

Low-cost VLSI Architecture Design for Forward Quantization of
H.264/AVC

G.A. Ruiz1 and J.A. Michell

Dpto. de Electrónica y Computadores. Facultad de Ciencias
Universidad de Cantabria. Avda. de Los Castros s/n. 39005 Santander (SPAIN)

ABSTRACT

The H.264/AVC (Advanced Video Codec) is the latest standard for video coding. It assumes a scalar forward quantizer
performed at the encoder which can be implemented directly in integer arithmetic. An efficient architecture for the
computation of forward quantization of H.264/AVC is presented in this paper. It uses a modification of the quantization
operation which reduces the arithmetic operations, and a truncated Booth multiplier based on adaptative statistical
approach, which reduces the hardware. The JM reference software’s C code has been re-written to analyze the effect of
new algorithm and of truncated Booth multiplier. Simulations made up over popular test sequences used in video
standardization show the validity of this approach. These results demonstrate that, at low QP, the PSNR is improved
between a maximum of +0.81db and a minimum of 0.31db, with a slight increase in the Bit Rate being around 0.8%.
Finally, a suitable architecture for VLSI implementation is presented, which reduces in a 26% the area, 32% the power
and 21% the critical path delay in comparison with classical implementation. Moreover, it also reduces the area and
increase the speed in comparison with architectures presented in references.

Keywords: Quantization, H.264

1. INTRODUCTION
THE H.264/ is the latest standard for video coding established by the Joint Video Team between ITU-T VCEG and
ISO/IEC MPEG1. H.264 presents a number of features different from the existing standards to support various
applications. It assumes a scalar forward quantizer performed at the encoder by a simple scale-and-shift formula which
can be implemented directly in integer arithmetic. The step size of the quantizer is controlled with the use of a
quantization parameter (QP) which supports 52 different values, from 0 to 51, in increments of one. According to the
notation in 2, each transform coefficient with value Wij (i,j= 0 to 3) is quantized in a coefficient Zij by the following
equation:

()

)W(sign)Z(sign

qbitsFMFWZ

ijij

ijijij

=

>>+⋅=
 (1)

where MFij is the multiplication factor made up of 6x3 arrays of 14-bit positive integers, qbits=15+floor(QP/6), >>
indicates a binary shift right and F is a positive number which can be expressed as F=f << qbits, f being typically in the
range 0 to 0.5. Eq. (1) is similar to that used for encoding the 16x16 Intra prediction mode and 4x4 chroma components.
In this case, MFij is replaced by MF0,0, F by 2F and qbits by qbits+1. Eq. (1) has been implemented in JM reference
software which is available on-line in 3. In JM reference, f has assigned two values, 1/3 for Intra blocks and 1/6 for Inter
blocks.

1 ruizrg@unican.es; phone +34 942 20155; fax +34 942 201402

VLSI Circuits and Systems III, edited by Valentín de Armas Sosa, Kamran Eshraghian, Felix B. Tobajas,
Proc. of SPIE Vol. 6590, 65900Y, (2007) · 0277-786X/07/$18 · doi: 10.1117/12.721493

Proc. of SPIE Vol. 6590 65900Y-1

In
fi
F

M

I'

VB

LAIE

V

D
E

E

HIL

dp!l

Ie
IJ >>dp!

V\ifllflb

I'

qq flL

b

-

The forward quantization is not specified in the standard H.264. This allows developers some flexibility in choosing a
quantizer design4. However, some hardware implementations, as proposed in 5,6, apply directly the quantization
expressions of Eq. (1) with any kind of optimization as shown in Fig 1. In this case, the ABS module implements the
absolute value of Wij, the multipliy-add unit calculates the term ()FMFWP ijijij +⋅= and the final modules make the

right-shift and assign to Zij the same sign of Wij. This paper presents a more efficient quantizer architecture for the
computation of forward quantization of H.264. In this architecture, the ABS and SIGN modules are not necessary and an
adaptive truncated Booth multiplier is used to reduce hardware.

2. MODIFIED QUANTIZATION OPERATION

In Eq. (1), module ijW is necessary because the arithmetic operation “>> qbits“ makes an integer division with

truncation of the result toward zero which causes errors for Wij < 0. For example, the integer -3 in a 4-bit two’s-
complement representation is 1101. The operation -3 >>2 should be 0, but 1101>>2 gives -1. To resolve this error, 1<<n
must be added to the negative number, n being the number of right shifts. Thus, (1101+(1<<2)) >> 2 is 0. Note that this
does not work properly when all the less significant n bits are zero, or in a similar way, when the number is negative and
power of two. For example, if n=2 and the number is -4, then (1100 +(1<<2))>>2 is 0 and it should be -1 (1111).

