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a b s t r a c t

In this work novel-efficient implementations to convert a two’s complement binary number into its

canonic signed digit (CSD) representation are presented. In these CSD recoding circuits two signals, H
and K, functionally equivalent to two carries are described. They are computed in parallel reducing the

critical path and they possess some properties that lead to a simplification of the algebraic expressions

minimizing the overall hardware implementation. As a result, the proposed circuits are highly efficient

in terms of speed and area in comparison with other counterpart previous architectures. Simulations of

different configurations made over standard-cell implementations show an average reduction of about

55% in the delay and 29% in the area for a ripple-carry scheme, 47% in the delay and 17% the area in a

carry look-ahead scheme, and 36% in the delay and 31% the area in a parallel prefix scheme.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The canonical signed digit (CSD) representation is one of the
existing signed digit (SD) representations with unique features
which make it useful in certain DSP applications focusing on low-
power, efficient-area and high-speed arithmetic [1]. The CSD code
is a ternary number system with the digit set {1̄ 0 1}, where 1̄
stands for 1. Given a constant, the corresponding CSD representa-
tion is unique and has two main properties: (1) the number of
nonzero digits is minimal, and (2) no two consecutive digits are
both nonzero, that is, two nonzero digits are not adjacent. The
first property implies a minimal Hamming weight, which leads to
a reduction in the number of additions in arithmetic operations.
The second property provides its uniqueness characteristic. How-
ever, if this property is relaxed, this representation is called the
minimal signed digit (MSD) representation, which has as many
nonzeros as the CSD representation, but which provides multiple
representations for a constant [2,3].

CSD representation has proven to be useful for the design and
implementation of digital filters such as the area-efficient program-
mable FIR digital filter architecture in Ref. [4], Chebyshev FIR filter
design with some constrains in terms of hardware and frequency
domain in Ref. [5], low-complexity algorithms for design filters in
Ref. [6], 2D FIR and IIR filter design in Ref. [7] and the digit-serial
CSD filter FPGA architecture for image conversion proposed in
Ref. [8]. It has also been used in the reduction of the complexity
ll rights reserved.
of digital filters [9–11] or matrix multipliers [12] applying shared
subexpression methods. CSD code has been largely exploited to
implement efficient multipliers [13–15]. It enables the reduction of
the number of partial products that must be calculated fast, and
also low-power consumption and low area structure of a multiplier
for DSP applications [16] or self-timed circuits [17]. In fixed-width
multipliers, CSD succeeded in reducing the mean square error [18]
or the compensation error using efficient sign extension [19].
Finally, other applications of CSD coding in reversible image color
transforms [20], Montgomery exponentiation [21,22] or vector
rotational CORDIC [23] have been proposed.

Many researchers have addressed the question of CSD recoding
to convert two’s complement into CSD code. Already in 1960,
Reitwiesner proposed an algorithm for converting two’s comple-
ment numbers to a minimum weight radix-2 (binary) signed digit
representation [24]. From the practical point of view, the traditional
approach to generate the CSD representation uses look-up table
[25,26]. Here, there is a great similarity in the carry definition used
in CSD recoding and in conventional adders, which suggest that the
implementation of fast CSD converters should be based on well-
known structures of classical adders. However, some algorithms to
convert two’s complement into CSD numbers try to reduce the
computational complexity [27,28], but are not suitable for hard-
ware implementation. Other hardware approaches propose the by-
pass method [29], fast carry look-ahead circuits [30] or parallel
prefix schemes [31,32] to reduce hardware but they only focus on
carry optimization without considering the overall CSD recoding.
All of these algorithms generate the CSD code recursively from the
least significant bit (LSB) to the most significant bit (MSB). How-
ever, in some applications, such as the computation of exponentia-
tion, the conversion from MSB to LSB brings some advantages.

www.elsevier.com/locate/mejo
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Table 1
Two most encodings used in the binary representation of a CSD digit (1̄ stands for

�1). In this paper, encoding 2 is used.

