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ABSTRACT 

The H.264/AVC (Advanced Video Codec) is the latest standard for video coding. It assumes a scalar forward quantizer 
performed at the encoder which can be implemented directly in integer arithmetic. An efficient architecture for the 
computation of forward quantization of H.264/AVC is presented in this paper. It uses a modification of the quantization 
operation which reduces the arithmetic operations, and a truncated Booth multiplier based on adaptative statistical 
approach, which reduces the hardware. The JM reference software’s C code has been re-written to analyze the effect of 
new algorithm and of truncated Booth multiplier. Simulations made up over popular test sequences used in video 
standardization show the validity of this approach. These results demonstrate that, at low QP, the PSNR is improved 
between a maximum of +0.81db and a minimum of 0.31db, with a slight increase in the Bit Rate being around 0.8%. 
Finally, a suitable architecture for VLSI implementation is presented, which reduces in a 26% the area, 32% the power 
and 21% the critical path delay in comparison with classical implementation. Moreover, it also reduces the area and 
increase the speed in comparison with architectures presented in references. 
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1. INTRODUCTION 
THE H.264/ is the latest standard for video coding established by the Joint Video Team between ITU-T VCEG and 
ISO/IEC MPEG1. H.264 presents a number of features different from the existing standards to support various 
applications. It assumes a scalar forward quantizer performed at the encoder by a simple scale-and-shift formula which 
can be implemented directly in integer arithmetic. The step size of the quantizer is controlled with the use of a 
quantization parameter (QP) which supports 52 different values, from 0 to 51, in increments of one. According to the 
notation in 2, each transform coefficient with value Wij (i,j= 0 to 3) is quantized in a coefficient Zij by the following 
equation: 
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ijijij
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where MFij is the multiplication factor made up of 6x3 arrays of 14-bit positive integers, qbits=15+floor(QP/6), >> 
indicates a binary shift right and F is a positive number which can be expressed as F=f << qbits, f being typically in the 
range 0 to 0.5. Eq. (1) is similar to that used for encoding the 16x16 Intra prediction mode and 4x4 chroma components. 
In this case, MFij is replaced by MF0,0, F by 2F and qbits by qbits+1. Eq. (1) has been implemented in JM reference 
software which is available on-line in 3. In JM reference, f has assigned two values, 1/3 for Intra blocks and 1/6 for Inter 
blocks. 
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The forward quantization is not specified in the standard H.264. This allows developers some flexibility in choosing a 
quantizer design4. However, some hardware implementations, as proposed in 5,6, apply directly the quantization 
expressions of Eq. (1) with any kind of optimization as shown in Fig 1. In this case, the ABS module implements the 
absolute value of Wij, the multipliy-add unit calculates the term ( )FMFWP ijijij +⋅=  and the final modules make the 

right-shift and assign to Zij the same sign of Wij. This paper presents a more efficient quantizer architecture for the 
computation of forward quantization of H.264. In this architecture, the ABS and SIGN modules are not necessary and an 
adaptive truncated Booth multiplier is used to reduce hardware. 

 

2. MODIFIED QUANTIZATION OPERATION 

In Eq. (1), module ijW  is necessary because the arithmetic operation “>> qbits“ makes an integer division with 

truncation of the result toward zero which causes errors for Wij < 0. For example, the integer -3 in a 4-bit two’s-
complement representation is 1101. The operation -3 >>2 should be 0, but 1101>>2 gives -1. To resolve this error, 1<<n 
must be added to the negative number, n being the number of right shifts. Thus, (1101+(1<<2)) >> 2 is 0. Note that this 
does not work properly when all the less significant n bits are zero, or in a similar way, when the number is negative and 
power of two. For example, if n=2 and the number is -4, then (1100 +(1<<2))>>2 is 0 and it should be -1 (1111). 

