + 1128x + 1144, and h = x3 + 3x2 + 3x.

So, we have reduced the problem to compute the zeroes of two polynomial of
degree 3.

2.3 Reparametrizing Parametric Curves

A parametrization (g(t), h(t)) of a parametric curve f(x, y) = 0 is called faithful
if every point (x0, y0) of the curve (except a finite number of them) corresponds
to a unique value of the parameter t0, that is, given a point (x0, y0) of the curve,
i.e. f(x0, y0) = 0, there exists a unique t0 such that

x0 = g(t0), y0 = h(t0).

Not every algebraic curve is parametric, but if it is, there exists a faithful
parametrization. The computation of a faithful parametrization is an impor-
tant topic in Computer Aided Geometric Design (CAGD); see for example [7,
19].

In algebraic terms, a parametrization (g(t), h(t)) of a curve f is faithful if and
only if K(g(t), h(t)) = K(t). In Cadecom there are implemented several proce-
dures to test the faithfulness: for example, TRfaithful which is based on the
concept of Taylor resultant introduce by Abhyancar around 1972 (see [1]). We
can also find a faithful parametrization from a non-faithful one: for instance,
using the procedure netto based on the constructive proof of the classical result
of Lüroth’s theorem or the procedure sedeberg based on the paper [19].

Suppose we are given the parametrization



(g, h) =
(

t6 + 3t4 + 675t2 + 2745− 64t3 − 2352t

(2t− 7)3
,

(2t− 7)(t2 + 1)
t4 + 26t2 + 295− 168t

)
.

of the plane algebraic curve f(x, y) = y3x2+16y3x+280y3+144y2+18y2x−x−8.
In Cadecom we get:

> k:=sedeberg([g, h], t);

k =
31557− 8980t + 127t2

13t2 − 202t + 720

time = 0.40, bytes = 83230.

In order to find a faithful parametrization of f from (g, h), we call lcomp proce-
dure:

> g’:=lcomp(k, g, t);

g′ = 9
−10055829104 + 678164228t− 15210262t2 + 112525t3

−2048383 + 629031t− 64389t2 + 2197t3

time = 1.85, bytes = 226074.

> h’:=lcomp(k, h, t);

h′ =
570230− 71197t + 1313t2

20256874− 926792t + 11215t2

time = 1.12, bytes = 142782.

Then (g′, h′) is a faithful parametrization of the algebraic curve defined by the
polynomial f .

Another interesting test over parametric curves is to decide if a parametrization
is quasi–polynomial. A parametrization (g(t), h(t)) is quasi–polynomial if the
union field K(g(t), h(t)) contains a non–constant polynomial. To simplify this
kind of parametrization we can use decomposition polynomial algorithms which
are very fast. We can test it using cadecom function quasipol.

Given the plane algebraic curve, −31 + 140y3x + 296x − 99y − 92yx2 − 4x2 +
196y2x2−100y3x2−117y2 +672y2x−49y3 +764xy = 0, by the parametrization

(g, h) =
(

t6 + 3t4 + 3t2 + 2
2t2 − 4

,
t4 − 5

t4 + 6t2 + 9

)
.

> quasipol([g, h], t);
true

time = 2.72, bytes = 196062.



2.4 Computing Gröbner Bases

Gröbner bases computation can also be reduced via multivariate decomposition.
For multivariate decomposition there exist several definitions of decomposable,
see [8]. For Gröbner bases we are interesting in multi–univariate decomposable
polynomial, since this decomposition is compatible with Gröbner bases compu-
tation:

