BSD22
MOSFET N-channel depletion switching transistor

December 1997
DESCRIPTION

Symmetrical insulated-gate silicon MOS field-effect transistor of the n-channel depletion mode type. The transistor is sealed in a SOT143 envelope and features a low ON-resistance and low capacitances. The transistor is protected against excessive input voltages by integrated back-to-back diodes between gate and substrate.

Applications:
- analog and/or digital switch
- switch driver
- convertor
- chopper

PINNING

1 = substrate (b)
2 = source
3 = drain
4 = gate

Note
1. Drain and source are interchangeable

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-source voltage V_DS max.</td>
<td>20 V</td>
</tr>
<tr>
<td>Gate-source voltage V_GS max.</td>
<td>+15 V</td>
</tr>
<tr>
<td></td>
<td>-40 V</td>
</tr>
<tr>
<td>Drain current (DC) I_D max.</td>
<td>50 mA</td>
</tr>
<tr>
<td>Total power dissipation up to T_amb = 25 °C P_tot max.</td>
<td>230 mW</td>
</tr>
<tr>
<td>Junction temperature T_j max.</td>
<td>125 °C</td>
</tr>
<tr>
<td>Drain-source ON-resistance R_DSon max.</td>
<td>30 Ω</td>
</tr>
<tr>
<td>Feed-back capacitance C_Rss typ.</td>
<td>0.6 pF</td>
</tr>
</tbody>
</table>

Marking code: M32
MOSFET N-channel depletion switching transistor

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Max. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-source voltage</td>
<td>V_{DS}</td>
<td>20 V</td>
</tr>
<tr>
<td>Source-drain voltage</td>
<td>V_{SD}</td>
<td>20 V</td>
</tr>
<tr>
<td>Drain-substrate voltage</td>
<td>V_{DB}</td>
<td>25 V</td>
</tr>
<tr>
<td>Source-substrate voltage</td>
<td>V_{SB}</td>
<td>25 V</td>
</tr>
<tr>
<td>Gate-substrate voltage</td>
<td>V_{GB}</td>
<td>\pm 15 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$+$ 15 V</td>
</tr>
<tr>
<td>Gate-source voltage</td>
<td>V_{GS}</td>
<td>$-$ 40 V</td>
</tr>
<tr>
<td>Drain current (DC)</td>
<td>I_D</td>
<td>50 mA</td>
</tr>
<tr>
<td>Total power dissipation up to $T_{amb}=25, ^\circ C$</td>
<td>P_{tot}</td>
<td>230 mW</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_{stg}</td>
<td>-65 to $+150$ °C</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_j</td>
<td>125 °C</td>
</tr>
</tbody>
</table>

Note
1. Device mounted on a ceramic subtrate of 8 mm × 10 mm × 0.7 mm.

THERMAL RESISTANCE

From junction to ambient in free air

$$R_{th,j-a} = 430 \text{ K/W}$$

CHARACTERISTICS

$T_{amb} = 25\, ^\circ C$ unless otherwise specified

Drain-source breakdown voltage

$$V_{GS} = V_{BS} = -5 \text{ V}; I_S = 10 \text{ nA}$$

Source-drain breakdown voltage

$$V_{GD} = V_{BD} = -5 \text{ V}; I_D = 10 \text{ nA}$$

Drain-substrate breakdown voltage

$$V_{GB} = 0; I_D = 10 \text{ nA}; \text{open source}$$

Source-substrate breakdown voltage

$$V_{GB} = 0; I_S = 10 \text{ nA}; \text{open drain}$$

Drain-source leakage current

$$V_{GS} = V_{BS} = -5 \text{ V}; V_{DS} = 10 \text{ V}$$

Source-drain leakage current

$$V_{GD} = V_{BD} = 5 \text{ V}; V_{SD} = 10 \text{ V}$$

Gate-substrate leakage current

$$V_{DB} = V_{SB} = 0; V_{GB} = \pm 15 \text{ V}$$

Forward transconductance at $f = 1 \text{ kHz}$

$$V_{DS} = 10 \text{ V}; V_{SB} = 0; I_D = 20 \text{ mA}$$

Gate-source cut-off voltage

$$V_{DS} = 10 \text{ V}; V_{SB} = 0; I_D = 10 \mu A$$

$$g_{fs} \text{ min.} = 10 \text{ mS}$$

$$g_{fs} \text{ typ.} = 15 \text{ mS}$$

$$-V_{(P)GS} \text{ max.} = 2.0 \text{ V}$$
MOSFET N-channel depletion switching transistor

Drain-source ON-resistance

$V_{DS} = 5 \text{ V}$

$R_{DSon} \quad \text{typ.} \quad 25 \text{ } \Omega$

$V_{GS} = 10 \text{ V}$

$R_{DSon} \quad \text{typ.} \quad 15 \text{ } \Omega$

Capacitances at $f = 1 \text{ MHz}$

$V_{GS} = V_{BS} = -5 \text{ V}; V_{DS} = 10 \text{ V}$

Feed-back capacitance

$C_{rss} \quad \text{typ.} \quad 0.6 \text{ pF}$

Input capacitance

$C_{iss} \quad \text{typ.} \quad 1.5 \text{ pF}$

Output capacitance

$C_{oss} \quad \text{typ.} \quad 1.0 \text{ pF}$

Switching times (see Fig.3)

$V_{DD} = 10 \text{ V}; V_i = -5 \text{ V to } +5 \text{ V}$

$t_{on} \quad \text{typ.} \quad 1.0 \text{ ns}$

$t_{off} \quad \text{typ.} \quad 5.0 \text{ ns}$

Fig.2 Capacitances model.

Fig.3 Switching times and input and output waveforms; $R_i = 50 \text{ } \Omega$; $t_r < 0.5 \text{ ns}; t_f < 1.0 \text{ ns}; t_p = 20 \text{ ns}; \delta < 0.01.$
MOSFET N-channel depletion switching transistor

PACKAGE OUTLINE

Plastic surface mounted package; 4 leads

SOT143B

DIMENSIONS (mm are the original dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A</th>
<th>A₁ max</th>
<th>b p</th>
<th>b₁</th>
<th>c</th>
<th>D</th>
<th>E</th>
<th>e</th>
<th>e₁</th>
<th>H E</th>
<th>L p</th>
<th>Q</th>
<th>v</th>
<th>w</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>1.1</td>
<td>0.1</td>
<td>0.48</td>
<td>0.38</td>
<td>0.88</td>
<td>0.78</td>
<td>0.15</td>
<td>0.09</td>
<td>3.0</td>
<td>2.8</td>
<td>1.4</td>
<td>1.2</td>
<td>1.7</td>
<td>2.5</td>
<td>2.1</td>
</tr>
</tbody>
</table>

OUTLINE VERSION

IEC

REFERENCES

JEDEC

EUROPEAN PROJECTION

EIAJ

ISSUE DATE

97-02-28
MOSFET N-channel depletion switching transistor

DEFINITIONS

Data sheet status

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective specification</td>
<td>This data sheet contains target or goal specifications for product development.</td>
</tr>
<tr>
<td>Preliminary specification</td>
<td>This data sheet contains preliminary data; supplementary data may be published later.</td>
</tr>
<tr>
<td>Product specification</td>
<td>This data sheet contains final product specifications.</td>
</tr>
<tr>
<td>Short-form specification</td>
<td>The data in this specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.</td>
</tr>
</tbody>
</table>

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.