This operation allows ijW  to be eliminated from Eq. (1) assigning to F the same sign as Wij. To do this, a term 1<<qbits 

must be added to F when Wij<0, resulting in 

  -F+1<<qbits=(1-f)<<qbits (2) 

Then, Eq (1) can be directly implemented as follows: 

 

 ( ) qbits*FMFWZ ijijij >>+⋅=  (3) 

where 
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Fig. 1. Quantizer architecture 
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Therefore, ijW  and a subsequent sign conversion should not be necessary in Eq. (3) which leads to a more efficient 

hardware implementation than that proposed in Eq. (1). However, F* must be implemented from Eq. (4). Table I shows 
the values of f and the definition of F* for different options. F* can be readily generated from number 1/3 and shifted 
operations. It is noted that f is always positive to be 1/3 or 1/6 and no additions are necessary. 

The operation of Eq. (3) provides erroneous results when all less significant qbits in Zij are zero; it means that Zij is 
negative and power of two. The probability of this event is 2-qbit and, in the worst case (qbits=15), its value is 

515 1052.165536/12 −− ⋅== . Simulations made with real sequences have proven that this error has an insignificant 
effect in quantization process and, therefore, the proposed method is valid. 

 

2.1 Truncated Booth multiplier 
In Eq. (3), the arithmetic operation WijMFij+F* can be implemented in a single multiplier and the shift operation “>> 
qbits” is a truncated operation equivalent to eliminating the less significant qbits of the multiplier. Both operations can be 
efficiently implemented in a truncated multiplier. We focus on the modified Booth’s algorithm which is the most popular 
approach for implementing fast multipliers using parallel encoding. 

Sign f Definition of F* 
18-bit width of F* 

(qbits=15) 
Wij≥0 1/3 1/3 << qbits 000010101010101010 

In
tr

a 

Wij<0 1-1/3=2/3 1/3 << (qbits+1) 000101010101010101 

Wij≥0 1/6 1/3 << (qbits-1) 000001010101010101 
In

te
r 

Wij<0 1-1/6=5/6 1/3 << qbits+1<<(qbits-1) 000110101010101010 
 

Table I. Specification of F* 

 

Fig. 2.  Truncated 8x8 Booth radix-4 multiplier scheme. 
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Kj 
FOREMAN 

QCIF 
30 frames 

MOBILE 
CIF 

300 frames 

PARIS 
CIF 

1065 frames 

TEMPETE 
CIF 

300 frames 

HIGHWAY 
CIF 

2000 frames 

j PSNR BR PSNR BR PSNR BR PSNR BR PSNR BR 

1 54,11 4882 53,64 20326 53,67 16735 53,96 19480 54.92 16027 

2 58,29 4463 57,88 19715 57,83 15244 58,45 18850 60.50 15820 

3 65,27 4213 64,66 19090 64,68 14653 65,51 17721 69.60 15448 

4 65,30 4107 65,87 18719 65,44 14286 66,65 17590 69.98 15335 

5 65,95 4132 65,97 18803 65,61 14336 66,91 17494 70.97 15357 

6 65,53 4122 65,95 18779 65,22 14234 66,66 17453 70.56 15307 

7 65,36 4107 65,6 18741 65,12 14248 66,48 17427 70.10 15362 

8 65,39 4106 65,75 18763 65,11 14239 66,67 17442 70.21 15352 

9 65,38 4113 65,69 18751 65,12 14239 66,64 17480 70.30 15367 

10 65,38 4114 65,65 18751 65,11 14244 66,60 17461 70.16 15348 

11 65,38 4114 65,65 18751 65,11 14244 66,60 17461 70.16 15348 

12 65,38 4114 65,65 18751 65,11 14244 66,60 17461 70.16 16027 

13 65,38 4114 65,65 18751 65,11 14244 66,60 17461 70.16 15348 

14 65,38 4114 65,65 18751 65,11 14244 66,60 17461 70.16 15348 

15 65,38 4114 65,65 18751 65,11 14244 66,60 17461 70.16 15348 
PSNR means Peak Signal to Noise Ratio (in dB) and BR means Bitrate (in kbit/s) 