Encoding 1 Encoding 2

yi ys
i yd

i ys
i yd

i

0 00 00

1 01 01

¯
1 11 10

0 0 1 0 1 0 1 1 1

0 0 1 0 1 1 0 0 1

0 0 1 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

Fig. 1. Conversion process from binary to CSD code.
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Okeya et al. [33] proposed an algorithm to carry out this conversion
but it requires additional memory to store some precomputed
elements. Indeed, efficient MSB-to-LSB algorithms yield a MSD
representation [34,35] but not a CSD one because of having
consecutive nonzero digits.

This paper presents novel, efficient standard cell-based imple-
mentations to convert a two’s complement binary number into its
CSD representation based on two signals, H and K, functionally
equivalent to two carries. These signals were already defined in
the implementation of 3X terms for radix-8 encoding [36], but
here they are used for the CSD recoding in a more resourceful
way. Implementations in a 130 nm standard cell CMOS technol-
ogy of previously published architectures have been compared
with the proposed scheme demonstrating that the circuits are
highly efficient in area and speed. The remainder of this paper is
organized as follows. In Section 2, a brief introduction and
definitions related to CSD recoding are presented. New compact
algebraic expressions for optimal CSD recoding in terms of signals
H and K and their application in the efficient implementation of
CSD recoders for different configurations are described in Section
3. Simulations and comparisons are listed in Section 4. Finally, the
conclusions are stated in Section 5.
2. CSD recoding

The CSD representation of an integer number is a signed and
unique digit representation that contains no adjacent nonzero
digits. Given an n-digit binary unsigned number X¼{x0, x1, y,
xn�1} expressed as

X ¼
Xn�1

i ¼ 0

xiU2i, xiAf0,1g ð1Þ

then the (nþ1)-digit CSD representation Y¼{y0, y1,y, yn} of X is
given by

Y ¼
Xn�1

i ¼ 0

xiU2i
¼
Xn

i ¼ 0

yiU2i, yiAf1,0,1g ð2Þ

The condition that all nonzero digits in a CSD number are
separated by zeros implies that

yiþ1Uyi ¼ 0, 0r irn�1 ð3Þ

From this property, the probability that a CSD n-digit has a
nonzero value [13,26] is given by

Pð9yi9¼ 1Þ ¼
1

3
þ

1

9n
1� �

1

2

� �n� �
ð4Þ

As n becomes large, this probability tends to 1/3 while this
probability becomes 1/2 in a binary code. Using this property, the
number of additions/subtractions is reduced to a minimum in
multipliers [14–17] and, as a result, an overall speed-up can be
achieved.

The adoption of a ternary number system adds some flexibility
to the CSD representation, since it allows the number of nonzero
digits to be minimized, but it requires that each digit yi must be
encoded over two bits {ys

i , yd
i }. Table 1 shows the two most

frequently used encodings in practice [1]. Encoding 1 can be
viewed as a two’s representation. However, encoding 2 is prefer-
able since it satisfies the following relation

yi ¼ yd
i �ys

i ð5Þ

where ys
i represents the sign bit and yd

i the data bit. This encoding
also allows an additional valid representation of 0 when ys

i ¼1 and
yd

i ¼1, which is useful in some arithmetic implementations. In the
whole paper, this encoding is used.
Hashemian [27] presented the binary coded CSD (BCSD)
number to avoid extra data word representation. The BCSD
recoding is based on a simple binary representation B¼{b0,
b1,y,bn�1} of a CSD code, which uses the same number of bits
as the original two’s complement representation. It takes advan-
tage of the CSD property, in which no two adjacent digits can both
be nonzero, to assign the next position of each nonzero CSD digit
as sign bit while maintaining the same size data word. Thus, if the
bit i in a CSD code is nonzero, yia0 (which means that yiþ1¼0),
then the bit i is nonzero in the BCSD code, bia0, and the
following bit biþ1 acts as a sign bit: biþ1¼0 means yi is positive
and biþ1¼1 means yi is negative. As a result, yi¼0 is encoded as
bi¼0, yi¼1 as biþ1bi¼01 and yi¼ 1̄ as biþ1bi¼11. A simple
conversion between a CSD coding and BCSD coding is

