
An Efficient VLSI Architecture of Fractional Motion
Estimation in H.264 for HDTV

G. A. Ruiz & J. A. Michell

Received: 17 September 2009 /Revised: 9 March 2010 /Accepted: 11 March 2010
Springer Science+Business Media, LLC 2010

Abstract Fractional Motion Estimation (FME) in high-
definition H.264 presents a significant design challenge in
terms of memory bandwidth, latency and area cost as there
are various modes and complex mode decision flow, which
require over 45% of the computation complexity in the
H.264 encoding process. In this paper, a new high-
performance VLSI architecture for Fractional Motion
Estimation (FME) in H.264/AVC based on the full-search
algorithm is presented. This architecture is made up of three
different pipeline processors to establish a trade-off be-
tween processing time and hardware utilization. The
computing scheme based on a 4-pixel interpolation unit
with a 10-pixel input bandwidth is capable of processing a
macroblock (MB) in 870 clock cycles. The final VLSI
implementation only requires 11.4 k gates and 4.4kBytes of
RAM in a standard 180 nm CMOS technology operating at
290 MHz. Our design generates the residual image and the
best MVs and mode in a high throughput and low area cost
architecture while achieving enough processing capacity for
1080HD (1920×1088@30fps) real-time video streams.

Keywords H.264 . High-definition television (HDTV) .

Fractional motion estimation . Video coding

1 Introduction

The video coding standard H.264/AVC, developed by the
Joint Video Team (JVT), achieves higher coding efficiency

than previous coding standards especially in high-definition
and high-rate video sequences. The superior coding
performance of H.264/AVC originates from new techniques
such as quarter-pixel fractional motion estimation, variable
block sizes, multiple reference frame motion estimation,
complex intra prediction modes, context-based entropy
coding, and so on [1, 2]. However, these advanced video
coding techniques require huge computational complexity
and memory bandwidth for the encoding process. Thus,
hardware acceleration encoder design is still essential to
enable implementation of fast architectures for real-time
video applications.

Motion estimation (ME) is the most important part of
H.264/AVC in exploiting the temporal redundancy between
successive frames and it is also the most time consuming
part in the coding framework. It requires large amounts of
computation and accounts for 60%–90% of encoding time.
In H.264, a video frame is first split using macroblocks
(MB) of size 16×16 [3]. Each MB may then be segmented
into subblocks of different sizes, as illustrated in Fig. 1. ME
is carried out in 7 different modes, one 16×16 MB (Mode
1), two 16×8 subblocks (Mode 2), two 8×16 subblocks
(Mode 3) and four 8×8 subblocks (Mode 4). In turn, each
8×8 subblock is also split up into two 8×4 subblocks
(Mode 5), two 4×8 subblocks (Mode 6) and four 4×4
subblocks (Mode 7). The total number of possible partitions
is 41. ME refines the best candidate for each subblocks
hierarchy in two phases: Integer Motion Estimation (IME)
and Fractional Motion Estimation (FME). IME finds the
best integer motion vector (MV) for all 41 variable-size
blocks. FME refines those MVs in quarter-pixel precision
using a 6-tap filter and a MV-bit-rate estimation. In H.264/
AVC, the latter process takes about 45% of ME time and,
for high resolution application, VLSI implementation is
essential.

G. A. Ruiz (*) : J. A. Michell
Dpto. de Electrónica y Computadores, Facultad de Ciencias,
Universidad de Cantabria,
Avda. de Los Castros s/n,
39005 Santander, Spain
e-mail: ruizrg@unican.es

