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An Heuristic Algorithm for Finding Small Roots of Multivariate Polynomials
over the Integers
Jaime Gutiérrez Gutiérrez 39
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Preface

The word cryptology stems from the Greek κρυπτóς, “hidden”, and λóγoς “word”. Cryptol-
ogy is the science of secure communications and has traditionally dealt with the confidentiality
of information, but innovation in using information produces new requirements for protection
of that information. Cryptographic work has increased rapidly during the past three decades
and so has the importance of applications. Topics as common as smart cards, cellular phones,
internet purchases, pay per-view TV. . . are only partial features of this technological society
in which we are all immersed. Cryptographic applications have to face great mathematical
difficulties as far as design and implementation are concerned.

The purpose of this workshop is to present the most recent developments in mathematical
cryptography. Topics include:

• Primality and Integer Factorization.

• Secure Encryption Schemes based on Group theory and Matroids.

• Gröbner Basis and Algebraic Cryptanalysis.

• Elliptic and Hyperelliptic curve cryptosystems.

• Lattices and lattice-based Cryptosystems.

• Pseudorandom Sequence Generators for Stream Ciphers.

• Public key cryptosystems based on Algebraic coding theory.

• Cryptographic Protocols and Information Security with mathematical emphasis.

• Quantum Cryptology.

• Optical Chaos Cryptography.

The program consists of 14 invited talks plus a thesis defense dissertation. We would like
to express our sincere gratitude to all speakers.

We thank the Vicerrectorado de Investigación y Desarrollo, Facultad de Ciencias and
Departamento de Matemáticas, Estad́ıstica y Computación of the University of Cantabria
for their generous financial and logistic supports.

We write this short note in anticipation that the attendees of the Workshop on Mathe-
matical Cryptology will find the experience scientifically rewarding and personally satisfying.
May the historical and natural beauty of Cantabria be a setting conductive to stimulating
interactions.

Jaime Gutierrez, Álvar Ibeas
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The Probabilistic Theory of the Joint Linear Complexity of
Multisequences

Harald Niederreiter

— Background on stream ciphers
— Linear and joint linear complexity
— The stochastic framework
— The LCP of single sequences
— The JLCP of multisequences
— Periodic (multi)sequences

Background on stream ciphers

Stream ciphers use pseudorandom keystreams for encryption and decryption. One of the
main issues in the design and the analysis of keystreams is: how close is the keystream to a
“truly random” sequence?

Fact: keystream generators mostly use linear feedback shift registers (LFSRs) as basic
steps in their algorithm.

System-theoretic approach: to what extent can the keystream be simulated by short
LFSRs?

In practice, the keystream is a sequence over F2, but in the theory we can consider
sequences over any finite field Fq.

There is a recent trend in stream ciphers towards word-based or vectorized stream ciphers.

Examples:

PANAMA, SOBER
DRAGON, NLS, SSS (ECRYPT stream cipher candidates)

In such stream ciphers, the keystreams are multisequences, i.e., parallel streams of finitely
many sequences over Fq. A multisequence consisting of m parallel streams of sequences
S1, . . . , Sm over Fq is denoted by

S = (S1, . . . , Sm)

and called an m-fold multisequence over Fq.
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Linear and joint linear complexity

The basic definitions for the system-theoretic approach to the assessment of keystreams
are the following.

Def. For a sequence S over Fq and n ≥ 1, the nth linear complexity Ln(S) is the length
of the shortest LFSR that can generate the first n terms of S. We put Ln(S) = 0 if the first
n terms of S are 0.

Def. The sequence L1(S), L2(S), . . . of nonnegative integers is called the linear complexity
profile (LCP) of S.

Def. For an m-fold multisequence

S = (S1, . . . , Sm)

over Fq and n ≥ 1, the nth joint linear complexity L
(m)
n (S) is the length of the shortest

LFSR that can simultaneously generate the first n terms of each sequence Sj , 1 ≤ j ≤ m.

We put L
(m)
n (S) = 0 if all these terms are 0.

Def. The sequence L
(m)
1 (S), L

(m)
2 (S), . . . of nonnegative integers is called the joint linear

complexity profile (JLCP) of S.

Note 0 ≤ L
(m)
n (S) ≤ n and L

(m)
n (S) ≤ L

(m)
n+1(S).

The stochastic framework

A fundamental question is: what is the behavior of the LCP (resp. JLCP) of “truly ran-
dom” sequences (resp. multisequences) or of the overwhelming majority of sequences (resp.
multisequences)? This behavior serves then as a yardstick in the design of keystreams.

We need a stochastic model such that:

(i) strings over Fq of the same length are equiprobable;

(ii) corresponding terms in the m streams making up an m-fold multisequence over Fq are
statistically independent.

With such a stochastic model, “overwhelming majority” means “with probability 1”. We

can also talk about expected values of quantities such as L
(m)
n (S).

Let F
m
q be the set of m-tuples of elements of Fq and let (Fm

q )∞ be the sequence space
over F

m
q . Then (Fm

q )∞ can be identified with the set of m-fold multisequences over Fq.

Let µq,m be the probability measure on F
m
q which assigns the measure q−m to each ele-

ment of F
m
q . Furthermore, let µ∞q,m be the complete product measure on (Fm

q )∞ induced by
µq,m.

Then µ∞q,m is the probability measure on the set of m-fold multisequences over Fq which
provides the desired stochastic framework.
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Thus, “with probability 1” means that a statement holds on a set of µ∞q,m-measure 1.

The LCP of single sequences

A more or less satisfactory description of the LCP of random single sequences S over Fq

was already given in the 1980s. In the following, the prime power q is arbitrary.

Th. 1 (Rueppel, Smeets). The expected value En and the variance Vn of Ln(S) satisfy

En =
n

2
+O(1) as n→∞,

Vn = O(1) as n→∞.

Th. 2 (H.N.). With probability 1 we have

lim
n→∞

Ln(S)

n
=

1

2
.

Th. 3 (H.N.). With probability 1 we have

lim inf
n→∞

Ln(S)− n
2

logq n
= − 1

2
,

lim sup
n→∞

Ln(S)− n
2

logq n
=

1

2
.

The JLCP of multisequences

Basic question for word-based stream ciphers: what is the behavior of L
(m)
n (S) for arbi-

trary m? For m = 1 we have the results in the previous section.

Folklore conjecture from the late 1990s (Ding, Xing,...): L
(m)
n (S) is roughly mn

m+1 for ran-
dom m-fold multisequences S over Fq.

Th. 4 (H.N. – Wang, 2005). For any m ≥ 1 we have with probability 1

lim
n→∞

L
(m)
n (S)

n
=

m

m+ 1
.

The proof requires tools from several areas:

• lattice basis reduction in function fields (Schmidt, 1991)

• multidim. Berlekamp-Massey algorithm (Wang – Zhu – Pei, 2004)

• probability theory

A crucial role in the proof of Th. 4 is played by information on the following counting
function.

For m ≥ 1, n ≥ 1, 0 ≤ L ≤ n, let

N
(m)
n (L) = # m-fold multisequences over Fq of length n with nth joint linear complexity

equal to L.
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Trivially N
(m)
n (0) = 1. For m = 1, 1 ≤ L ≤ n, we have the classical formula

N (1)
n (L) = (q − 1)qmin(2L−1,2n−2L).

For any m ≥ 1 and 1 ≤ L ≤ n/2, it was shown by H.N. (2003) that

N (m)
n (L) = (qm − 1)q(m+1)L−m.

The case m ≥ 2 and n/2 < L ≤ n is much more difficult. It was solved recently by Wang
– H.N. (online 2005).

For any m ≥ 1 and L ≥ 1, let P (m;L) be the set of m-tuples I = (i1, . . . , im) ∈ Z
m with

i1 ≥ i2 ≥ · · · ≥ im ≥ 0 and i1 + · · ·+ im = L. Then the formula of Wang and H.N. says that
for any m ≥ 1 and 1 ≤ L ≤ n we have

N (m)
n (L) =

∑

I∈P (m;L)

a(I)qb(I,n−L),

where a(I) and b(I, n− L) depend only on the indicated objects.