Given G be a reduced Gröbner basis —under some term ordering— of the ideal
generated by H, where H is a finite set of polynomials in the variables x1, . . . , xn;
let Θ be a polynomial map, that is, Θ= (θ1, . . . , θn) is a list of n polynomials
in the variables x1, . . . , xn. Now, we consider two new polynomial sets: H∗ and
G∗, obtained from H and G, respectively, by replacing xi with θi. A natural
question that arises is: Under which circumstances is G∗ the reduced Gröbner
basis of the ideal generated by H∗ under the same term ordering? In [11] the
authors give a complete answer: this happens if and only if the composition by
Θ is “compatible” with the term ordering and Θ is a list of permuted univariate
and monic polynomials. Similar results were obtained in [12] for Gröbner bases.
This problem has two natural applications. One of them is in the computation
of reduced Gröbner bases of the ideal generated by composed polynomials: so,
in order to compute a reduced Gröbner basis of H∗, we first compute a reduced
Gröbner basis G of H and carry out the composition on G, obtaining a re-
duced Gröbner basis of H∗. This appears to be more efficient than computing a
reduced Gröbner basis of H∗ directly. On the other hand, the opposite applica-
tion is decomposing the input polynomials f ∈ H as f = g(θ1(x1), . . . , θn(xn)),
where θi(xi) is an univariate polynomial in the variable xi, and then check if the
composition by Θ= (θ1, . . . , θn) is “compatible” with the term ordering.

We say that a multivariate polynomial f(x1, . . . , xn) ∈ K[x1, . . . , xn] is multi–
univariate if there exist a multivariate polynomial g ∈ K[x1, . . . , xn] and uni-
variate polynomials hi(xi) ∈ K[xi] with degree greater than 1 such that f =
g(h1, . . . , hn).

Suppose we want to find the Gröbner basis of the ideal generated by

(g, h) = (−94038 y + 1707 y6 + 320 x9 − 720 x7 + 540 x5 + 61452 y2 − 4800 x6

+11082x− 8808 y3x + 864 x8 + 54 x2y6 + 648 x2y4 + 20484 y4 − 4428 y5

−738 y7 − 270 y7x− 15 y9x + 20 y9x3 − 1020 x3y6 − 36720 x3y24128 x6y
−12240 x3y4 + 1152 x6y4 + 3456 x6y2 + 96 x6y6 + 27540 xy2 + 765 xy6

+9180xy4 + 256 x12 + 1944 x2y2 − 24529 y3 − 33408 xy − 5184 x4y2

+45354x3y − 144 x4y6 − 768 x10 + 42684− 1728 x4y4 + 6633 x4

−2457 x2 − 1920 x9y + 2322 x2y − 14911 x3 − 1032 x4y3 − 6192 x4y
+4320x7y − 3240 x5y + 387 x2y3 − 320 x9y3 + 11879 x3y3 + 720 x7y3

−1620 y5x− 540 x5y3 − 41 y9 + 688 x6y3 + 360 y7x3 + 2160 y5x3,
−2898 y − 20 y6 − 720 y2 + 736 x6 + 3030 x− 330 y3x− 240 y4 + 108 y5

+18 y7 − 267 y3 − 1980 xy + 2640 x3y − 1104 x4 + 414 x2 − 270 x2y
−4040 x3 + 120 x4y3 + 720 x4y − 45 x2y3 + 440 x3y3 + 5363 + y9

−80 x6y3 − 480 x6y),



the Maple V (release 5) function gbasis was not able to compute it -after two
days or work- but if we use mudecompoly function we get

> mudecompoly(g);

[−15673 y + 7424 xy + 688 x2y − 320 x3y + 42684− 14776 x− 4368 x2 + 320 x3

+256x4 + 1707 y2 − 1020 xy2 + 96 x2y2 − 41 y3 + 20 y3x, [y3 + 6 y,−3/4 x + x3]]

time = 7.60, bytes = 492534.

> lmdecompoly([y3 + 6 y,−3/4 x + x3], h);

−483 y + 440 xy − 80 x2y + 5363− 4040 x + 736 x2 − 20 y2 + y3

time = 3.45, bytes = 257258.