Table II. Rate distorsion performance for QP=0 using different truncated product. 
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Fig. 3. Rate-distortion curves for j=5 and j=15 (no truncation). 
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Fig. 2 shows a simple representation of an 8x8 truncated Booth radix-4 multiplier. Each dot is a placeholder for a single 
bit obtained by a partial product generation circuit and S is the sign conversion bit. All elements can be {0, 1} depending 
on the result of a partial product selector. In this case, the multiplier’s output has been truncated in 7 bits. Thus, partial 
products are divided into a main product (MP) and a truncated product (TP). The contribution of the TP to the MP is 
made through the sum of all carry signals generated from the TP which are expressed as: 

 i
7

1i
i 2KsignalsCarry −

=
∑=  (5) 

where Ki is the sum of all column dots. This contribution is relatively low in comparison with the MP. Therefore, part of 
the TP circuitry can be eliminated in order to reduce area and increase the speed of the multiplier. However, an error 
would be introduced in the resulting product. To reduce this error, several refinements applied to a Booth multiplier have 
been proposed7-10. However, simulations made with these approaches have proven that the adaptive statistical analysis 
presented in 7 gives the best results. This approach allows the following approximation to be derived: 

 1j
j

j
j

i
7

ji
i 2K2K22K +−−−

=
=≈∑  (6) 

For example, Eq. (5) can be approximated for j=4 as: 

 ( ) 3
43

2
2

1
1 2KK2K2KsignalsCarry −−− +++≈  (7) 

In this case, the low-error Booth multiplier implementation should only require the columns K1, K2, K3, the dots of K4 
being added to K3. 

 

2.2 Simulation results 
The JM reference software’s C code has been re-written to analyze the effect of Eqs. (3) and (4) and of the truncated 
Booth multiplier for different values of k. Table II shows the simulation results in terms of Peak Signal to Noise Ratio or 
PSNR (in dB) and bitrate or BR (in kbit/s) for different sequences. The majority of these sequences are popular test 
sequences used in video standardization. This analysis has been made considering QP=0 which corresponds to maximum 
bit-rate.  Clearly the best PSNR results are obtained for k=5. In this case, the PSNR is improved by a maximum of 
+0.81dB for Highway sequences to a minimum of +0.31dB for Tempete sequences. No explication is found to justify 
this improvement in PSNR. The only justification for these results is related to the adaptive error-compensation method 
used in the multiplier which is based on the statistical approach of partial product bits of adjacent columns. However, this 
improvement in PSNR is relayed with a slight increase in the lower Bit Rate to 0.8%. The parameter qbits depends 
linearly on QP/6. For higher QP, the error introduced by the truncated Booth multiplier is drastically reduced as a 
consequence of the shifting operation in Eq. (1). Fig. 3 shows the rate-distortion curves for different sequences generated 
for j=5 and for j=15 (no truncated multiplication). Note that only a very slight difference is detected at low QP, the rest 
of the curve fitting perfectly. 

 

3. QUANTIFIER ARCHITECTURE 
Fig. 5 shows an efficient quantizer architecture for H.264 based on a truncated 8-row Booth multiplier. The Booth 
algorithm is a common approach to the VLSI design of high speed multipliers because the number of additions in 
multiplication is halved. The modified Booth algorithm proposed by the MacSorley 16 is maybe the most used in 
hardware implementation because it is fast and requires less area, and their regular structure facilitates efficient 
implementation in VLSI. In Fig. 5, the truncated Booth multiplier computes on the same carry save structure the 
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expression derived from Eq. (1), PPij=(Wij MFij+F*)<<15. The 17 different values of MFij (note that 5243 is duplicated) 
used in the H.264 reference are listed in Table III. The maximum value of PPij is computed when MFij =13107 resulting 
in PPij ∈[-13107, 13106] which it can be described in 15-bit width. The output multiplexer-based shifter allows 
additional right shift from 0 to a maximum of 8, according to the value of QP/6 and the 16x16 luma/chroma mode. In 
this scheme, the input data Wij is of 16-bit width, MFij is of 14-bit (MFij>0) F* of 14-bit (F* > 0) and output data Pij is of 
15-bit arranged for qbits=15. A multiplexer-based shifter is used to generate F* from the term 1/3<<qbits. 