A consequence is:
N (m)

n (L) ≤ C(q,m)Lmq2mn−(m+1)L.

This bound is useful when L is close to n. Otherwise, we use the elementary bound

N (m)
n (L) ≤ q(m+1)L.

The following result refines Th. 4 and is a weak analog of Th. 3.

Th. 5 (H.N. – Wang, to appear). For any m ≥ 1 we have with probability 1

lim inf
n→∞

L
(m)
n (S)− mn

m+1

logq n
≥ − 1

m+ 1
,

lim sup
n→∞

L
(m)
n (S)− mn

m+1

logq n
≤ 1.

In particular, with probability 1 we have

L(m)
n (S) =

mn

m+ 1
+O(log n) as n→∞.

Dai – Imamura – Yang (2005): sufficient condition for m-fold multisequence S over Fq to
satisfy

lim
n→∞

L
(m)
n (S)

n
=

m

m+ 1
.

For any m ≥ 1 and n ≥ 1, let E
(m)
n be the expected value of L

(m)
n (S). The following

result is derived from Th. 4 and the dominated convergence theorem.
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Th. 6 (H.N. – Wang, 2005). For any m ≥ 1 we have

E(m)
n =

mn

m+ 1
+ o(n) as n→∞.

Conjecture. For any m ≥ 1 we have

E(m)
n =

mn

m+ 1
+O(1) as n→∞.

Known special cases:

• m = 1: Th. 1.

• m = 2: Wang – H.N. (online 2005), for q = 2 also Feng – Dai (2005).

• m = 3: H.N. – Wang (to appear).

Periodic (multi)sequences

Note that all keystreams used in practice in stream ciphers are periodic. Thus, this case
has received a lot of attention.

For N ≥ 1, a sequence s0, s1, . . . is called N -periodic if si+N = si for all i ≥ 0. Similarly
for multisequences.

Def. The joint linear complexity L(m)(S) of a periodic m-fold multisequence S over Fq

is defined by
L(m)(S) = sup

n≥1
L(m)

n (S).

Note: if S is N -periodic, then L(m)(S) ≤ N .

For fixed m ≥ 1 and N ≥ 1, let G
(m)
N be the expected value of L(m)(S) for N -periodic S.

Thus

G
(m)
N =

1

qmN

∑

S

L(m)(S),

where the sum is over all qmN m-fold
N -periodic multisequences S over Fq.

Formulas for m = 1:
Rueppel (1986) for q = 2 and special N .
Dai – Yang (1991) for any q and N .
Meidl – H.N. (2002) for any q and N .

Formulas for m ≥ 2:
Meidl – H.N. (2003) for any m, q, N .
Fu – H.N. – Su (2005) for any m, q, N .
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The formulas for m ≥ 2 are proved by using the generalized DFT for multisequences and
cyclotomy.

Write N = pvw, where the prime p is the characteristic of Fq and gcd(p, w) = 1.

Th. 7 (Fu – H.N. – Su, 2005). We have

G
(2)
N ≥ N −O(log log(w + 2)),

G
(m)
N ≥ N −O(1) for m ≥ 3.

Similarly, we can study the variance W
(m)
N of L(m)(S) for N -periodic multisequences S.

Formulas for W
(m)
N :

m = 1: Dai – Yang (1991).
m ≥ 2: Fu – H.N. – Su (2005).

Th. 8 (Fu – H.N. – Su, 2005). We have

W
(2)
N = O(log(w + 1) log log(w + 2)),

W
(m)
N = O(1) for m ≥ 3.

Harald Niederreiter Dep. Mathematics, National University of Singapore
nied@math.nus.edu.sg
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Gröbner Bases and Cryptology: application to 2R-
Jean-Charles Faugère

Joint work with: Ludovic Perret

The full version of this paper will be presented at CRYPTO 2006

One-round schemes [Patarin, Goubin] are generalizations of C∗. The public key of these
schemes are of the form

t ◦ ψ ◦ s
where t, s are two affine mappings over GF (q)n, and ψ : GF (q)n → GF (q)n is a bijective

mapping given by n multivariate polynomials of degree two.
The public key of Two-round schemes (2R) is the composition of two one-round schemes.

The secret key of two-round schemes consists of:

• Three affine bijections r, s, t : GF (q)n → GF (q)n

• Two applications φ, ψ : GF (q)n → GF (q)n, given by n quadratic polynomials.

The public key is given by n polynomials p1, . . . , pn of total degree 4 describing:

p = t ◦ ψ ◦ s ◦ φ ◦ r
Following Patarin and Goubin, when all the polynomials are given, this scheme is called

2R scheme. If only some of them are given, it is called 2R- - scheme. In the following we
denote by r the number of removed polynomials.

The 2R- - scheme permits to thwart an attack described at Crypto 99 (D.F. Ye, K.Y. Lam,
Z.D. Dai.) against 2R schemes. Usually, the “minus variant” leads to a real strengthen of the
schemes considered. We show here that this is actually not true for 2R schemes: we propose
an efficient algorithm for decomposing 2R- - schemes using Gröbner basis computations; that
is to say we are able to express p1, . . . , pn−r as the composition of two algebraic set of
equations of degree 2. For instance, if we remove up to r ≤ n

2 equations we are able to recover
a decomposition in O(n12). We provide experimental results illustrating the efficiency of our
approach: we have been able to decompose 2R- - schemes for most of the challenges proposed
by the designers in less than a handful of hours. We believe that our results renders the
principle of two-round schemes, including 2R- - schemes, useless.

Jean-Charles Faugère CNRS-UPMC-INRIA, LIP6/SALSA
Jean-Charles.Faugere@lip6.fr

Ludovic Perret UCL, Crypto Group, Microelectronic Laboratory
ludovic.perret@uclouvain.be
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Cryptanalysis of Non Linear Pseudorandom Number
Generators

Domingo Gómez Pérez

Thesis dissertation : Universidad de Cantabria, June 2006.

“Random” numbers have many applications, among them decision making, numerical
simulations for the Monte Carlo method, sampling, numerical analysis and testing computer
chips for defects. Our main motivation is that of constructing secure cryptosystems in cryp-
tology.

It is hard to imagine a well-designed cryptographic application that does not use ran-
dom numbers. The fundamental objective of cryptography is to enable two people, usually
referred to as Alice and Bob, to communicate over an insecure channel in such a way that
an opponent, Oscar, cannot understand what is being said. Alice encrypts the plaintext,
using a predetermined key, and sends the resulting ciphertext over the channel. Oscar, upon
seeing the ciphertext in the channel by eavesdropping cannot determine what the plaintext
was; but Bob,who knows the encryption key, can decrypt the ciphertext and reconstruct the
plaintext.

The necessity of privacy has made people study techniques to cipher their messages. On
the other hand, being able to understand encrypted messages gives a sensible advantage. This
basically means that while keeping their messages secret, people have been trying decypher
their neighbour’s messages.

In this war between people who encrypt messages and attackers, who want to decrypt
messages, there had been many partial victories for the latter group until this knowlegde
was unified by Claude Shannon [14] in 1948. He set the foundations for cryptography, and
thanks to that article, many ideas were proven, like the one about unconditional security, a
measure that concerns the security of cryptosystems when there is no limit on the amount
of computation that Oscar is allowed to do. This concept is very closely related to random
numbers.

“Random” is a word that will appear very often in this thesis as well as in real life. Prob-
ably the most commonly encountered randomness requirement today is the user password.
This is usually a simple character string. Obviously, if a password can be guessed, it does
not provide security.

Many other requirements come from the cryptographic arena. Apart from ciphering text,
cryptographic techniques can be used to provide a variety of services including confidentiality
and authentication. Such services are keys, that are unknown to and unguessable by an
adversary.