bi ¼ yd
i þys

i�1

biþ1 ¼ yd
iþ1þys

i ð6Þ

Since this conversion can be obtained by a simple operation, in
this paper the two-bit encoding representation is used to make its
reading and understanding easier, and, without loss of generality,
it can be straightforwardly extended to other representations.

The conversion from a binary representation to CSD represen-
tation is mostly based on the following identity

2iþ j�1
þ2iþ j�2

þ . . .þ2i
¼ 2iþ j

�2i
ð7Þ

This means that a string of 1s can be replaced by a 1, followed
by 0s, followed by a 1̄. Isolated 1s are left unchanged, but isolated
0s are re-examined in such a way that, after applying Eq. (7), pairs
of type 11̄ are changed to 01. For example, the binary number
(001010111)2 is equivalent in a CSD representation to 0101̄01̄001̄;
the encoding process is graphically shown in Fig. 1. Traditionally,
this encoding is performed from LSB to MSB using two adjacent
bits and a carry signal according to the recoding algorithm shown
in Table 2 [25,26]. Here, the carry-out ci¼1 if and only if there are
two of three 1s among the three inputs xiþ1, xi and ci�1, that is

ci ¼ xixiþ1þðxiþxiþ1Þci�1, being c�1 ¼ 0 ð8Þ

The variable D¼{d0, d1,y,dn�1}, which flags all nonzero digits
in the CSD representation, is defined as

di ¼ xi � ci�1 ð9Þ
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Since yi takes one of the three values {0, 1, 1̄}, two bits {ys
i , yd

i }
are necessary to encode it, which are defined from Table 2 as

yd
i ¼ xiþ1ðxi � ci�1Þ ¼ xiþ1di

ys
i ¼ xiþ1ðxi � ci�1Þ ¼ xiþ1di

(
ð10Þ

For the sake of clarity, the following example describes the
different signals used in the CSD recoding:

X ¼ 001010111

Carry¼ 011111110

D¼ 010101001

Y ¼ 010101001

In the case of a n-bit two’s complement binary number X, the
CSD representation is given by

Y ¼�xn�1U2n�1
þ
Xn�2

i ¼ 0

xiU2i
¼
Xn�1

i ¼ 0

yiU2i
ð11Þ

here, only n CSD digits are necessary as the value of the binary
number is limited to [�2n, 2n�1]. Negative integers in CSD can be
obtained trivially from their positive counterpart by changing the
signs of all nonzero digits. For example, the CSD code 0101
represents the decimal number 3, while 0101 represents the
number �3. Therefore, the conversion of a negative n-digit two’s
complement binary number X into its CSD representation can be
performed from the well-known property �X ¼Xþ1. Then refor-
mulating the former equations for the case of a binary number X in
a two’s complement representation, the conversion into its CSD
representation is given by

ti ¼ xi � xn�1, ion�1 ð12Þ

c0i ¼ tiþ1tiþðtiþ1þtiÞc
0
i�1, being c0�1 ¼ xn�1 ð13Þ

where xn�1 represents the sign of X. From (13), c’i propagates ci or
its complement depending on sign of the X because of all inputs are
computed according to (12). Therefore, another way to express c’i is

c0i ¼ xn�1 � ci ð14Þ
Table 2
CSD coding.