This operation allows ijW to be eliminated from Eq. (1) assigning to F the same sign as Wij. To do this, a term 1<<qbits

must be added to F when Wij<0, resulting in

 -F+1<<qbits=(1-f)<<qbits (2)

Then, Eq (1) can be directly implemented as follows:

 () qbits*FMFWZ ijijij >>+⋅= (3)

where

⎩
⎨
⎧

<<<−
≥<<

=
0Wfor,qbits)f1(

0Wfor,qbitsf
*F

ij

ij (4)

Fig. 1. Quantizer architecture

Proc. of SPIE Vol. 6590 65900Y-2

2

C9LL2 2!aWI2
K

IAIS!U LOInc jLflUC96 bLoqnq

J
3

32e 0

-

Therefore, ijW and a subsequent sign conversion should not be necessary in Eq. (3) which leads to a more efficient

hardware implementation than that proposed in Eq. (1). However, F* must be implemented from Eq. (4). Table I shows
the values of f and the definition of F* for different options. F* can be readily generated from number 1/3 and shifted
operations. It is noted that f is always positive to be 1/3 or 1/6 and no additions are necessary.

The operation of Eq. (3) provides erroneous results when all less significant qbits in Zij are zero; it means that Zij is
negative and power of two. The probability of this event is 2-qbit and, in the worst case (qbits=15), its value is

515 1052.165536/12 −− ⋅== . Simulations made with real sequences have proven that this error has an insignificant
effect in quantization process and, therefore, the proposed method is valid.

2.1 Truncated Booth multiplier
In Eq. (3), the arithmetic operation WijMFij+F* can be implemented in a single multiplier and the shift operation “>>
qbits” is a truncated operation equivalent to eliminating the less significant qbits of the multiplier. Both operations can be
efficiently implemented in a truncated multiplier. We focus on the modified Booth’s algorithm which is the most popular
approach for implementing fast multipliers using parallel encoding.

Sign f Definition of F*
18-bit width of F*

(qbits=15)
Wij≥0 1/3 1/3 << qbits 000010101010101010

In
tr

a

Wij<0 1-1/3=2/3 1/3 << (qbits+1) 000101010101010101

Wij≥0 1/6 1/3 << (qbits-1) 000001010101010101
In

te
r

Wij<0 1-1/6=5/6 1/3 << qbits+1<<(qbits-1) 000110101010101010

Table I. Specification of F*

Fig. 2. Truncated 8x8 Booth radix-4 multiplier scheme.

Proc. of SPIE Vol. 6590 65900Y-3

-

Kj
FOREMAN

QCIF
30 frames

MOBILE
CIF

300 frames

PARIS
CIF

1065 frames

TEMPETE
CIF

300 frames

HIGHWAY
CIF

2000 frames

j PSNR BR PSNR BR PSNR BR PSNR BR PSNR BR

1 54,11 4882 53,64 20326 53,67 16735 53,96 19480 54.92 16027

2 58,29 4463 57,88 19715 57,83 15244 58,45 18850 60.50 15820

3 65,27 4213 64,66 19090 64,68 14653 65,51 17721 69.60 15448

4 65,30 4107 65,87 18719 65,44 14286 66,65 17590 69.98 15335

5 65,95 4132 65,97 18803 65,61 14336 66,91 17494 70.97 15357

6 65,53 4122 65,95 18779 65,22 14234 66,66 17453 70.56 15307

7 65,36 4107 65,6 18741 65,12 14248 66,48 17427 70.10 15362

8 65,39 4106 65,75 18763 65,11 14239 66,67 17442 70.21 15352

9 65,38 4113 65,69 18751 65,12 14239 66,64 17480 70.30 15367

10 65,38 4114 65,65 18751 65,11 14244 66,60 17461 70.16 15348

11 65,38 4114 65,65 18751 65,11 14244 66,60 17461 70.16 15348

12 65,38 4114 65,65 18751 65,11 14244 66,60 17461 70.16 16027

13 65,38 4114 65,65 18751 65,11 14244 66,60 17461 70.16 15348

14 65,38 4114 65,65 18751 65,11 14244 66,60 17461 70.16 15348

15 65,38 4114 65,65 18751 65,11 14244 66,60 17461 70.16 15348
PSNR means Peak Signal to Noise Ratio (in dB) and BR means Bitrate (in kbit/s)

Table II. Rate distorsion performance for QP=0 using different truncated product.