Now, we can compute the Gröbner basis of the ideal generated by

(g′, h′) = (−15673 y + 7424 xy + 688 x2y − 320 x3y + 42684− 14776 x− 4368 x2

+320x3 + 256 x4 + 1707 y2 − 1020 xy2 + 96 x2y2 − 41 y3 + 20 y3x,
−483 y + 440 xy − 80 x2y + 5363− 4040 x + 736 x2 − 20 y2 + y3)

> G:=gbasis([g′, h′],plex(x, y));

G = 17928427558923 y + 69652831043084 y2 − 50521292884496 y3

+6589152 y10 − 124688 y11 − 203979830 y9 + 1039 y12 + 17619477962188 y4

−3821455949733 y5 − 57443632170 y7 + 560626353463 y6 + 4127863857 y8,
83397476972612571963277295735603428320 x− 130766609289177
+36191299508720060447403063118197599 y11

−4042379725979571674708750716525995067 y10

+195873946096273733841056132157466599879 y9

−5472783196174854894651618542646887950369 y8

+98113406517428783182772567336042491854966 y7

−1181032358591884169753128118627836046029776 y6

+9645518018879286632169470532178440050271479 y5

−52292039510395436170685577583223902062229272 y4

+174991947069436313188374970050139460701264940 y3

−289518582479029843294347559294975318913272396 y2

−10527356026123798669705159258688493019930760 y
+541111948878772512635131804649024245435417683]

time = 12.20, bytes = 6460538.

The Gröbner basis of (g, h) is {f(−3/4 x + x3, y3 + 6 y) | f ∈ G}.

2.5 Computing Subfields

A classical issue in Algebra is to describe the lattice of fields related to subfields
K(g) and K(h), where g, h are two univariate rational functions. In other words,



to determine the union field, the intersection field or compute the intermediate
subfields F : K(g) ⊂ F ⊂ K(x). We know that there exists only a finite number
of them, since by Lüroth’s theorem every field F is generated by one rational
function f(x) ∈ K(x), i.e. F = K(f). The following diagram illustrates this:

K(x)∣∣∣
K(g(x), h(x))/ ∖

K(g(x)) K(h(x))∖ /
K(g(x) ∩K(h(x))∣∣∣

K

In order to construct symbolically this lattice, we use the Cadecom procedures
maxcomponent or netto (to compute the union field ) and inters (to compute
the intersection field) for rational functions and maxcompoly1, maxcompoly2
and interspol for polynomials. Again we have distinguished between rational
functions and polynomials since for polynomials we have faster algorithms. Each
procedure for rational functions calls the respective polynomial one when the
input is a polynomial.

Suppose we want to compute the lattice of the fields K(g) and K(h) for g = x4

and h =
x

1− x2
. The computation in Cadecom:

> maxcomponent([g, h], x);

x

time = 0.75, bytes = 67650,

> inters(g, h, x);

x4

1− 2x4 + x8

time = 5.52, bytes = 295662.

Then the subfield lattice is:



K(x)/ ∖
K(x4) K

(
x

1− x2

)
∖ /
K

(
x4

1− 2x4 + x8

)
∣∣∣
K

Another subfield computation problem is the calculation of all the fields F which
contains K(f). For this computation we use the function intermediate. More-
over, we can order the subfields under inclusion relation using the procedure
intermtree. In the particular case when the field K(f) contains a non-constant
polynomial, we can use the procedure intermpol (c.f. [2]). Of course, this code
is much faster than the previous one.
In this example, we want to compute all intermediate subfields ordered with
respect to inclusion. Suppose

f =
2x4 − 2x3 − 8x− 1
4x4 + 2x3 − 16x + 1

,

if we compute F such that Q(f) ⊂ F ⊂ Q(x) there is no proper intermediate
field, but if we compute F such that Q(α)(f) ⊂ F ⊂ Q(α)(x) where α3 = 2 we
get an intermediate field.

> intermtree(f, x);
[ ]

time = 0.77, bytes = 89630.

> alias(alpha=RootOf(Z3 − 2)) :
intermtree(f, x, α); [

αx(αx− 2)
αx + 1

]
time = 29.88, bytes = 2285522.