xiþ1 xi ci�1 yi ci Comments

0 0 0 0 0 String of 0s

0 0 1 1 0 End of 1s

0 1 0 1 0 A single 1

0 1 1 0 1 String of 1s

1 0 0 0 0 String of 0s

1 0 1 1̄ 1 A single 0

1 1 0 1̄ 1 Beginning of 1s

1 1 1 0 1 String of 1s

Fig. 2. Schematic circuit for the conversion of a bin
Applying these definitions, we get

di ¼ ti � c0i�1 ¼ ðxi � xn�1Þ � ðxn�1 � ci�1Þ ¼ xi � ci�1 ð15Þ

This means that the definition of D is independent of sign X. In
a similar way, the expression of Y is the same as that in (10) as

yd
i ¼ t iþ1di ¼ t iþ1ðti � c0i�1Þ ¼ ðxiþ1 � xn�1Þððxi � xn�1Þ � c0i�1Þ ¼ xiþ1di

ys
i ¼ tiþ1di ¼ tiþ1ðti � c0i�1Þ ¼ ðxiþ1 � xn�1Þððxi � xn�1Þ � c0i�1Þ ¼ xiþ1di

(

ð16Þ

Fig. 2 shows the circuit to convert a n¼6 digit binary number
into its CSD representation according to Eqs. (8)–(10), valid for
both unsigned and two’s complement binary numbers. The only
difference arises in the last CSD digit. By introducing an extra sign
extension, xn¼0 for unsigned numbers and xn¼xn�1 for two’s
complement numbers, the last section changes depending on the
sign of X in the following general expression:

For an unsigned number X

yd
n�1 ¼ dn�1

ys
n�1 ¼ 0

yd
n ¼ dn ¼ cn�1 ¼ xncn�2

ys
n ¼ 0

8>>>>><
>>>>>:

ð17Þ

For a signed number X
yd

n�1 ¼ xndi ¼ xn�1cn�2

ys
n�1 ¼ xndi ¼ xn�1cn�2

(
ð18Þ

For unsigned X, nþ1 CSD digits are necessary to represent that
binary number. However, as it is a positive number the two MSB
digits of CSD are also positives and, indeed, only their positive
data parts are necessary as shown in Eq. (17); the negative part is
always zero. For signed numbers, only n CSD digits are used and
the last digit is computed according to Eq. (18). As can be seen in
Fig. 2, the critical path of the circuit is fixed by the propagation of
the carry signal, in a similar way to a conventional ripple-carry
adder. There is a clear similarity between the carry definition in
conventional adders and the definition of that carry in Eq. (8). This
suggests that implementation of fast CSD converters should be
based on fast well-known carry look-ahead structures used in
addition.
3. New CSD recoding

In the definition of carry in Eq. (8), two adjoining carries share
the same input variable. This means that the same input xi is used
in the generation of both carries ci�1 and ci. This characteristic
allows the algebraic expressions of carry generation to be simpli-
fied in order to obtain efficient circuits.
ary number into its CSD representation (n¼6).
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Let X be a n-digit binary number. If we define two signals,
H¼{h0,h1,y,hn�1} and K¼{k0,k1,y,kn�1}, as

hi ¼
xihi�1, for i odd

xiþhi�1, for i even

(
ð19Þ

ki ¼
xiþki�1, for i odd

xiki�1, for i even

(
ð20Þ

with h�1¼0 and k�1¼0. Then ci can be formally expressed in
term of odd or even index i by means of the following recursive
relation:

ci ¼
hiþxiþ1ki ¼ hiþkiþ1, for i odd

xiþ1hiþki ¼ hiþ1þki, for i even

(
ð21Þ

A demonstration by induction of this equation can be found in
appendix A of Ref. [36]. Moreover, hi and ki have the following
properties:

For i odd

aÞ hiki ¼ hi

bÞ hiki ¼ 0

cÞ hiþki ¼ 1

dÞ hiþki ¼ ki

8>>>><
>>>>:

ð22Þ

For i even

aÞ hiki ¼ ki

bÞ hiki ¼ 0

cÞ hiþki ¼ 1

dÞ hiþki ¼ hi

8>>>><
>>>>:

ð23Þ

Demonstrations of these properties can be found in appendix B
of Ref. [36]. However, using these properties, Eq. (21) can be
transformed into another compact form as

ci ¼
hiþxiþ1ki ¼ hiþ1ki, for i odd

xiþ1hiþki ¼ hikiþ1, for i even

(
ð24Þ

For the sake of clarify, the definition of the carry based on H
and K signals for n¼4 are described. From Eq. (8), we get

c0 ¼ x1x0

c1 ¼ x1x2þðx1þx2Þc0 ¼ x1x0þx2x1

c2 ¼ x2x3þðx2þx3Þc1 ¼ x3ðx2þx1x0Þþx2x1

c3 ¼ x3x4þðx3þx4Þc2 ¼ x3ðx2þx1x0Þþx4ðx3þx2x1Þ

From the recursive property in the definition of signals H and
K of Eqs. (19) and (20), it is straightforward to obtain the
following expressions

h�1 ¼ 0

h0 ¼ x0þh�1 ¼ x0

h1 ¼ x1h0 ¼ x1x0

h2 ¼ x2þh1 ¼ x2þx1x0
Fig. 3. Proposed circuit for the conversion of a bina
h3 ¼ x3h2 ¼ x3ðx2þx1x0Þ

h4 ¼ x4þh3 ¼ x4þx3ðx2þx1x0Þ

k�1 ¼ 0

k0 ¼ x0k�1 ¼ 0

k1 ¼ x1þk0 ¼ x1

k2 ¼ x2k1 ¼ x2x1

k3 ¼ x3þk2 ¼ x3þx2x1

k4 ¼ x4k3 ¼ x4ðx3þx2x1Þ

Therefore, from Eqs. (21) and (24), the carry can be expressed
in terms of those signals as

c0 ¼ h1þk0 ¼ x1x0þ0¼ h0k1 ¼ x0x1

c1 ¼ h1þk2 ¼ x1x0þx2x1 ¼ h2k1 ¼ ðx2þx1x0Þx1

c2 ¼ h3þk2 ¼ x3ðx2þx1x0Þþx2x1 ¼ h2k3

c3 ¼ h3þk4 ¼ x3ðx2þx1x0Þþx4ðx3þx2x1Þ ¼ h4k3

The variable D in Eq. (9) can be directly obtained from H and K
without it being necessary to generate ci. If i is odd, this means
that i�1 is even, we obtain

di ¼ xi � ci�1 ¼ xici�1þxici�1 ¼ xiUxihi�1þki�1þxiðxihi�1þki�1Þ

¼ xiðhi�1þki�1 Þþxiki�1 ð25Þ

In Eq. (23), we get hi�1þki�1¼hi�1 and hi�1ki�1 ¼ 0. Then,
applying these properties to Eq. (25), it can be transformed as

di ¼ xihi�1þxiki�1 ¼ ðxiþhi�1Þðxiþki�1Þ ¼ xihi�1 ðxiþki�1Þ ¼ hiki

ð26Þ

For i even, and likewise, we obtain

di ¼ hiki ð27Þ

However, the variable Y for the CSD recoding in terms of
signals H and K can be expressed as

yd
i ¼ xiþ1di ¼

xiþ1hiki ¼ hiþ1ki, for i odd

xiþ1hiki ¼ hikiþ1, for i even

(
ð28Þ

ys
i ¼ xiþ1di ¼

xiþ1hiki ¼ hikiþ1, for i odd

xiþ1hiki ¼ hiþ1ki, for i even

(
ð29Þ

The proposed equations based on signals H and K, which are
functionally equivalent to two carries, lead to an efficient hard-
ware implementation of CSD recoders. Fig. 3 shows the proposed
implementation for the conversion of a 5-bit binary number X
into its equivalent CSD representation. These signals can be
computed by two parallel and independent paths of simple AND
and OR gates in a ripple configuration. As a result, the critical path
is reduced and the hardware implementation is minimized in
comparison with other structures derived from conventional
adders. The main body of this circuit is made up of alternative
ry number into its CSD representation (n¼6).
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odd and even sections, which implement the Eqs. (19), (20), (28)
and (29). The first section is simplified as

yd
0 ¼ h0k1 ¼ x0x1

ys
0 ¼ h1k0 ¼ h1 ¼ x0x1

8<
: ð30Þ

Only the last section is changed depending on sign of X in the
following general expression