15

25

35

45

55

65

75

0 2 4 6 8 10 12 14 16 18

Bitrate [Kbit/s]

PN
SR

 (Y
) [

dB
]

x103

Forema
Paris

Highway Tempete

Mobile

j=5
j=15

Fig. 3. Rate-distortion curves for j=5 and j=15 (no truncation).

Proc. of SPIE Vol. 6590 65900Y-4

-

Fig. 2 shows a simple representation of an 8x8 truncated Booth radix-4 multiplier. Each dot is a placeholder for a single
bit obtained by a partial product generation circuit and S is the sign conversion bit. All elements can be {0, 1} depending
on the result of a partial product selector. In this case, the multiplier’s output has been truncated in 7 bits. Thus, partial
products are divided into a main product (MP) and a truncated product (TP). The contribution of the TP to the MP is
made through the sum of all carry signals generated from the TP which are expressed as:

 i
7

1i
i 2KsignalsCarry −

=
∑= (5)

where Ki is the sum of all column dots. This contribution is relatively low in comparison with the MP. Therefore, part of
the TP circuitry can be eliminated in order to reduce area and increase the speed of the multiplier. However, an error
would be introduced in the resulting product. To reduce this error, several refinements applied to a Booth multiplier have
been proposed7-10. However, simulations made with these approaches have proven that the adaptive statistical analysis
presented in 7 gives the best results. This approach allows the following approximation to be derived:

 1j
j

j
j

i
7

ji
i 2K2K22K +−−−

=
=≈∑ (6)

For example, Eq. (5) can be approximated for j=4 as:

 () 3
43

2
2

1
1 2KK2K2KsignalsCarry −−− +++≈ (7)

In this case, the low-error Booth multiplier implementation should only require the columns K1, K2, K3, the dots of K4
being added to K3.

2.2 Simulation results
The JM reference software’s C code has been re-written to analyze the effect of Eqs. (3) and (4) and of the truncated
Booth multiplier for different values of k. Table II shows the simulation results in terms of Peak Signal to Noise Ratio or
PSNR (in dB) and bitrate or BR (in kbit/s) for different sequences. The majority of these sequences are popular test
sequences used in video standardization. This analysis has been made considering QP=0 which corresponds to maximum
bit-rate. Clearly the best PSNR results are obtained for k=5. In this case, the PSNR is improved by a maximum of
+0.81dB for Highway sequences to a minimum of +0.31dB for Tempete sequences. No explication is found to justify
this improvement in PSNR. The only justification for these results is related to the adaptive error-compensation method
used in the multiplier which is based on the statistical approach of partial product bits of adjacent columns. However, this
improvement in PSNR is relayed with a slight increase in the lower Bit Rate to 0.8%. The parameter qbits depends
linearly on QP/6. For higher QP, the error introduced by the truncated Booth multiplier is drastically reduced as a
consequence of the shifting operation in Eq. (1). Fig. 3 shows the rate-distortion curves for different sequences generated
for j=5 and for j=15 (no truncated multiplication). Note that only a very slight difference is detected at low QP, the rest
of the curve fitting perfectly.

3. QUANTIFIER ARCHITECTURE
Fig. 5 shows an efficient quantizer architecture for H.264 based on a truncated 8-row Booth multiplier. The Booth
algorithm is a common approach to the VLSI design of high speed multipliers because the number of additions in
multiplication is halved. The modified Booth algorithm proposed by the MacSorley 16 is maybe the most used in
hardware implementation because it is fast and requires less area, and their regular structure facilitates efficient
implementation in VLSI. In Fig. 5, the truncated Booth multiplier computes on the same carry save structure the

Proc. of SPIE Vol. 6590 65900Y-5

Th

-

expression derived from Eq. (1), PPij=(Wij MFij+F*)<<15. The 17 different values of MFij (note that 5243 is duplicated)
used in the H.264 reference are listed in Table III. The maximum value of PPij is computed when MFij =13107 resulting
in PPij ∈[-13107, 13106] which it can be described in 15-bit width. The output multiplexer-based shifter allows
additional right shift from 0 to a maximum of 8, according to the value of QP/6 and the 16x16 luma/chroma mode. In
this scheme, the input data Wij is of 16-bit width, MFij is of 14-bit (MFij>0) F* of 14-bit (F* > 0) and output data Pij is of
15-bit arranged for qbits=15. A multiplexer-based shifter is used to generate F* from the term 1/3<<qbits.