The frequency and volume of the requirement for random quantities differs greatly for
different cryptographic systems. In many of them, random quantities are required when
the key pair is generated, but thereafter any number of messages can be signed without
any further need for randomness. Other algorithms, such as the public key Digital Signature
Algorithm that has been proposed by the US National Institute of Standards and Technology
(NIST), require random numbers in great quantities.

Presently, the lack of generally available facilities for generating such unpredictable num-
bers is an open wound in the design of cryptographic software. For the software developer
who wants to build a key or password generation procedure that runs on a wide range of
hardware, the only safe strategy so far has been to force the local installation to supply a
suitable routine to generate random numbers.
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It is important to keep in mind that the requirement is for data that an adversary would
have a very low probability of guessing or determining. This will fail if pseudo-random data
is used which only meets traditional statistical tests for randomness or which is based on
limited range sources, such as clocks. Frequently such random quantities are determinable
by an adversary searching through an embarrassingly small space of possibilities.

There exist ways to solve this problem in a deterministic fashion having a small quantity
of random numbers, using the so called pseudorandom number generators. Normally, in this
scheme, a true random number, called the seed, is taken and from it a sequence is generated.
This is done applying a function which is the generator itself. A question arises; how is it
possible to generate something that should be random using a deterministic function. The
answer is given by Donald Knuth in the second book of “The art of programming” ([11]):

“All that can be said about a sequence of numbers is whether it appears random or not.”

Pseudorandom number generators are faster than others methods, some of them, like the
linear generator, are capable of generating a sequence of 1024 bits in 24 × 10−9 seconds. In
contrast reading from a computer device takes more than a 10−6 seconds (1000 times faster,
for more information read [15]).

To conclude this part of the preamble, we would like to insist on the point even accessing
true random information does not mean that it is not unguesseable to the attacker.

One important mathematical concept to measure the random quality of a sequence of
random numbers is its discrepancy, if this value is very high it will show us that, instead of
distributing uniformly, the elements of the sequence are more likely to be in some intervals. In
Chapter 3 of this dissertation we present bounds for non-linear multiple recursive congruential
pseudorandom number generators.

A range of interesting mathematical problems arise in attempting to cryptanalysis pseu-
dorandom number generators. Basically, there are two kinds of cryptanalysis problems:
reconstruction problems, which attempt to reconstruct the parameters of the generator from
some output of the generator, and predicting problems, which attempts to predict future
output of the generator from some observed output.

In recent years, methods based on lattice basis reduction or juts lattice reduction or the
so called LLL-technique (see [19]) have been used repeatedly for the cryptanalytic attack
of various cryptosystems. Lattice reduction techniques seem inherently linear. The general
idea of this technique is to relate our non linear problem to a lattice problem by building
a lattice from the non linear equation, and translate our problem to finding a vector with
smallest euclidean norm possible in the lattice, the so called Shortest Vector Problem SVP.
In this thesis we apply this general linearization technique for predicting several nonlinear
pseudorandom number generators.

Many very well-known and important cryptographic protocols are based on the assump-
tion that factoring large composite integers is computationally difficult. The most famous
one is RSA cryptosystem, which is currently used in a wide variety of products, platforms,
and industries around the world. RSA is incorporated into all of the major protocols for
secure Internet communications, including S/MIME and S/WAN.

We consider a number n which is product of two primes: p and q. We analyze the
assumption that factoring is computationally difficult when the cryptanalyst has access to
extra information.

In cryptographic applications, the cryptanalyst may have available additional information
above and beyond the number n itself, see [18]. In practice, Alice or Bob (one of them)
typically knows p and q already, and uses these factors implicitly and/or explicitly during
her/his cryptographic computations. The results of these computations may become known
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to the cryptanalyst, who thereby may find himself at an advantage compared to a pure
factoring situation. The necessary information and timing measurements may be obtained
by passively eavesdropping on an interactive protocol. The Chinese Remainder Theorem
(CRT) is also often used to optimize RSA private key operations. With CRT, y mod p and
y mod q are computed first (being y is the message to send). These initial modular reduction
steps can be vulnerable to timing attacks. The simplest such attack is to choose values of
y that are close to p or to q, and then use timing measurements to determine whether the
guessed value is larger or smaller that the actual value of p and q.

So in practice, additional extra information may become available to the cryptanalyst,
for one of the following reasons:

• loss of the equipment that generated p and q,

• explicit release of partial extra information as part of a protocol, for instance exchange
of secret,

• timing measurements,

• routine usage of p and q to decrypt mail, sign messages, etc.,

• poor physical security to store and guard p and q,

• any other heuristic attack . . .

Suppose that an attacker is able to find the high-order h bits of the smallest prime p, can
we break the RSA cryptosystem?

We have to mention Coppersmith [4, 5] has obtained a strong result on this question. In
Chapter 8 we apply the lattice reduction to study this problem.

Here is a brief synopsis of the nine chapters in this thesis.

Chapter 1 remains a relatively small introduction to pseudorandom number generators,
some other concepts that will be used throughout the thesis, such as exponential sums and
lattice, are also included. The most interesting problems in lattice theory will be introduced
as well as methods to solve them. Fixed the dimiension, all the methods run in polynomial
time and will be of great importance in our results.

Chapter 2 addresses two different problems, which are related. The first one is the
following: given f(x, y), an integer polynomial and two natural numbers ∆, ∆1, find all
solutions whose first component is bounded by ∆ and the second one is bounded by ∆1. The
method of Coppersmith is explained together with the theoretical result. In the rest of the
chapter we present original results for later use about bounds for the number of solutions of
polynomials over finite rings and, the number of small solution of a special modular equation.

Chapter 3 contains an extension of a result in [10] of Niederreiter and Shparlinski, about
discrepancy bounds for sequences of s-tuples generated by successive non-linear multiple
recursive congruential pseudorandom number generators of higher orders. The key of this
result is based on non-linear properties of the iterations of multivariate polynomials.

Chapter 4 deals with three theorems for the inversive congruential generator (ICG). The
ICG is a sequence (un) of pseudorandom numbers defined by the relation un+1 ≡ au−1

n +
b mod p where a, b belong to the finite field with a prime number p of elements. We show
that if sufficient number of the most significant bits of several consecutive values un of the
ICG are given, one can recover the initial value u0 (even in the case where the coefficients a
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and b are not known). This suggests that for cryptographic applications, ICG should be used
with great care. Our results are somewhat similar to those known for the linear congruential
generator (LCG), xn+1 ≡ axn + b mod p, but apply only to much longer bit strings. This
may suggest that ICG is cryptographically stronger and more useful than LCG.

Section 4.2 will deal with situations when the coefficients a, b and p are known to the
attacker.

Section 4.3 talks about a new idea that will be applied when coefficients b and p are
known.

Section 4.4 proves a similar theorem when the coefficients a, b are unknown, and in this
case we achieve a higher level of security. In other words, we need more bits to be able to
predicting the sequence. However, there is a drawback in this case, the method cannot be
applied when the coefficients have special properties.

Chapter 5 applies the same ideas as the previous chapter for the quadratic congruential
generator (QCG) and, in particular, for the celebrated Pollard generator.

There are two sections in this chapter. The first one applies the lattice reduction technique
to the cases of quadratic generator in different situations. We also obtain a more precise result
in the special case of the Pollard generator.

The theorems which talk about predicting the QCG in the first section only hold after
excluding a small set of values of the coefficients/parameters defining the QCG. If this small
set is not excluded, the algorithm for finding the secret information may fail. In the second
section of this chapter, we can eliminated that small set using a new technique which makes
use of two lattice reductions.

Chapter 6 is devoted to discussing the results of numerical tests and some heuristic
approaches to the problem of predicting pseudorandom number generators studied in the
previous two chapters. We briefly comment on the implementation and how it was done.

It is divided into two sections. In Section 6.1 we discuss the inverse and the quadratic
congruential generator.