2.6 Simplifying Sine–Cosine Equations

By a sine–cosine equation we will understand a polynomial equality f(s, c) = 0,
with f in the quotient ring K[s, c]/(s2 + c2 − 1), and where K is a field of



characteristic zero (typically, a numerical field such as the rational numbers field
Q or a field of parameters Q(x1, . . . , xm)).

Therefore, when we write f(s, c) we regard this sine–cosine polynomial expres-
sion f(s, c) = 0 as implicitly univariate in some unknown angle θ such that:

s = sin(θ), c = cos(θ).

We are interested in simplifying or solving equations of the sort f(s, c) = 0; and
thus, equivalently, for solving or simplifying systems

f(s, c) = 0
s2 + c2 − 1 = 0.

Polynomial systems, where the variables are interpreted as trigonometric func-
tions of unknown angles, are quite ubiquitous, arising, for instance, in electrical
networking, in molecular kinematics and in concrete situations, like in tilting
effects on a double pendulum. Here, our applications will be taken from the field
of robot kinematics. Besides refering to the many situations described in the re-
cent book of [13], we will sketch, for the sake of being self-contained, an example
of the role of sine–cosine systems in robotics:

Given a robot arm with six revolute joints, i.e. a 6R robot, the inverse kinematics
problem is to find the values of the different joint angles (with respect to some
standard way of measuring them) that place the tip (or hand) of the robot at
some desired position and orientation.
So, the inverse kinematics problem amounts to solving a non-linear polynomial
system where the unknowns are the sines and cosines :

{si = sin(θi), ci = cos(θi), i = 1, . . . , 6}
of the six joint angles:

{θi, i = 1, . . . , 6}.
The solution of such systems, in general, is quite involved, and depends on the
particular geometry of the robot. After decades of research, a symbolic solution
(though not in closed form) for the general 6R manipulator inverse kinematics
system has been found (see [14, 17]). By a clever elimination method it turns
out that in this system θ3 can be determined as the solution of a 16–degree
polynomial in the tangent of θ3/2; then θ1 and θ2 are found by solving a system of
sine–cosine polynomials, linear in these trigonometric functions, with coefficients
in θ3. Of course, the determining 16–degree polynomial can be also expressed
as a 8–degree polynomial in the sine and cosine of θ3. However, the degree of
this solution, together with the complexity of its coefficients, which may contain
thousand of terms (c.f. [20]), limits the practical use of this approach.
In practice, the control of a robot requires the solution of the kinematic problem
to be of low degree, so that the joint angles can be quickly found. Thus, it is of
primordial interest to simplify, when possible, such a univariate sine–cosine equa-
tion. The recent paper [10] contains several methods for solving or simplifying
sine–cosine equations.

Although K[s, c]/(s2 + c2 − 1) is not a unique factorization domain, we can
still look for lower degree factors of f . More precisely, factoring f over the



domain K[s, c]/(s2 + c2 − 1) essentially means: finding sine–cosine polynomi-
als g(s, c), h(s, c), verifying f = gh modulo s2 + c2 − 1, plus the conditions:
deg(f) > deg(g) and deg(f) > deg(h), in order to avoid trivial factorizations.

The following example is an irreducible sine–cosine polynomial with coefficients
over the rational function field Q(a, b).

f = 70 + 21060 b − 2 b5cs + 2 ac2 − 10530 b2s + 256 c5a2 − 35 bs + 8960 ac3 +
2947200 c3a2 − 4912 sa + 2456 ab − 627536 c3a2s − 256 c5ba + 12636000 bsac −
256 b5c4sa − 1200 c3bsa − ac2bs − c3b6 + b6c + 2695680 bac3 + c2b2s − 2 c2b +
42000 sac− 2947200 a2c + 1200 c4b5a− 1200 b5c2a− 2456 c2ab.