A detailed scheme of truncated Booth multiplier used in quantized is shown in Fig. 6. It is composed by Booth encoders
from groups the three bits, partial-product circuit (labeled as SEL), carry save structure based on full adders (FA) and
half adders (HA), and a final adder. In Booth encoders, MFij is partitioned into overlapping groups of three bits and each
group is converted into a set of signed digits {±2, ±1, 0} specified by three signals {M, 2M, S}k. These signals select a
single partial product Dkm from Wk, (Wk={Wij}k in Fig. 6) as

 () kkjkikm SM2WMWD ⊕⋅+⋅= (8)

Table III shows the Booth decoding for the multiplication factors MFij. In all of them, the most significative digit is 0 or
1. This imply that the last row of multiplier is simplified in order to reduce hardware necessary to be only one signal,
{M}k. In scheme of this multiplier, the truncated product generates the intermediate carries to be added to carry save
structure and a final carry Ci to be added to final adder. The product sign is defined by the input data Wij to be all MFij
positives.

S

Truncated Product

Final Adder

0

F*

QP/6
16x16 luma/chroma

Multiplexer-based
Shifter

15Pij

15Zij

QP/6
Multiplexer-based

Shifter

1/3<<qbits

14

Sign(Wij)
16x16 luma/chroma

S

Carry signals

Intra/Inter

Wij

16

MFij16
F*

K3K1 K2 K4 K5

Fig. 5. Scheme of forward quantizer for H.264/AVC

Proc. of SPIE Vol. 6590 65900Y-6

I

I

Q
Ifl

flA

1A
M

11

C

tii
hr

n
h4

tr
nh

I1
T

C
C

C
C

C
.c
C

00

C

-

Fi
g.

 6
. T

ru
nc

at
ed

 8
-r

ow
 B

oo
th

 m
ul

tip
lie

r i
n

ca
rr

y
sa

ve
 a

rit
hm

et
ic

.

Proc. of SPIE Vol. 6590 65900Y-7

-

3.1 Sign extension
The addition of partial products in this Booth multiplier must be done with sign bit extension, because it is a signed
multiplication. This sign extension is derived from expressions developed in 11,12 which leads to a reduction in area. A
formulation which reduces the number of full adders involved in sign extension is presented. For the shake of clarity,
Fig. 6 only depicts the extension of sign of each partial product for the particular scheme of multiplier of Fig. 4. Here,
Si,16 (i=0,1,2,..,6) represents the sign bits for each partial product and Di,j the data bit of partial product. The problem is
shown graphically in Fig. 6 where sign must be extended over 7 rows in order to be propagated. The sign SIG of these
rows can be written as the result of the following operation:

 ∑∑∑∑ ∑∑ ∑
==== == =

++++++=
29

28i
16,6

29

26i
16,5

29

24i
16,4

29

20i

29

22i
16,316,2

29

16i

29

18i
16,116,0 SSSSSS2SSIG (9)

Applying the following equivalences:

16,i16,i

j1k
k

ji

i

S1S

222

−=

−= +

=
∑ (10)

Then replacing Eq. (10) in (9), SIG becomes

)22)(S1(

)22)(S1()22)(S1()22)(S1(

)22)(S1()22)(S1()22)(S1(SIG

2830
16,6

2630
16,5

2430
16,4

2230
16,3

2030
16,2

1830
16,1

1630
16,0

−−+

+−−+−−+−−+

+−−+−−+−−=

 (11)

By reordering this equation, we get

QP/6
(i,j)∈

{(0,0),(2,0),(2,2),(0,2)}

(i,j)∈

{(1,1),(1,3),(3,1),(3,3)}
Other positions

 Number Booth dec. Number Booth dec. Number Booth dec.

0 13107 1 1 1 1 1 1 1 5243 0110 2 0 1 1 8066 0200 2 01 2

1 11916 1 1 0 1 2 1 1 0 4660 011 2 1 1 10 7490 02 1 1101 2

2 10082 1 2 2 1 2 2 1 2 4194 01002 2 1 2 6554 02 2 2 2 2 1 2

3 9362 1 2 11 2 11 2 3647 010 2 100 1 5825 012 1 1 001

4 8192 1 2 000000 3355 01 1 102 1 1 5243 011020 1 1

5 7282 02 1 02 1 02 2893 01 1 1 11 1 1 4559 0102 1 10 1

Table III. Multiplication factors MFij and their Booth decoding (2 means -2 and 1 means -1)