In Section 6.2 we discuss an implementation of these algorithms, why we have choosen
some specific tools and something about the hardware used.

Chapter 7 contains an upper bound on the security of the polynomial generator when
the modulo is prime and when it is not. In both cases, the coefficients of the polynomial are
known. The result requires to exclude some special polynomial coefficients that make our
method ineffective.

Chapter 8 studies the problem of factoring a natural number with high bits known.
Our approach is inspired in algorithms presented in previous chapters. It is divided in three
sections. We start by motivating the problem from the cryptography point of view, and
commenting the state of the art. The chapter is structured as follows. In Section 8.2 we start
with some preparatives in Subsection 8.2.1 and then we give a first approach in Subsection
8.2.2. In Subsection 8.2.3 we apply a second round lattice reduction and, we give vague
idea of the algorithm for arbitrary number of rounds. Finally, Section 8.3 presents numerical
results and time consumed of our implementation in C++ using the NTL (Number Theory
Library) of the presented heuristic algorithm.

Chapter 9 is devoted to questions that are still open and future lines of investigation.
Most of them fall in the field of pseudorandom number generators but there is also reference
to RSA cryptosystem.

We would like to point out that some of the questions seem close to being solved after
our research and the ideas that have led to it.

A significant part of the results in this dissertation are published in [9, 4, 3, 6, 7, 12, 5]
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On the equation τ(λ(n)) = ω(n) + k

Francesco Pappalardi

Let τ denote the ‘number of divisors’ function, let λ denote the Charmichael function
and let ω denote the ’number of prime divisors’ function. We investigate some properties of
the positive integers n that satisfy the equation τ(λ(n)) = ω(n) + k providing a complete
description for the solutions when k = 0, 1, 2, and give some properties of the solutions in
the other cases.

This is a joint project with A. Glibichuk and F. Luca.

Francesco Pappalardi Università degli Studi, Roma III
pappa@mat.uniroma3.it
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An application of verifiable randomness: subliminal-free
EC-DSA

Ma Isabel González Vasco

Joint work with: Jens M. Bohli, Rainer Steinwandt

Cryptographic schemes can also be used for purposes they have not been designed for.
In particular, this ”misuse” can be carried over if participants involved in a certain scheme,
instead of choosing certain values uniformly at random (as specified by the scheme´s spec-
ification), select them according to a biased distribution. One (extensively investigated)
example of this is the use of subliminal channels in signature schemes: assume two prison-
ers are allowed to exchange signed messages, while their communication is monitored by a
warden. Then, the prisoners may want to exchange a secret message hidden in the signature
of a ”harmless” cover message. Verifiable random functions are well explored tools aiming
at preventing malicious behaviours in this fashion, but are unfortunately not suited for all
situations that may arise. We comment on the above issues, present a new notion for signa-
ture schemes (being subliminal free with proof) and propose a subliminal-free version of the
signature scheme EC-DSA, which is suitable for scenarios with high security needs.

Jens-Matthias Bohli Fakultät für Informatik, Universität Karlsruhe
bohli@ira.uka.de

Ma Isabel González Vasco Universidad Rey Juan Carlos, Madrid
mariaisabel.vasco@urjc.es

Rainer Steinwandt Dep. Math Sciences, Florida Atlantic University
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Cryptographic Tools in Electronic Cash
Llorenç Huguet Rotger, Magdalena Payeras Capellà

Joint work with: Josep Llúıs Ferrer Gomila

Digital or Electronic cash are a kind of electronic money in which money is included
in pieces of digital information called coins. Digital coins are strings of bits that can be
transferred through networks. Digital cash try to simulate Physical cash and its features:
security, privacy, off-line payment and transferability.

Physical cash is secure: physical coins cannot be easily counterfeited or duplicated. Pri-
vacy is guarantied when physical cash is used; transactions aren’t recorded and users can
transfer coins without identification, they can remain anonymous to everybody including the
other part involved in the transaction.

For digital cash some of the features of the physical cash are difficult to achieve due to its
digital nature. While physical cash cannot be duplicated, digital coins (digital information)
can be copied and potentially reused. Digital cash systems must include security systems
that avoid the fraudulent reutilization of coins.

A solution for the reutilization problem is the inclusion in the payment stage of an on-line
verification of the coin. This way, a user never accepts a coin before checking its validity
through an on-line connection with a trusted third party (TTP), usually the bank, which
checks if the coin was used before. In this case, the payment is rejected. These systems are
called on-line. This solution isn’t desirable because is in conflict with one of the desirable
features described above: off-line payments. Other solutions are the identification of the
payer in off-line payment (but this solution doesn’t achieve the desired anonymity) and the
use of hardware devices (tamper resistant devices). Moreover, a collusion of a merchant and
the bank should not be able to trace payments (untraceability property). Some schemes are
anonymous, but the identities of users can be revealed by a collusion of parties.

The solution adopted in some anonymous off-line proposals is to include in payments
some information about the payer. These systems allow double spending in the payment
stage and detect it later during the deposit of the coin. If the payer uses the coin only
once, the included identifying information is useless but if the coin is reused, the information
revealed in two payments can be used to identify the double-spender. The main advantage of
the off-line systems is that only the customer and the merchant are involved in the payment
stage. Anonymity and off-line payment can be accomplished.

There are two techniques that allow the identification of double-spenders, one is called
cut & choose, and is used by Chaum in his electronic cash system, and the other is called
single-term and is used in Brand’s payment system. Both techniques use cryptography to
reveal the identity of double-spenders.

Together with the basic properties, recent protocols achieve some additional properties.
Recent applications of E-commerce have been challenging the existing electronic payment
systems with special requirements. Some of these applications, like information purchases in
online e-commerce or microcommerce, require special features that most payment systems
cannot satisfy. The micropayments are electronic payment systems suitable for the require-
ments of payments of low value. Micropayments are useful in payments for web visualisa-
tion, download of shareware or musical files, access to press articles, use of search engines or
databases... Conventional electronic payment systems are not alternative for micropayments
due to their costs of storage, communication and computation.
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We have presented protocols useful in case of micropayments and payments of high quan-
tities (payments with specific requirements, like anonymity revocation in case of payments
of high amounts). Moreover we have presented an anonymous transferable system.

Recently we have worked in the incorporation of atomicity to payment systems with
identification of double-spenders. With these properties the payment systems can be used in
electronic purchase protocols, achieving the fair exchange between the coin and the purchased
item.
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Chaos-based optical communications
Luis Pesquera González

Chaotic signals have been proposed as broadband information carriers with the poten-
tial of providing a high level of robustness and privacy in data transmission. Encryption
is achieved by encoding at the physical layer, providing full compatibility to conventional
software encryption techniques. In chaotic communication systems messages are embedded
within a chaotic carrier in the emitter, and recovered after transmission by a receiver upon
synchronization with the emitter. The receiver architecture can be viewed as performing a
nonlinear filtering process, intended to generate locally a message-free chaotic signal, which
is then used for subtraction from the encoded transmitted signal. Optical systems provide
simple ways of generating very high-dimensional chaotic carriers that offer a substantial se-
curity level, and also the possibility of very high transmission rates. Generation of chaotic
signals with high dimension and high information entropy can be achieved in diode lasers
by means of delayed feedback. However, smart attacks can recover the message when a
nonlinear optoelectronic feedback architecture is used. We show that chaotic cryptosystems
based on optoelectronic feedback with one and two delays can be broken. A digital message
is extracted for two different configurations by reconstructing the nonlinear dynamics with
modular neural networks.

Luis Pesquera González Instituto de F́ısica de Cantabria, CSIC-Universidad de Cantabria
luis.pesquera@unican.es
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Huge Group Structure of Elliptic Curves over Finite Fields
Igor E. Shparlinski

Introduction

Notation

IFq = finite field of q elements.
An elliptic curve IE is given by a Weierstraß equation over IFq or Q

y2 = x3 +Ax +B

(if gcd(q, 6) = 1).