We are looking for a factorization of the sine–cosine polynomial f over the field
Q(a, b). Then we use the Cadecom procedure

> scfacpol (f, s, c);[
1,

ac2

2
− c2b

2
− b5cs

2
+ 5265 b +

35
2
− 1228 sa, 512 ac3 + 2400 sac + 4− 2 bs

]
time : 0.88, bytes 94331.

The natural notion of decomposability for sine–cosine polynomials f(s, c) states,
therefore, the existence of a standard polynomial g(x) and of a sine–cosine poly-
nomial h(s, c), such that

f(s, c) = g(h(s, c)) modulo s2 + c2 − 1.
As in the case of factorization, we look for composition factors which are simpler
than the given polynomial.

The following example is uni-multivariate indecomposable sine–cosine polyno-
mial with coefficients in the rational function field Q(a, b, m, n).

f = −21662 c + 3938 cs + 114874 c2s− 260864 c2 − 121438 c3 + 22022 c3bs
−547515 c5s + 934 c2sb + 71415 c6b + 12420 c4sb− 6210 c5a2 − 8078 c3b
+135 c6a2b2 + 540 c5a2b + 556830 c3s− 12420 c4a2s + 142830 c5 + 8078 c3a2

−934 c2a2s− 22022 c3a2s + 3105 c5a4s + 135 c4a4s + 5001 n7 − 71415 c4s
−71415 c6a2 − 270 c4a2sb + 135 c4b2s− 90 c2b− 467− 467 c4a4 + 934 c4a2b
+90 ca5b− 934 c3a7b− 934 c3a2m3 + 934 c3b2a5 + 934 c3bm3 − 22022 c2sm3

+8078 c2a5b + 90 c2a2 − 71415 c5a5b + 259463 c4 + b2 − 6210 c4m3

−6210 c4a5b− 467 c2a10b2 − 934 cm3s− 6210 c5a2bs− 270 c5a2bm3

+270 c3a2m3s + 270 c4a7bm3 + 270 c3a7bs + 6210 c4a7sb + 135 c5b3a5

−934 c2a5bm3 − 934 ca5bs + 135 c5a9b + 135 c5a4m3 − 270 c5a7b2 − 540 c4a7b
−540 c4a2m3 + 135 c4a2m6 − 22022 c2sa5b + 8078 c2m3 − 467 c2m6

−270 c3m6 + 45 c3m9 + 71820 c4a2 − 6210 c4b2sa5 + 45 c3a15b3 + 540 c4bm3

−270 c5a4 + 45 c6a6 − 71820 c4b− 270 c5b2 + 135 c4a12b2 − 45 c6b3

+6210 c3sa5bm3 + 71820 c3a5b− 270 c3bm3s− 270 c4b2a5m3 − 270 c3a10b2

−12420 c3sm3 + 3105 c3sm6 − 6210 c4bsm3 + 540 c4b2a5 − 135 c4b3a10

−135 c4bm6 + 135 c2m6s + 270 c2a5bm3s + 135 c3a10b2m3 + 135 c2a10b2s
+135 c3a5bm6 + 90 cm3 + 6210 c5b− 540 c3a5bm3 − 12420 c3sa5b
−467 c4b2 − 135 c6a4b + 3105 c5b2s + 135 c5b2m3 + 6210 c4a2sm3

−71415 c5m3 + 71820 c3m3 − 270 c3b2a5s + 3105 c3sa10b2.



We are interested in a decomposition of f modulo the unit circle over the field
Q(a, b, n,m). We use the Cadecom primitive scdecpol.

> scdecpol (f, s, c);[[
b2 + 5001 n7 +

(
45 b− 45 a2

)
x +

(
−467 b2 + 934 a2b− 467 a4

)
x2

+
(
−45 b3 + 135 a2b2 − 135 a4b + 45 a6

)
x3,

1
b− a2

(c2b− c2a2 − 23 cs− ca5b + 2 c− cm3 − s)
]]

time: 6.68, bytes: 557710.