Proc. of SPIE Vol. 6590 65900Y-8

0

C

N

2

E
1J

0

50525252

D

CSLL w

-

()[]

28262422201816

28
16,2

26
16,5

24
16,4

22
16,3

20
16,2

18
16,1

16
16,0

30
16,616,516,416,316,216,116,0

2222222

2S2S2S2S2S2S2S

2SSSSSSS7SIG

−−−−−−−

−+++++++

+++++++−=

 (12)

But

 16
29

16i

i30 222 += ∑
=

 (13)

Then, SIG can therefore be written as:

()[]

2927252321191716

28
16,2

26
16,5

24
16,4

22
16,3

20
16,2

18
16,1

16
16,0

30
16,616,516,416,316,216,116,0

22222222

2S2S2S2S2S2S2S

2SSSSSSS6SIG

++++++++

++++++++

+++++++−=

 (14)

However, every 30th bit can be ignored, resulting in

2927252321191716

28
16,2

26
16,5

24
16,4

22
16,3

20
16,2

18
16,1

16
16,0

22222222

2S2S2S2S2S2S2SSIG

++++++++

+++++++=
 (15)

Fig. 6. Section of multiplier with the necessary sign extension of partial products to preserve the correctness of final result.

15,115,1

15,115,1

D1DCarry

D1DSum

=⋅=

=⊕=

Fig. 7. Half adder simplification applied to D1,15.

Proc. of SPIE Vol. 6590 65900Y-9

Ih
i

-
-

:E
':

.T
.L

:T
T

•—
..

-
--

flU
,

T
r.

-:

T

T

.
T

•T

.;T
.T

T
•.

 T
.!T

IL

T
 T

 ii

_'

...
.-

--
_!

-'
- -!
:4

*f
tT

 lit

1.
1%

)

—

=
it.

:
!II

T
I _

_r
T

.n
.

I.T
IT

.

rtw.iwkz.. ,, ii: 'ctrj!t E !1cr
IØ!1,
w M, m1, E'- A

=z-=-i !"øI
CI ,hr tt}iI

7:121

-

A further reduction is obtained if the independent terms of Eq. (15) are added to carry save structure. For example, the
bit 217 can be added to D1,15 such as is graphically shown in Fig. 7. As a result, half adders can be replaced by inverters.
Furthermore, same simplification is also extended to {219, D2,15}, {221, D3,15}, {223, F3}, {225, D5,15}, {227, D6,15} and {229,
D7,15}. Sign extension of Eq. (15) and simplification have been both used to reduce hardware in multiplier of Fig. 6.

3.2 Implementation and Comparisons
The architecture presented in Fig. 5 has been described in VERILOG as being easily transferable to a range of silicon
fabrication technologies. Moreover, it has been exhaustively verified by comparing the results with test patterns
generated using C and MATLAB codes. For the purpose of this research, this architecture has been synthesized by the
Synopsys Design Compiler with an AMS 0.35µm standard cell library (3.3 V). The implementation shown in Fig.1 has
also been synthesized using the same technology. Layouts of both implementations are shown in Figures 9.a) and 9.b).
Synthesis results are shown in Table IV. Clearly, the proposed scheme of Fig. 5 eliminates the need for computation of

ijW and a subsequent sign conversion, and the arithmetic operation is performed by a compact truncated Booth

multiplier. As a result, it reduces area by 26%, power by 32% and critical path delay by 21%. For comparative analysis,

 a) b)

Figure 9. Layout of a) proposed quantizer (area≈420µm2*500µm2) and b) from figure 1 (area=530µm2*530µm2).

 Techn. Pipeline Multipliers Number
of Cells Area (µm2) Power

(mW/MHz)
Critical

delay (ns)
Fig. 1 0.35µm No 1 1974 284500 0.62 16.9
Ours 0.35µm No 1 1423 210917 0.42 13.35

[5]
Area

optimized
0.18µm Yes

4 stages 1 1749 11.7

[5]
Speed

optimized
0.18µm No 16 39892 14.7

Table IV. Synthesis results of quantizer comparative analysis.

Proc. of SPIE Vol. 6590 65900Y-10

-

Table IV also includes the results presented in 5; only these reference describing quantifier implementations have been
found. Here, two quantizer architectures are proposed and their tradeoffs analyzed: 1) optimized for area, which is based
on a 4-stage pipelined architecture, and 2) optimized in speed, which is a purely combinational circuit. The latest
architecture is conceived to compute for every cycle 16 input data in parallel. Our proposed architecture reduces by 19%
the number of cells in comparison with the area optimized scheme and is slightly faster than the speed optimized scheme.