J Sign Process Syst
DOI 10.1007/s11265-010-0475-8

There are many proposed IME algorithms based on one-
dimension [5] or two-dimension [6] processing elements,
different search strategies such as the three-step search [7],
hexagon search [8] and diamond search [9], or implemen-
tations aiming to reduce the power [10] or to minimize the
off-chip memory bandwidth [11]. However, only a few
FME implementations have been discussed in spite of FME
having a strong impact on the peak-signal-to-noise ratio
(PSNR) and the amount of computation required for FME
is even more than needed for IME. Several algorithms have
been proposed to speed up the FME process, although they
decrease the video quality to some extent, such as those based
on early termination techniques [12] (average ΔPSNR=
−0.02 dB, ΔBitrate=2.91%), search control by using neigh-
bouring motion vectors [13] (ΔPSNR=−0.03 dB), size
reduction of tap filters [14] (ΔPSNR=−0.003 dB) or
reduction of search area [15] (ΔPSNR=−0.17 dB, ΔBitrate=
4.08%). Different FME implementations which make a
trade-off among input bandwidth of reference pixels,
hardware overhead and number of clock cycles for process-
ing all MBs have been described. In [16], VLSI architecture
for FME with a regular schedule and high utilization is
presented. It uses a 4-pixel interpolation unit to process 10
integer pixels in parallel at 100 MHz taking 1648 clock
cycles to compute a whole macroblock (MB). An improved
architecture with a 16-pixel interpolation unit to reduce this
number of cycles to 790 is described in [17]. It achieves high
processing capacity for encoding real-time HDTV video
streams. However, this high throughput has the penalty of
large area (2.4×) and memory bandwidth up to 22 pixels. A
high throughput hardware architecture based on three parallel
processing engines reduces the number of clock cycles to
only 616, but with a high cost in area [19]. Other FME
designs search for hardware reduction or high efficiency by
making some constraints in the FME algorithm. Thus, the
scheme proposed in [20] achieves a reduction of more than
50% in computation by exploring neighbourhood position
and early termination with acceptable loss of quality. The
architecture described in [21] reduces the search area and

number of MVs needed in order to achieve low-latency and
hardware efficiency. Finally, designs suitable for a FPGA
implementation are presented in [22, 23]

In this paper, a VLSI architecture based on the full-search
algorithm for implementation of FME is described. Its
architecture is made up of three different pipeline processors:
a half-pixel processor, a quarter-pixel processor and a mode
decision processor. As a result, our design generates the
residual image and the best MVs in a high throughput, low
area cost architecture. The design is implemented with only
11.4 k gates and 4.4kBytes of RAM in a standard 180 nm
CMOS technology and it operates at 290 MHz. The latency
of 870 clock cycles is sufficiently low to process 1080HD
real-time videos. The remainder of this paper is organized as
follows. In Section 3, a brief description of the FME scheme
is discussed. Section 4 presents some details of the proposed
architecture based on three processors, and Sections 5, 6 and
7 describe some details about the design of those processors.
The implementation results and comparisons are listed in
Section 7. Finally, the conclusions are stated in Section 8.

2 Description of the FME Algorithm

In H.264, the inter-prediction module is one of the most
significant parts that affect overall computing performance.
In real-time HDTV applications (1920×1088 @ 30fps) the
work of processing all 41 subblocks belonging to a 16×
16 MB should take less than 4.1 µsec, equivalent to 1025
clock cycles at a clock frequency of 250 MHz, which is
available for most of current technologies. IME and FME
must be computed in these 1025 cycles which will affect
the efficiency of the hardware implementation. IME is
performed prior to FME. Integer pixel search tries to find
the best matching integer position and the best integer pixel
motion vectors (MV) are determined by using a perfor-
mance cost metric. Then, the FME performs a half-pixel
refinement about the integer search positions and then a
quarter-pixel one is performed around the best half-pixel

0
0

1
0 1

0 1

2 3

0
1

0 1
0 1
2 3

Mode 1 (16×16) Mode 3 (8×16)Mode 2 (16×8) Mode 4 (8×8)

Mode 6
(4×8)

Mode 5
(8×4)

Mode 7
(4×4)

Figure 1 Sub-macroblock
partitions.

J Sign Process Syst

positions. As a result, a pipeline architecture is a must to
implement IME and FME [24, 25].