Main Facts

• Hasse–Weil bound: |#IE(IFq)− q − 1| ≤ 2q1/2

• IE(IFq) is an Abelian group, with a special “point at infinity” O as the neutral element.

Some Questions

• What are possible group structures which can be represented by elliptic curves?

• Is it typical for IE to be have a large exponent eq(IE) ( =the size of the largest cyclic
subgroup of IE(IFq))?

• How often a “random” curve IE is cyclic?

• What is a typical arithmetic structure of #IE(IFq)?

• How many N ∈ [q − 2q1/2 + 1, q + 2q1/2 + 1] are taken as cardinalities #IE(IFq)?

Typically we consider “statistical” results in the following situations:

• The field IFq is fixed, the curve IE runs through all elliptic curves over IFq (or over some
natural classes of curves).

• The field IFq and the curve IE are both fixed, we consider IE(IFqn) in the extension
fields

• The curve IE is defined over Q (and fixed). We consider reductions IE(IFp) modulo
consecutive primes p

Remark: They are described in the increasing order of hardness.

Group Structure of IE(IFq) and

Arithmetic Properties of #IE(IFq)

. . . are closely related. E.g. the question about the size of gcd(#IE(IFq), q − 1) appears very
frequently.
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Some Motivation

The following questions are of mathematical interest and also have various cryptographic
applications.

Florian Hess, Tanja Lange, Joe Silverman, I.S., 1999–2004::
Bounds on the discrepancy of many pseudorandom number generators on elliptic curves

are nontrivial only if the exponent

eq(IE) ≥ q1/2+ε.

Complex Multiplication

If IE is an elliptic curve over an algebraic number field, IK then endomorphism ring EndIK(IE)
of IE over IK, contains a copy of the integers corresponding to the morphisms x 7→ nx for each
n ∈ ZZ. If EndIK(IE) is strictly bigger than ZZ, we say IE has complex multiplication (CM) for
in that case, it is a classical result that the ring is isomorphic to an order in an imaginary
quadratic field. Otherwise, we say IE is a non-CM curve.

Many of the questions about elliptic curves fall naturally into these two categories, the
CM case and the non-CM case.

Typically, the CM case is the easier since there is an additional structure.

Group Structure of IE(IFq)

Classical Results

IE(IFq) is

• either cyclic

• or isomorphic to a product of two cyclic groups ZZ/M × ZZ/L with L|M = eq(IE).

Max Deuring, 1941:
All values N ∈ [q − 2q1/2 + 1, q + 2q1/2 + 1], except for a small number of explicitly

described exceptions, are taken as cardinalities #IE(IFq) (for q = p there is no exception).

More Precise Results

Michael Tsfasman; Filipe Voloch; Hans-George Rück, 1988:
Roughly speaking, with only few fully described exceptions, for any L and M with

L | gcd(M, q − 1)

and such that LM can be realised as a cardinality of an elliptic curve over IFq, there is also
IE for which

IE(IFq) ∼= ZZ/LZZ× ZZ/MZZ.

Hendrik Lenstra, 1987:

• For any N ∈ [p − 2p1/2 + 1, p + 2p1/2 + 1], the probability that #IE(IFp) = N for a
random curve IE is O

(

p−1/2 log p(log log p)2
)

.

• For any, but at most two values, in the half interval N ∈ [p − p1/2 + 1, p + p1/2 + 1],
the probability that #IE(IFp) = N for a random curve IE is at least cp−1/2(log p)−1 for
an absolute constant c > 0.

Under the ERH, there are no exceptions and the bound becomes cp−1/2(log log p)−1.

Note: About q2 Weierstraß equations, about 4q1/2 possible values for N .
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Exponent eq(IE)

Clearly

• if IE(IFq) is cyclic, then eq(IE) = #IE(IFq) ∼ q — as good as it gets;

• if IE(IFq) is isomorphic to a product of two cyclic groups ZZ/M × ZZ/L with L|M , then

eq(IE) = M ≥ #IE(IFq)
1/2 ∼ q1/2

. . . falls below the threshold q1/2+ε.

Better Bounds?
Rene Schoof, 1991:

If IE (defined over Q) has no complex multiplication then

• for all primes

ep(IE) ≫ p1/2 log p

log log p

. . . still below the threshold p1/2+ε.

• under the ERH, for infinitely many primes,

ep(IE) ≪ p7/8 log p.

If IE : y2 = x3 − x then IE has complex multiplication over ZZ[i]. On the other hand,
ep(IE) = k ∼ p1/2 for every prime p of the form p = k2 + 1.

Bill Duke, 2003:
For almost all primes p and all curves IE over IFp

ep(IE) ≥ p3/4−ε

. . . comfortably above the p1/2+ε threshold!!
Kevin Ford and I.S., 2005:

• The above bound is tight.

• A similar bound for Jacobians of curves of genus g ≥ 2.

Even Better Bounds?
The bounds on the discrepancy of many sequences from elliptic curves attain their full

strength when ep(IE) is of order close to q.
Question: Is it typical for eq(IE) to be close to q?

Bill Duke, 2003:
For any curve IE (defined over Q) and almost all primes p

ep(IE) ≥ p1−ε

unconditionally if E has complex multiplication and under the ERH, otherwise.
I.S., 2003:

For any prime p and almost all curves IE (defined over IFp)

ep(IE) ≥ p1−ε.

Florian Luca and I.S., 2004:

Let IE be an ordinary curve defined over IFq. Then
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• for almost all integers n,

eqn(IE) ≥ qn−2n(log n)−1/6

.

• for all integers n,
eqn(IE) ≥ qn/2+c(q)n/ log n

The proofs are based of some deep facts of the theory of Diophantine Approximations

• Subspace Theorem;

• Lower bounds of linear forms of p-adic logarithms;

• Upper bounds on the number of zeros of linear recurrence sequences.

Essentially the proof of the first bound follows the ideas of P. Corvaja and U. Zannier,
2004.

It also gives a subexponential upper bound on

d(qn) = gcd(#IE(IFqn), qn − 1)

which also appears in the estimate of the complexity of the structure finding algorithm of
Victor Miller, 1984-2004.

Florian Luca, James McKee and I.S., 2004:

Let IE be an ordinary curve defined over IFq. Then for infinitely many integers n,

eqn(IE) ≪ qn exp
(

−nc/ log log n
)

.

for some c > 0 depending only on q.
The proof is based on:

• studying the degree d(r) of the extension of IFq generated by points of r-torsion groups
(i.e. groups of points P on IE in the algebraic closure IFq with rP = O) for distinct
primes r;

• a modification of a result of Adleman–Pomerance–Rumely (1983) on constructing in-
tegers n which have exponentially many divisors of the form r − 1, where r is prime.

How do we proceed?
Combine the following facts:

• Weil Pairing: If IE(IFq) ∼= ZZ/M × ZZ/L with L|M , then L|q − 1.

• Hendrik Lenstra, 1987: For any N , the probability that #IE(IFq) = N for a random
curve IE is O

(

q−1/2 log q(log log q)2
)

.

Thus all values of N ∈ [q− 2q1/2, q+ 2q1/2] are taken about the same number of times.

The question about eq(IE) is now reduced to studying how often N ∈ [q − 2q1/2 + 1, q +
2q1/2 + 1] has a large common divisor with q − 1.

Is Cyclicity Typical?

• Fix the field — Vary the curve:

Sergei Vlăduţ, 1999:
At least 75% of elliptic curves over IFq are cyclic, but not 100%.

• Fix the curve over IFq: — Vary the extension: Sergei Vlăduţ, 1999:
Over every finite there is a curve IE such that IE(IFqn) is cyclic for a positive proportion
of n.
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• Fix the curve over Q: — Vary the prime:

Related to the Lang–Trotter Conjecture!

Alina Cojocaru, Ram Murty, Bill Duke, 2001-2006: (a series of results)

– under the ERH the set of primes for which IE(IFp) is cyclic is of positive density
(depending on IE);

– the smallest prime for which IE(IFp) is cyclic is not too large.