For a signed number

X

yd
n�1 ¼

(
hn�2kn�1, for n�1 odd

hn�1kn�2, for n�1 even

ys
n�1 ¼

hn�1kn�2, for n�1 odd

hn�2kn�1, for n�1 even

(
8>>>>><
>>>>>:

ð31Þ

For an unsigned number

X

yd
n�1 ¼

(
hn�1kn�1, for n�1 odd

hn�1kn�1, for n�1 even

yd
n ¼

hn�1, for n�1 odd

kn�1, for n�1 even

(
8>>>>><
>>>>>:

ð32Þ

A more efficient implementation, suitable for a CMOS technol-
ogy, is shown in Fig. 4. In this circuit, a straightforward manipula-
tion of the Boolean algebra enables the implementation of the
signals H and K in terms of NAND and NOR gates, which are the
fastest gates in CMOS circuits. Moreover, these signals, and alter-
natively their complementary ones, facilitate the generation of Y,
thus reducing the complexity of the overall circuit in comparison
with that of Fig. 3 as additional inverters are unnecessary.

3.1. Carry look-ahead CSD recoding

The carry look-ahead principle is one of the most widely used
methods to implement fast adders by introducing some kind of
parallelism in order to reduce the critical path of the circuit. The
expressions of H and K defined in Eqs. (19) and (20) are of a
similar form to those used in conventional carry look-ahead
adders [1,39]. For example, for i¼6 we get

h6 ¼ x6þx5ðx4þx3ðx2þx1x0ÞÞ

k6 ¼ x6ðx5þx4ðx3þx2x1ÞÞ ð33Þ

These expressions are a simplified version of those used in
carry look-ahead structures where the classical propagate and
generate signals are directly removed by input signals. However,
new generation and propagation signals associated with H and K
enable a significant reduction of the critical path. Using the
expressions in Eq. (33), h6 can be rewritten as

h6 ¼ x6þx5x4þx5x3ðx2þx1x0Þ ¼ gh1þph0h2 ð34Þ
Fig. 4. Efficient implementatio
where ghj and phj are, respectively, the generation and propaga-
tion signals of H. In this case, gh1¼x6þx5x4, ph0¼x5x3 and
h2¼x2þx1x0. In a general way

h4ðjþ1Þþ2 ¼ ghjþ1þphjh4jþ2, j¼ 0,1,2,. . . ð35Þ

where

ghj ¼ x4jþ2þx4jþ1x4j

phj ¼ x4ðjþ1Þþ1x4ðjþ1Þ�1

(
ð36Þ

Note that these signals are defined for a group of four inputs
and h2¼gh0. Similarly, we can rewrite k6 as

k6 ¼ x6ðx5þx4Þðx5þx3þx2x1Þ ¼ gk1ðpk0þk2Þ ð37Þ

where gkj and pkj are, respectively the generation and propaga-
tion signals of K. In this case, gk1¼x6(x5þx4), pk0¼x5þx3 and
k2¼x2x1. In a general way, we get

k4ðjþ1Þþ2 ¼ gkjþ1ðpkjþk4jþ2Þ, j¼ 0,1,2,. . . ð38Þ

where

gkj ¼ x4jþ2ðx4jþ1þx4jÞ, j40

pkj ¼ x4ðjþ1Þþ1þx4ðjþ1Þ�1

(
ð39Þ

The recurrence in Eqs. (35) and (38) based on propagation and
generation signals obtained from a group of 4 input signals leads
to fast implementations of CSD recoders. Fig. 5a depicts a
schematic of a circuit for performing the conversion of a signed
binary number (n¼16) into its CSD representation. Here, Xo3:54