CONCLUSION
A modification of the quantization process and the use of a truncated multiplier have been proposed to implement
efficiently the forward quantization of H.264 suitable for VLSI implementation. The proposed architecture presents an
important reduction in hardware and power, and an increase in speed, which are achieved by combining a new algorithm
for computing Eq. (4) and a compact truncated Booth multiplier. Moreover, some hardware implementations for
transform and quantization require several quantizers operating in parallel, 4 in 13, 8 in 14 and 16 in 15. In these schemes,
efficient quantizer architectures are necessary and the proposed quantizer is highly suitable.

ACKNOWLEDMENTS

This research has been supported by funds of the Spanish Ministry of Science and Technology (TIC2006-12438).

REFERENCES

1. T. Wiegand, G.J. Sullivan, G. Bjøntegaard and A. Luthra, A. “Overview of the H.264/AVC video coding standard,”
IEEE Trans. on Circuits Syst. and Video Technology, vol. 13, 560-576 (July 2003)

2. I. Richardson, ‘H.264 and MPEG-4 Video Compression’, (Wiley, 2003).
3. [Online] Free on-line software available in http://iphome.hhi.de/suehring/tml/
4. H. Malvar, A. Hallapuro, M. Karczewicz and L. Kerofsky, “Low complexitiy transform and quantization in

H.264/AVC,” IEEE Trans. on Circuits Syst. and Video Tech., vol. 13, 598-603, (July 2003)
5. R.C. Kordasiewicz and S. Shirani, “On hardware implementation of DCT and quantization blocks H.264/AVC,”

Journal of VLSI Processing, 1-10, (January 2007)
6. O. Tasdizen and I. Hamzaoglu, “A high performance and low cost hardware architecture for H.264 transform and

quantization algorithms,” 13th European Signal Processing Conference, Sept. 4-8, (2005)
7. S. J. Jou and H.H. Wang, “Fixed-width multiplier for DSP application,”. Proc. 2000 Int. Conf. Computer Design

(ICCD), Austin, TX, 318-322 (Sept. 2000)
8. K.H. Lee and C.S. Rim, “A hardware reduced multiplier for low power design,”, 2nd IEEE Asia Pacific Conference

on ASICs, 331-334 (August 2000)
9. K.J. Cho, W.C. Lee, J.G. Chung an K.K. Parhi, “Design of low-error fixe-width modified Booth multiplier,” IEEE

Trans. on Very Large Scale Integration (VLSI) Sytems, vol. 12, 522-531 (May 2004)
10. T.B. Juang and S.F. Hsiao, “Low-error carry-free fixed-width multipliers with low-cost compensation circuits,”

IEEE Trans. on Circuits and Systems-II, vol. 52, 299-303 (June 2005)
11. O. Salomon, J.M. Green and K. Klar, “General Algorithms for a simplied addition of 2’s complement numbers,”

IEEE Journal of Solid_state Circuits, vol. 30 (7), 839-844 (July 1995)
12. Marco Annaratone, ‘Digital CMOS Circuit Design’, Kluwer Academic Publishers (Norwell, MA, USA 1986)
13. Y.W. Huang, B.Y. Hsieh, T.C. Chen and L.G. Chen, “Analysis, fast algorithm, and VLSI architecture design for

H.264/AVC intra frame coder,” IEEE Trans. on Circuits Syst. and Video Technology, vol. 15 (3), 378-401 (March
2005)

Proc. of SPIE Vol. 6590 65900Y-11

-

14. Z.Y. Cheng, C.H. Chen, B.D. Liu and J.F. Yang, “High throughput 2-D transform architectures for H.264 advanced
video coders,” 2004 IEEE Asia-Pacific Conf. on Circuits and Systems, 1141-1144 (Dec. 6-9, 2004)

15. C.P. Fan, “Fast 2-Dimensional 4x4 forward integer transform implementation for H.264/AVC,” IEEE Trans. On
Circuits and Systems, Vol. 53 (3), 174-177 (, March 2006)

16. O.L. MacSorley, “High-speed arithmetic in binary computers,” Proc. Of the IRE, vol. 49, 67-91 (Jan. 1961)

Proc. of SPIE Vol. 6590 65900Y-12

	SPIE Proceedings
	MAIN MENU
	Conferences
	Search
	Close