Finding the Group Structure

Victor Miller, 1984-2004:
There is a probabilistic algorithm which runs in time (log q)O(1) + time to factor

d(q) = gcd(#IE(IFq), q − 1)

John Friedlander, Carl Pomerance and I.S., 2005:
Typically d(q) is easy to factor: the expected time is (log q)1+o(1).

David Kohel and I.S., 2001:
Deterministic algorithm which runs in time q1/2+o(1) (in fact it produces a set of generators).

The result is based on the extension of Bombieri’s bound of exponential sums
∑

P∈H

exp
(

2π
√
−1Tr (f(P )) /p

)

= O(q1/2)

for any subgroup H ∈ IE(IFq) and any function f which is not constant on IE.

Arithmetic Structure of #IE(IFq)

Primality

The Holy Grail is to prove at least one out of the following claims (also very important for
elliptic curve cryptography):

• For every q, there are sufficiently many curves IE over IFq, such that #IE(IFq) is prime;

• for a curve IE over IFq, #IE(IFqn)/#IE(IFq) is prime for infinitely many integers n;

• for a curve IE over Q, #IE(IFp) is prime for infinitely many primes p.

Out of reach!
One of the obstacles is the lack of the results about primes in short intervals.

Large and Small Prime Divisors of #IE(IFq)

Question: What if we ask for curves such that #IE(IFq) does not have a large prime divisor?
Hendrik Lenstra, 1987: For the rigorous analysis of the elliptic curve factorisation we

need to show that there are sufficiently many curves over IFp for which #IE(IFp) is smooth.
— Still unknown!

Hendrik Lenstra, Jonathan Pila and Carl Pomerance, 1993:
The current knowledge is enough to analyze rigorously the hyperelliptic smoothness test
(larger intervals. . . ).

Question: What if we only ask for curves such that #IE(IFq) has a large prime divisor?
Glyn Harman, 2005:

There is a positive proportion of integers n in the middle part of the Hasse–Weil interval
n ∈ [q + 1− q1/2, q + 1 + q1/2] with the largest prime divisor P (n) ≥ n0.74
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Number of Prime Divisors

Kumar Murty and Ram Murty, 1984:
Under the ERH, for any non-CM elliptic curve IE over Q, one has an analogue of the Turán–
Kubilius inequality:

∑

p≤x

(ω (NIE(p))− log log p)
2

= O(π(x) log log x)

where, as usual, π(x) = #{p ≤ x}.
Yu-Ru Liu, 2004:

For CM curves, a similar result is obtained unconditionally.
Jörn Steuding and Annegret Weng, 2005:

There are at least C(IE)x/(log x)2 primes p ≤ x such that

• Ω(NIE(p)) ≤ 8, if IE is a non-CM curve,

• ω(NIE(p)) ≤ 5, if IE is a non-CM curve,

• Ω(NIE(p)) ≤ 3, if IE is a CM curve.

CM Discriminants

For a curve IE defined over IFp we put t = #E(IFp)− p− 1 and write

t2 − 4p = −r2s

where s is squarefree. Then either −s or −4s is the discriminant of the endomorphism ring
of IE, or CM discriminant.

Florian Luca and I.S., 2004:

• The discriminant is usually large for a “random” curve;

• All curves modulo p define 2p1/2 +O(p1/3) distinct discriminants.

In particular, the last bound is based on an improvement of a result of Cutter–Granville–
Tucker.

Cryptographic Applications

Embedding Degree and MOV Attack

Alfred Menezes, Tatsuaki Okamoto and Scott Vanstone, 1993:
MOV constructs an embedding of a fixed cyclic subgroup of order L of IE(IFp) into the
multiplicative group IF∗pk provided L|pk − 1.

Number Field Sieve: discrete logarithm in IF∗pk can be found in time Lpk

(

1/3, (64/9)1/3
)

where, as usual,

Lm(α, β) = exp
(

(β + o(1))(logm)α(log logm)1−α
)

.

The smallest k with
#IE(IFp)|pk − 1

is called the embedding degree.
If the embedding degree of IE(IFp) = o

(

(log p)2
)

then the discrete logarithm on IE(IFp)

can be solved in subexponential time po(1).
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R. Balasubramanian and N. Koblitz, 1998:
For almost all primes p and almost all elliptic curves over IFp of prime cardinality the em-
bedding degree is large.

E.g. for a “random” prime p ∈ [x/2, x] and a random curve modulo p,

Pr{embedding degree ≤ (log p)2} ≤ x−1+o(1).

Florian Luca and I.S., 2004:
For all primes p and almost all elliptic curves over IFp of prime cardinality the embedding
degree is large:

Let logK = O(log2 p). For a randomly chosen curve

Pr{embedding degree ≤ K} ≤ p−1/(4κ+6)+o(1),

where

κ =
logK

log2 p
.

For K = (log p)2 the RHS is p−1/14+o(1).
The proof is based on

• studying N ∈ [p+ 1− 2p1/2, p+ 1 + 2p1/2] with N |pk − 1, for some k ≤ K;

• Lenstra’s bound on the number of curves with IE(IFp) = N .

For H ≥ h ≥ 1 and K ≥ 1, we let N(p,K,H, h) be the number of integers N ∈ [H −
h,H + h] with N | (pk − 1) for some k ≤ K.

For logH ≍ log h ≍ log p and logK = O(log2 p),

N(p,K,H, h) ≤ h1−1/(2κ+3)+o(1),

where

κ =
logK

log2 p
.

Also, similar results about the probability that

• P (#IE(IFp))|pk − 1 for k ≤ K;

• #IE(IFp)|
∏K

k=1(p
k − 1).

Scarcity of Pairing Friendly Fields

For several other cryptographic applications of the Tate or Weil pairing on elliptic one need
elliptic curves IE with small embedding degree.

Supersingular curves gave IE(IFq) = q + 1 thus are natural candidates. However, one can
also suspect that supersingular curves have some cryptographic weaknesses and thus ask for
constructions generating ordinary curves.

Let

Φk(X) =

k
∏

j=0
gcd(j,k)=1

(X − exp(2π
√
−1j/k))

be the kth cyclotomic polynomial .
Typically, such constructions work into two steps:

Step 1 Choose a prime ℓ, integers k ≥ 2 and t, and a prime power q such that

|t| ≤ 2q1/2, t 6= 0, 1, 2,

ℓ | q + 1− t, ℓ | Φk(q).
(1)
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Step 2 Construct an elliptic curve IE over IFq with #IE(IFq) = q + 1− t.

k should be reasonable small (e.g., k = 2, 3, 4, 6), while the ratio log ℓ/ log q should be as
large as possible, preferably close to 1.

Unfortunately, there is no efficient algorithm for Step 2, except for the case when the
t2 − 4q has a very small square-free part; that is, when

t2 − 4q = −r2s (2)

with some integers r and s, where s is a small square-free positive integer. In this case either
−s or −4s is the fundamental discriminant of the CM field of IE.

Let Qk(x, y, z) the number of prime powers q ≤ x for which there exist prime ℓ ≥ y and
t satisfying (1) and (2) with a square-free s ≤ z.

Florian Luca and I.S., 2005:
For any fixed k and real x, y and z the following bound holds

Qk(x, y, z) ≤ x3/2+o(1)y−1z

as x→∞.
In particular, if z = xo(1), which is the only practically interesting case anyway, we see

that unless y ≤ x1/2 there are very few finite fields suitable for pairing based cryptography.
In other words, unless the common request of the primality of the cardinality of the curve

is relaxed to the request for this cardinality to have a large prime divisor (e.g., a prime divisor
ℓ with log ℓ/ log q ≥ 1/2), the suitable fields are very rare.

Heuristic on MNT curves

Atsuko Miyaji, Masaki Nakabayashi and Shunzou Takano, 2001:
MNT algorithm to produce elliptic curves satisfying the condition (1) with k = 3, 4, 6, and
the condition (2) for a given value of s.