stands for {x3, x4, x5} and Yo2:54 stands for {{ys
2, yd

2}, {ys
3, yd

3}, {ys
4,

yd
4}, {ys

5, yd
5}}. Two parallel circuits generate the signal H and K for

4-bit groups in such a way that the biggest bits are expressed as

h14 ¼ gh3þph2ðgh2þph1ðgh1þph0h2ÞÞ

k14 ¼ gk3ðpk2þgk2ðpk1þgk1ðpk0þh2ÞÞÞ ð40Þ

From these signals, the CSD representation Y is computed by
three different kinds of compact modules: a first module (Fig. 5b),
4-bit CSD modules (Fig. 5c) and a last module (Fig. 5d). Only this
last module changes depending on whether X is an unsigned or
signed number. However, when the number of modules is large, it
is necessary to apply multi-level carry look-ahead schemes to
reduce the delay; any interested reader can find more information
in Section 2.6 of Ref. [37].

3.2. Parallel prefix CSD recoding

Another alternative for fast implementations of a CSD recoding
is derived from the binary associative operator ‘‘J’’ developed for
prefix adders [38]. As long as the recurrence relations of H and K
defined in Eqs. (35) and (38) have identical properties to those of
conventional adders, new associative operators ‘‘J’’ and ‘‘K’’ ,
n for the circuit in Fig. 3.



Fig. 5. Carry look-ahead scheme of a CSD recoder for n¼16. (a) Schematic of full circuit, (b) schematic of first CSD module, (c) schematic of 4-bit CSD module (i¼2,6,10)

and (d) schematic of Last CSD module.

Fig. 6. Parallel prefix scheme of a CSD recoder for n¼16.
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dependent on H and K can be defined as

ðgh, phÞ3ðghn, phnÞ ¼ ðghþph � ghn, phUphnÞ

ðgk,pkÞ�ðgkn,pknÞ ¼ ðgkðpkþgknÞ, pkþpknÞ

(
ð41Þ

Based on these operators, parallel prefix circuits for computing
signals H and K can be implemented in an efficient way. Fig. 6
shows an example of a parallel prefix scheme for CSD recoding
(n¼16). A first stage computes the individual generation and
propagation signals. The remaining stages constitute a parallel
prefix circuit with an organization based on the operators ‘‘J’’
and ‘‘K’’, which generates the 4-bit group signals. This circuit
uses the same modules specified in Fig. 5 for computing the CSD
representation Y. The proposed implementation has a total
number of stages of log2(n/4)þ1 in comparison with log2(n)þ1
used in a conventional scheme.



Table 3
Comparison of CSD recoders using different configurations.

Configuration 8-bit 16-bit 32-bit 64-bit Average
reduction

tp

(ns)
Area
(lm2)

NAND
Equiv.

tp

(ns)
Area
(lm2)

NAND
Equiv.

tp

(ns)
Area
(lm2)

NAND
Equiv.

tp

(ns)
Area
(lm2)

NAND
Equiv

tp Area

Ripple-carry scheme
[25,26] 0.96 282 35 2.07 605 75 4.28 1250 155 8.71 2542 315

Fig. 4 0.46 205 25 0.93 431 53 1.88 883 109 3.79 1767 221

Reduction (%) 52.1 27.3 55.6 28.8 57.0 29.4 57.6 29.7 55 29

Carry look-ahead scheme
[30] 0.49 327 41 0.96 685 85 1.94 1403 174 3.92 2840 414

Fig. 5 0.31 252 31 0.53 567 70 0.90 1196 148 1.77 2487 352

Reduction (%) 36.7 22.9 44.8 17.2 53.6 14.8 54.8 12.4 47 17

Parallel prefix scheme
[32] 0.51 387 48 0.67 922 114 0.92 2234 277 1.70 5459 677

Fig. 6 0.34 256 32 0.53 647 80 0.62 1575 195 0.72 3721 461

Reduction (%) 33.3 33.9 20.9 29.8 32.6 29.5 57.6 31.8 36 31
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4. Simulation and comparisons