2.7 Integrating

Assume we want to integrate an indefinite integral of the form:∫
f(x)h(x)dx

where f, h are rational functions. If the
∫

h is a suitable leftcomponent of f , we
can simplify the integral; i.e. if the there exists a rational function g such that
f = g

(∫
h
)
. If we call y =

∫
h, then dy = d(

∫
h) = h(x)dx. Therefore,∫

f(x)h(x)dx =
∫

g(y)dy.

If such g exists satisfying some additional conditions, then the previous integral
is reduced to the integral of a rational function, which is simpler.
The computation of the left component can be made with the function lcomp for
rational functions and lcompoly for polynomials. Suppose we want to integrate∫

x2

x6 + x3 + 1
dx =

1
3

∫
(x3)′

x6 + x3 + 1
dx.

h = 3x2 and
∫

h = x3 is a left component of f =
1

x6 + x3 + 1
:

> lcomp

(
x3,

1
x6 + x3 + 1

, x

)
;

1
1 + x + x2

time = 0.97, bytes = 104210.

Thus ∫
x2

x6 + x3 + 1
dx =

1
3

∫
1

x2 + x + 1
dx

=
2
9

√
3 arctan

(
1
3
(2x + 1)

√
3
)

.



2.8 Other Applications

The computation of a decomposition was conjectured to be computationally
hard: the security of a cryptographic protocol was based on its hardness (c.f.
[5]), but it was broken by Berkovits and Lidl & Niederreiter.

We have seen that decomposition can be applied in many other topics and the
main aim is simplification. In the following we highlight others: the n–partition
problem (see [15]), the problem of characterizing the class of automorphisms of
K[x1, . . . , xn] and computing their inverses (see [21, 9]).

3 Cadecom Package

Cadecom is an ordinary Maple package of about 3 megabytes, it has been devel-
oped at Departamento de Matemáticas, Estad́ıstica y Computación in Universi-
dad de Cantabria over the last years, starting in 1992, by a research group under
the direction of the first author. Several grants by Spanish Ministerio de Edu-
cación have been instrumental for reaching this stage of the system. Many people
have contributed to Cadecom in different ways. The first version of this package
was called FRAC(=Funciones RACionales) [3] and it was mainly implemented
by Dr. Alonso.

The package is loaded via the with function. Each function is put into a sepa-
rate file to be loaded via readlib into Maple session. Generally, functions are
loaded at the time of their first invocation, in order to save memory. There are
more than 80 auxilary functions and 42 of them are principal. The library also
contains a Maple help; you can load it with ?function; or help(function);
commands. We also have included in the library the sypnosis of the procedures
and some other extra information. The procedures in Cadecom work over the
ground field, that is, the field generated by the coefficients of the input. In some
of the procedures you can also work in other fields; you just need to add an
argument K to work in such field. For instance, if you type

> ?decomp;

decomp - decompose a rational function

Calling sequence:
decomp(f, x)
decomp(f, x,K)

Parameters:
f – multivariate rational function
x – a variable
K – a field extension over which to decompose

Description:



– The procedure decomp computes a complete decomposition of f with respect
to the variable x, following the algorithm in [4].

– If the input is a polynomial calls decompoly function.
– If a third argument is given the decomposition is made over K, otherwise

computes the decomposition in the ground field.

Examples: (We omit them)

See Also:
rcomp,Brcomp,lcomp,decompoly

The examples have been tested on a personal computer Macintosh Centris 650
in the system MapleV Release 5. We wrote down low degree functions in order
to illustrate what the procedures may be used for. To give an idea of about
the performance of our implementation, it is important to highlight that you
can decompose instantaneously polynomials of degree 50 in a SUN machine.
Moreover, the authors were able to decomposing sine–cosine equations of eight-
degree with hundred of digits in the coefficients, which were highly complex
terms, within 20 seconds of CPU time on an SUN machine. Therefore, we think
that our package can now be a useful tool for solving sine–cosine equations.

The package Cadecom is available by anonymous ftp from ftp.hall.matesco.
unican.es or by e-mail from the authors.
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