Florian Luca and I.S., 2005:
Heuristic estimates on the number of elliptic curves which can be produced by MNT.

It seems that they produce only finitely many suitable curves (still this can be enough
for practical needs of elliptic curve cryptography).

Our arguments are based on a combination of the following observations:

• MNT gives a parametric family of curves whose parameter runs through a solution of
a Pell equation u2 − 3sv2 = −8 (for k = 6, and similar for k = 3, 4).

• Consecutive solutions (uj, vj) of a Pell equation grow exponentially, as at least scj and

most probably as ecs1/2j for some constant c > 0.

• The probability of a random integer n to be prime is 1/ logn.

• MNT curves should satisfy two independent primality conditions (on the field size and
on the cardinality of the curve).

Therefore, the expected total number of MNT curves for every s is bounded, by the
order of magnitude, by

∞
∑

j=1

1

(log scj)2
≪ 1

log s

∞
∑

j=1

1

j2
≪ 1

log s
.

or even by
∞
∑

j=1

1

(log ecs1/2j)2
≪ 1

s1/2

∞
∑

j=1

1

j2
≪ 1

s1/2
.
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Probably the total number of all MNT curves of prime cardinalities (over all finite fields)
and of bounded CM discriminant, is bounded by an absolute constant.

Apparently the number of all MNT curves of prime cardinalities with CM discriminant
up to z, is at most z1/2+o(1).

Similar heuristic shows that MNT produces sufficiently many curves whose cardinality
has a large prime divisor.

Generating Pseudorandom Points on Elliptic Curves

Fix a point G ∈ IE(IFp) of order t

• EC Linear Congruential Generator, EC-LCG:

For the “initial value” U0 ∈ IE(IFq), consider the sequence:

Uk = G⊕ Uk−1 = kG⊕ U0, k = 1, 2, . . . .

Introduced and studied by:

Sean Hallgren, 1994: EC-LCG

Also by
Gong, Berson, Stinson, 2001:
Beelen, Doumen, 2002:
El Mahassni, Hess, I.S., 2001-2003:

• EC Power Generator, EC-PG:

For an integer e ≥ 2, consider the sequence (with W0 = G),

Wk = eWk−1 = ekG, k = 1, 2, . . . ,

Introduced and studied by:

Tanja Lange, I.S., 2003:

• EC Naor-Reingold Generator, EC-NRG:

Given an integer vector a = (a1, . . . ak), consider the sequence:

Fa(n) = aν1

1 . . . aνk

k G, n = 1, 2, . . . ,

where n = ν1 . . . νk is the bit representation of n, 0 ≤ n ≤ 2k − 1.

Introduced and studied by:

Bill Banks, Frances Griffin, Daniel Lieman, Joe Silverman, I.S., 1999-2001:

Example: Let G ∈ IE(IFp) be of order t = 19, k = 4 and a = (2, 5, 3, 4). Then,

Fa(0) = 20503040G = G,

Fa(1) = 20503041G = 4G,

Fa(2) = 20503140G = 3G,

Fa(3) = 20503141G = 12G,

. . . . . .

Fa(11) = 21503141G = 24G = 5G,

. . . . . .

Fa(15) = 21513141G = 120G = 6G,

32



They all have analogues in the group IF∗q

Florian Hess, Tanja Lange, I.S., 2001–2004:

Theorem:
If G is of order t ≥ p1/2+ε then

EC-LCG, EC-PG, EC-NRG
are reasonably well distributed

Conjecture:
The above sequences are very well distributed

Proof ingredients:

• Bounds of exponential sums

David Kohel, I.S., 2000:

∑

P∈H

exp (2πif(P )/p) = O(p1/2)

for any subgroup H ∈ IE(IFp) and any function f which is not constant on IE.

• Results about not vanishing some functions over IE

Igor E. Shparlinski Center for Advanced Comptuing, Macquarie University
igor@comp.mq.edu.au

33



On secret sharing schemes, matroids, and polymatroids
Carles Padró Laimón

One of the main open problems in secret sharing is the characterization of the access
structures of ideal secret sharing schemes. As a consequence of the results by Brickell and
Davenport, every one of those access structures is related in a certain way to a unique matroid.

Matroid ports are combinatorial objects that are almost equivalent to matroid-related
access structures. They were introduced in 1964 by Lehman and a forbidden minor charac-
terization was given by Seymour in 1976. These and other subsequent works on that topic
have not been noticed until now by the researchers interested on secret sharing.

By combining those results with some techniques in secret sharing, we obtain new char-
acterizations of matroid-related access structures. As a consequence, we generalize the result
by Brickell and Davenport by proving that, if the information rate of a secret sharing scheme
is greater than 2/3, then its access structure is matroid-related. This generalizes several
results that were obtained for particular families of access structures.

In addition, we study the use of polymatroids for obtaining upper bounds on the optimal
information rate of access structures. We prove that all the bounds that are obtained by this
technique for an access structure apply also to the dual structure.

Finally, we present lower bounds on the optimal information rate of the access structures
that are related to two matroids that are not secret sharing representable: the Vamos matroid
and the non-Desargues matroid.

Carles Padró Laimón Dep. Mat. Aplicada IV, Universitat Politècnica de Catalunya
cpadro@ma4.upc.edu
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Character Sums and Nonlinear Recurrence Sequences
Simon R. Blackburn

This talk is based on recent joint work with Igor Shparlinski.

Let R be a finite ring (with a multiplicative identity) of cardinality m. Let (an)∞n=0 be a
sequence over R. Suppose (an) satisfies a non-linear recurrence of order d. We aim to show
how to prove an upper bound on a certain character sum associated with (an); this bound
can be used to prove results on the autocorrelation of the sequence, and on the distribution
of windows of fixed length (less than d) in the sequence. Our bounds are non-trivial only
when the period of the sequence is close to md (a situation that arises, for example, when
we are studying de Bruijn sequences). In contrast to a typical situation where d is regarded
as being fixed, our results allow d to grow but m to remain bounded.

Simon R. Blackburn Dep. Pure Mathematics, Royal Holloway, Univ. London
s.blackburn@rhul.ac.uk
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Large prime variation of the lattice sieve
Gagan Garg

The number field sieve (NFS) is asymptotically the fastest known algorithm for factoring
integers [1]. There are primarily two ways in which NFS can be implemented: line sieve and
lattice sieve. Lattice sieve was proposed by Pollard in 1991 [2]. It is known to be better
than the line sieve. A preliminary analysis of the lattice sieve was done by Pollard in this
introductory paper. He showed that the work done using the lattice sieve is less than that in
the line sieve; but we still get most of the solutions that would have been generated by the
line sieve. Thus, lattice sieve takes less time to produce a majority of the relations. However,
Pollard did not analyze the large prime variations of the lattice sieve.

In most of the present day implementations of the NFS, we allow for 2 to 3 large primes.
Hence, it is important to study the large prime variant of this problem. In our analysis, we
also consider the 4 large prime variant to handle larger RSA challenge numbers.

We present a rigorous analysis of the total number of integers sieved (work done) in the
lattice sieve. More importantly, we analyze the number of partial solutions obtained when
using the large prime variations.

We divide the factor base into two parts:

S : the small primes: p ≤ B0

M : the medium primes: B0 < p ≤ B1

We also have
L : the large primes: B1 < p ≤ B2

Let x be a typical auxiliary integer that is obtained from the NFS i.e. x(a, b) = a−mb
for the rational sieve and x(a, b) = norm(a − αb) for the algebraic sieve, where a and b are
sieve parameters and α is a complex root of the NFS polynomial. Define r := logB0/ log x,
s := logB1/ log x and t := logB2/ log x.