For the purposes of comparison, different standard cell-based
implementations and configurations of CSD recoders based on
previously published circuits have been compared and analyzed
with those proposed in this paper. All of them were synthesized
with Synopsyss design compiler release 2010.03 under the
HCMOS9 STMicroelectronics 130 nm standard cell technology
with a 1.2 V power supply. Table 3 lists the synthesis results in
terms of worst-case propagation time (tp in ns) including a size
circuit dependent wire-load model, and total area expressed in
terms of mm2 or in an equivalent number of two input NAND
gates (8.0688 mm2 for this technology). In all cases, a digit two’s
complement binary number X with different values of n¼8, 16,
32 and 64 has been used as input.

To obtain representative results, we have selected the config-
urations based on the ripple-carry principle derived from the
expressions in Refs. [25,26], the optimized carry look-ahead
scheme derived from the expressions presented in Ref. [30] and
the parallel prefix scheme presented in Ref. [32]. All of these
configurations have been implemented in terms of standard cells
for comparison purposes and they have their counterpart in the
proposed circuits shown in Figs. 4, 5 and 6, respectively, where the
signals H and K are computed in a similar way to those carries in
the former schemes. The results in Table 3 highlight the significant
advantages of the circuits proposed in terms of speed and area. The
implementation in Fig. 4 reduces the delay by roughly 55 and the
area by 29% with respect to the counterpart derived from Refs.
[25,26]. This is possible because of parallelism in the signals H and
K and the simplification in the complexity of the circuit. Another
important improvement is the decrease by up to 47% (average) in
delay in the carry look-ahead scheme. Here, the generate and
propagate signals associated with H and K significantly reduce the
critical path in comparison with the scheme presented in Ref. [30],
which computes the carries directly from input signals by cascad-
ing of 4-bit look-ahead circuits. This comparison has been made in
terms of standard cells because a full CMOS complex gate to
implement the carry look-ahead circuit is proposed in Ref. [30].
However, the reduction in area is limited, varying from 22.9% for
the 8-bit configuration to 12.4% for the 64-bit. The reason is the
similar area that both 4-bit look-ahead circuits have decreasing the
ratio when the size of encoder increases. Finally, the fastest
implementation corresponds to the parallel prefix scheme.
Although for 8-bit, the carry look-ahead scheme is slightly better
both in terms of area and in speed, the delay of the parallel prefix
scheme is only 0.72 ns for 64-bit, which is suitable for high-speed
circuits, and, moreover, without a significant increase in area. As a
result, Table 3 demonstrates that the expressions developed to
implement the CSD recoding lead to circuits, whose area and speed
are notably improved in comparison with previously proposed
implementations.
5. Conclusion

The conversion of a two’s complement binary number into its
canonic signed digit (CSD) representation can be efficiently
implemented using two signals, H and K, functionally equivalent
to two carries. These signals have two advantageous features:
they are computed in parallel reducing the critical path and they
simplify the algebraic expressions minimizing the overall hard-
ware implementation. Simulations performed with the proposed
circuits show high efficiency in terms of speed and area in
comparison with other previous counterpart architectures. More-
over, other schemes used for accelerating carries based on
transistor structures such as domino carry look-ahead, multi-
level carry look-ahead and carry-skip circuits can be directly used.
Finally, the new formulation presented in this work enables the
CSD number system to be made available to many DSP applica-
tions as the CSD recoding can be performed at high speed with a
low area cost.
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