A detailed scheme of truncated Booth multiplier used in quantized is shown in Fig. 6. It is composed by Booth encoders 
from groups the three bits, partial-product circuit (labeled as SEL), carry save structure based on full adders (FA) and 
half adders (HA), and a final adder. In Booth encoders, MFij is partitioned into overlapping groups of three bits and each 
group is converted into a set of signed digits {±2, ±1, 0} specified by three signals {M, 2M, S}k. These signals select a 
single partial product Dkm from Wk, (Wk={Wij}k in Fig. 6) as 

 ( ) kkjkikm SM2WMWD ⊕⋅+⋅=  (8) 

 

 

Table III shows the Booth decoding for the multiplication factors MFij. In all of them, the most significative digit is 0 or 
1. This imply that the last row of multiplier is simplified in order to reduce hardware necessary to be only one signal, 
{M}k. In scheme of this multiplier, the truncated product generates the intermediate carries to be added to carry save 
structure and a final carry Ci to be added to final adder. The product sign is defined by the input data Wij to be all MFij 
positives.  
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Fig. 5. Scheme of forward quantizer for H.264/AVC 
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3.1  Sign extension 
The addition of partial products in this Booth multiplier must be done with sign bit extension, because it is a signed 
multiplication. This sign extension is derived from expressions developed in 11,12 which leads to a reduction in area. A 
formulation which reduces the number of full adders involved in sign extension is presented. For the shake of clarity, 
Fig. 6 only depicts the extension of sign of each partial product for the particular scheme of multiplier of Fig. 4. Here, 
Si,16 (i=0,1,2,..,6) represents the sign bits for each partial product and Di,j the data bit of partial product. The problem is 
shown graphically in Fig. 6 where sign must be extended over 7 rows in order to be propagated. The sign SIG of these 
rows can be written as the result of the following operation: 

 ∑∑∑∑ ∑∑ ∑
==== == =

++++++=
29

28i
16,6

29

26i
16,5

29

24i
16,4

29

20i

29

22i
16,316,2

29

16i

29

18i
16,116,0 SSSSSS2SSIG  (9) 

Applying the following equivalences:  

 

16,i16,i

j1k
k

ji

i

S1S

222

−=

−= +

=
∑  (10) 

Then replacing Eq. (10) in (9), SIG becomes  

 
)22)(S1(

)22)(S1()22)(S1()22)(S1(

)22)(S1()22)(S1()22)(S1(SIG

2830
16,6

2630
16,5

2430
16,4

2230
16,3

2030
16,2

1830
16,1

1630
16,0

−−+

+−−+−−+−−+

+−−+−−+−−=

 (11) 

By reordering this equation, we get 

QP/6 
(i,j)∈  

{(0,0),(2,0),(2,2),(0,2)} 

(i,j)∈  

{(1,1),(1,3),(3,1),(3,3)} 
Other positions 

 Number Booth dec. Number Booth dec. Number Booth dec. 

0 13107 1 1 1 1 1 1 1 5243 0110 2 0 1 1  8066 0200 2 01 2  

1 11916 1 1 0 1 2 1 1 0 4660 011 2 1 1 10 7490 02 1 1101 2  

2 10082 1 2 2 1 2 2 1 2  4194 01002 2 1 2  6554 02 2 2 2 2 1 2  

3 9362 1 2 11 2 11 2  3647 010 2 100 1  5825 012 1 1 001 

4 8192 1 2 000000 3355 01 1 102 1 1  5243 011020 1 1  

5 7282 02 1 02 1 02 2893 01 1 1 11 1 1 4559 0102 1 10 1  
 

Table III. Multiplication factors MFij and their Booth decoding ( 2  means -2 and 1  means -1) 
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But 

 16
29

16i

i30 222 += ∑
=

 (13) 

Then, SIG can therefore be written as: 