Our results are as follows:

(i) The work done using the lattice sieve divided by the work done using the line sieve is

log logB 2
1 − log logB 2

0

2 log logB1

(ii) The fraction of full relations obtained when using the lattice sieve is

1− ρ(1/r)

ρ(1/s)
where ρ is the Dickman function

(iii) The fraction of partial relations obtained when allowing k large primes in the lattice
sieve is

1− Jk(r, s, t)

Jk(s, s, t)
where Jk(r, s, t) :=

1

k!

∫ t

s

∫ t

s

· · ·
∫ t

s

ρ

(

1−∑k
i=1 λk

r

)

dλ1

λ1

dλ2

λ2
· · · dλk

λk

We also estimate this integral numerically for k = 1, 2, 3, 4. We display a table that
compares the estimates with actual sieving results. We display another table that shows the
fraction of the work done and the fraction of solutions (full as well as partial) obtained as a
function of B0 and B1.
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Differential Codes
Antonio Campillo López

AG-codes are constructed by evaluating rational functions which are defined in neigbour-
hoods of some fixed set of rational points over finite fields. Behaviour and applications of
such codes depend not only on the vector subpace of considered functions, but, mainly, on
the geometry of the considered rational points. The talk shows properties an applications
of AG-codes obtained by evaluting at singular points of ordinary differential equations on
algebraic varieties over finite fields.
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An Heuristic Algorithm for Finding Small Roots of
Multivariate Polynomials over the Integers

Jaime Gutiérrez Gutiérrez

Joint work with: Domingo Gómez and Álvar Ibeas

In 1996, Coppersmith [8, 9, 10] introduced two rigorous lattice-based methods for finding
small roots of polynomials: one for univariate modular and another one for bivariate integer
polynomial equations. One of the main results is:

Theorem 1 (Theorem 2-[8]) Let p(ε1, ε2) be an irreducible polynomial in two variables
over ZZ, of maximum degree δ in each variable separately. Let ∆1,∆2 be bounds on the
desired solutions x0, y0. Define p∗(ε1, ε2) = p(ε1∆1, ε2∆2) and let W be the absolute value of
the largest coefficient of p∗(ε1, ε2). If

∆1∆2 ≤W 2/(3δ)−ε2−14δ/3,

then in polynomial time in (logW, δ, 1/ε) we can find all integer pairs (x0, y0) with p(x0, y0) =
0 bounded by |x0| ≤ ∆1, |y0| ≤ ∆2.

The complicated proof of this important result is based on lattice basis reduction, with
the so called LLL-technique (see [19]).

Lattice reduction techniques seem inherently linear. The general idea of this technique
is to translate our non linear problem to finding a short vector in a lattice built from the
nonlinear equation. Then, the so-called Shortest Vector Problem and Closest Vector Problem
in lattices play a major role.

In recent years, these techniques have been used repeatedly for the cryptanalytic attack
of various cryptosystems. Coppersmith’s algorithm has many applications in cryptology:
cryptanalysis of RSA with small public exponent when some part of the message is known,
polynomial time factorization of N = pq with high bits known and polynomial time factor-
ization of N = prq for large r; several papers have been published on different applications of
those results in cryptology, see for instance [17, 6, 11, 15, 13, 18]. The paper [8] also proposed
heuristic multivariate extensions for both approaches. The goal in this kind of method is to
maximize the bounds up to which roots of the polynomials can be computed in polynomial
time.

In this talk we present a method to compute small roots of a system of multivariate poly-
nomial equations with integer coefficients simpler than other known algorithms for bivariate
polynomials. Our heuristic algorithm is based on the same idea used for predicting non-
linear pseudorandom numbers, see [3, 4, 5, 12]. Despite we are not able to provide bounds
to which common roots of the polynomials can be computed, we have implemented in C++
our approach showing that it works relatively well in practice.

The Algorithm

Let f1, . . . , fm be polynomials in the variables x1, . . . , xn with integer coefficients. Sup-
pose that the associated polynomial system of equations has an unknown common zero
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(ε1, . . . , εn) ∈ ZZ
n such that each component εi is bounded by some known integer bound

∆i ∈ ZZ, that is, |εi| ≤ ∆i, i = 1, . . . n and

f1(ε1, . . . , εn) = 0,
f2(ε1, . . . , εn) = 0,

...
fm(ε1, . . . , εn) = 0.

(3)

Our main task is to design an efficient algorithm for computing the common zero (ε1, . . . , εn) ∈
ZZ

n.
Basically, the algorithm is divided into several linearization steps.

First iteration: We construct a certain lattice L. It depends on the Equation (3). We also
show that a certain vector E directly related to missing information about (ε1, . . . , εn) is a
very short vector in the set t + L, where t depends on the bounds ∆i and the coefficients of
the polynomials fi. A short vector F in t+L is found; see [16, 1] for appropriate algorithms.
If F = E then the unknowns are discovered in this linearization step.

Second and more iterations: If E 6= F, then we express E−F as a linear combination of a
reduced basis of the lattice L with small unknown coefficients obtaining some new equations
with new bounds. Then, we apply the previous technique to the lattice associated to that
new equations and with these new bounds.

This process can be repeated as many times as desired in order to obtain better results.
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Gröbner Bases and Cayley Digraphs
Álvar Ibeas Mart́ın

Joint work with: Domingo Gómez, Jaime Gutiérrez

Cayley digraphs are usefull representations of the structure of a group. A simple particular
case is formed by circulant graphs: the Cayley digraph of cyclic groups. This kind of graphs
have been widely studied beacuase of their applications to computer networks.

In the case of an abelian group, the paths in a Cayley digraph can be identified to
monomials. Then, one can build a certain monomial ideal which is a Minimum Distance
Diagram of the graph. This is the initial ideal of a binomial ideal, and so, it can be computed
using Gröbner Bases.

With that Minimum Distance Diagram, represented for instance by a system of generators,
we can solve some problems on the graph:

• Routing Problem: finding a path among two vertices with minimum length.

• Diameter: compute the largest distance between pairs of vertices.

• Average Minimum Distance: compute the average distance.
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3-Loop Networks can have arbitrarily many Minimum
Distance Diagrams

Pilar Sabariego Arenas

Joint work with: Francisco Santos

Multi-loop networks were proposed by Wong and Coppersmith for organizing multi-
module memory services [4].

The double-loop networks have been widely studied with the aid of the diagrams called
L-shapes. It is well known that an L-shape for a double-loop network is a minimum distance
diagram, MDD, which is a two-dimensional array that gives the shortest paths form one
node to every other node. These diagrams are a strong tool in proving many properties for
the double-loop networks, for example: for computing the diameter or the average minimal
distance of the corresponding graphs.

By contrast, the MDD for a triple-loop network does not have a uniform nice shape like
the L-shapes in dimension two, and this fact has made difficult the study of the properties
of the triple-loop networks. For example, [1] proposed the study of a particular type of tiles
that they called hyper-L tiles , but it was shown in [2] that these exist only for very special
parameters of the network..

In this talk, building up on the relations between MDD’s and monomial ideals shown in [3],
we show that there exist three-loop networks with an arbitrarily big number of associated
“coherent” MDD’s, so finding a characterization of the MDD’s for a three-loop network is
going to be difficult. Here, we call an MDD coherent if it is indeed the diagram related to
a monomial ideal. Equivalently, that if the shortest path from v1 to v2 in the MDD passes
through a third vertex v3, then the two subpaths induced are the shortest paths that the
diagram gives from v1 to v3 and from v3 to v2.
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Quantum cryptology
Emilio Santos Corchero

In quantum theory the states of physical systems are represented by rays in a Hilbert
space and the evolution by a unitary transformation of the space. On the other hand it
is assumed that measurements produce an unpredictable change in the measured system.
These properties may be used to devise procedures to transmit a key (a sequence of numbers
0 and 1) so that whenever between the sender and the receiver there is an eavesdropper,
the receiver is able to detect its existence, so rejecting the key. There are several protocols
for secure quantum key distribution using weak light signals (photons), some of them tested
already experimentally. Specially simple is BB84, which will be studied in some detail.
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