 
( )[ ]

2927252321191716

28
16,2

26
16,5

24
16,4

22
16,3

20
16,2

18
16,1

16
16,0

30
16,616,516,416,316,216,116,0

22222222

2S2S2S2S2S2S2S

2SSSSSSS6SIG

++++++++

++++++++

+++++++−=

 (14) 

However, every 30th bit can be ignored, resulting in 

 
2927252321191716

28
16,2

26
16,5

24
16,4

22
16,3

20
16,2

18
16,1

16
16,0

22222222

2S2S2S2S2S2S2SSIG

++++++++

+++++++=
 (15) 

 

 

 

Fig. 6. Section of multiplier with the necessary sign extension of partial products to preserve the correctness of final result. 
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Fig. 7. Half adder simplification applied to D1,15. 
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A further reduction is obtained if the independent terms of Eq. (15) are added to carry save structure. For example, the 
bit 217 can be added to D1,15 such as is graphically shown in Fig. 7. As a result, half adders can be replaced by inverters. 
Furthermore, same simplification is also extended to {219, D2,15}, {221, D3,15}, {223, F3}, {225, D5,15}, {227, D6,15} and {229, 
D7,15}. Sign extension of Eq. (15) and simplification have been both used to reduce hardware in multiplier of Fig. 6. 

 

3.2 Implementation and Comparisons 
The architecture presented in Fig. 5 has been described in VERILOG as being easily transferable to a range of silicon 
fabrication technologies. Moreover, it has been exhaustively verified by comparing the results with test patterns 
generated using C and MATLAB codes. For the purpose of this research, this architecture has been synthesized by the 
Synopsys Design Compiler with an AMS 0.35µm standard cell library (3.3 V). The implementation shown in Fig.1 has 
also been synthesized using the same technology. Layouts of both implementations are shown in Figures 9.a) and 9.b). 
Synthesis results are shown in Table IV. Clearly, the proposed scheme of Fig. 5 eliminates the need for computation of 

ijW  and a subsequent sign conversion, and the arithmetic operation is performed by a compact truncated Booth 

multiplier. As a result, it reduces area by 26%, power by 32% and critical path delay by 21%. For comparative analysis, 

   

 a) b) 

Figure 9. Layout of a) proposed quantizer (area≈420µm2*500µm2) and b) from figure 1 (area=530µm2*530µm2). 

 

 Techn. Pipeline Multipliers Number 
of Cells Area (µm2) Power 

(mW/MHz) 
Critical 

delay (ns) 
Fig. 1 0.35µm No 1 1974 284500 0.62 16.9 
Ours 0.35µm No 1 1423 210917 0.42 13.35 

[5] 
Area 

optimized 
0.18µm Yes 

4 stages 1 1749   11.7 

[5] 
Speed 

optimized 
0.18µm No 16 39892   14.7 

 
Table IV. Synthesis results of quantizer comparative analysis. 
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Table IV also includes the results presented in 5; only these reference describing quantifier implementations have been 
found. Here, two quantizer architectures are proposed and their tradeoffs analyzed: 1) optimized for area, which is based 
on a 4-stage pipelined architecture, and 2) optimized in speed, which is a purely combinational circuit. The latest 
architecture is conceived to compute for every cycle 16 input data in parallel. Our proposed architecture reduces by 19% 
the number of cells in comparison with the area optimized scheme and is slightly faster than the speed optimized scheme. 

CONCLUSION 
A modification of the quantization process and the use of a truncated multiplier have been proposed to implement 
efficiently the forward quantization of H.264 suitable for VLSI implementation. The proposed architecture presents an 
important reduction in hardware and power, and an increase in speed, which are achieved by combining a new algorithm 
for computing Eq. (4) and a compact truncated Booth multiplier. Moreover, some hardware implementations for 
transform and quantization require several quantizers operating in parallel, 4 in 13, 8 in 14 and 16 in 15. In these schemes, 
efficient quantizer architectures are necessary and the proposed quantizer is highly suitable. 
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