In an efficient FME implementation, the trade-off among
processing time, memory access data bus and hardware
utilization should be balanced. Here the memory access and
sub-pixel interpolation must comply with some time
constraints, taking into account that FME requires more
input data to be processed than is used in sub-pixel motion
estimation. Besides, FME shares on-chip memory previ-
ously stored in the IME stage as FME fetches reference data
to that memory when IME has just finished. In our design,
a 4-pixel interpolation unit is adopted because it provides a
trade-off between the processing time and hardware
utilization, and it is also highly compatible with many
proposed IME architectures. This unit is capable of
processing every subblock in a MB, since each subblock
can be decomposed in terms of single 4×4 basic blocks.
However, the 6-tap filter used in interpolation process
requests extra input pixels so that each 4×4 subblock is
extended with a border of 3 pixels around it, resulting in a
(3+4+3)×(3+4+3)=10×10 window; thus, the input data is
set to 10 pixels’ width. To reduce accesses to memory and
reuse interpolated data, vertically adjacent 4×4 blocks are
processed using a similar scheme to that proposed in [16],
which helps to avoid redundant memory accesses (about
25–35% of total bandwidth). In this scheme, vertical scan
order is adopted to facilitate the interpolation operations
between two adjacent vertical columns for subblocks of 8×
and 16×. For the sake of clarity, Fig. 2 shows the vertical
arrangement to carry out the interpolation process of a 16×
16 MB. With 10 pixels of input data, the processing of a
column takes 22 clock cycles, and the whole block 22×4=
88 clock cycles. Table 1 lists the clock cycles needed to
process all 41 different modes, the total number being 832.
A problem related to vertical interpolation is the redundant
interpolating operations which appear in the overlapping
area of the adjacent interpolation window. To overcome this
problem, a new schedule based on a 16-pixel interpolation
is proposed in [17], which removes all the redundant
columns. Although this architecture can save more than
50% clock cycles, it uses input data of 22-pixels’ width and

the cost in area is about 2.4 times greater than 4-pixel
interpolation. Moreover, it incurs low computational redun-
dancy but is inefficient in handling variable size.

2.1 Langrangian Cost

The ME algorithm determines the best mode which
minimizes the matching error between reference MB and
candidate MB. In the JM version 15.1 of the H.264
reference software, which is available on-line at [4], the
ME chooses the best mode by using a Lagrangian mode
decision to compute not only the sum of absolute differ-
ences (SAD) but also an estimation of the bits required to
code MVs. For each subblock of a MB, the ME algorithm
minimizes the following Langrangian cost (J) defined as

J ¼ SADþ l MV cos t MVcur �MVpredð Þ ð1Þ
where SAD denotes a distortion measure (in our case it is
the SAD) between the original and the coded partition
predicted from the reference frames, MVcost represents the
number of bits (according to a table of entropy coding) re-
quired to code the difference of current MV (MVcur) and
motion prediction MVpred, and λ is the Langrangian
multiplier imposed using a suitable rate constraint. To
calculate the MVpred, the MV of the neighbouring blocks
must be available or sufficiently estimated as they not only
depend on neighbouring MBs, but also on earlier blocks
within a MB [3]. Figure 3 shows an example of definition

10

22 16×16

10
10

10

3

3

Figure 2 Vertical interpolation
of 16×16 MB.

Table 1 Clock cycling for different subblocks.

Subblock type Number of blocks Cycles/block Total cycles

16×16 1 22×4 88

16×8 2 14×4 112

8×16 2 22×2 88

8×8 4 14×2 112

8×4 8 10×2 160

4×8 8 14×1 112

4×4 16 10×1 160

Total latency 832

MV2MV1

MV0

8×8

MVpred=median(MV0, MV1, MV2)

Fig. 3 Example of MVpred of 8×8 macroblock.

J Sign Process Syst

of MVpred for an 8×8 subblock. In this case, the MVpred
is computed from the median of left (MV0), top (MV1) and
top-right (MV2). MV0 belongs to the previous 16×16 MB,
and MV1 and MV2 belong to 4×4 subblocks of the same
MB that have just been processed.

The proposed FME algorithm uses the well-known tree
structured motion compensation method of H.264 to obtain
the MVpred of each subblock. In this method, the sub-
blocks are processed in a particular order to guarantee that
every MVpred neighbouring a subblock is available before
processing. Otherwise, an incorrect MVpred significantly
worsens coding results because it leads the motion
estimation in the wrong direction. The Lagrangian cost
function can only be computed after the MVs of neighbour-
ing blocks are determined, which causes an inevitable
sequential processing. MBs and subblocks in a MB cannot
be processed in parallel. As a result, while processing a
subblock in the half-pixel processor, the MVs of neighbours
at quarter resolution are not available because the quarter
processor has not computed them yet. This problem only
arises in the subblocks labelled 1 in Fig. 1 belonging to

Mode 2, 3, 4, 5 and 6, and subblocks labelled 1, 2 and 3 in
Mode 7. In the proposed FME, these subblocks only use
half pixel resolution in MVpred because MVpreds with
quarter resolution are not available. Simulations made with
typical video sequences have proved that the effects of this
restriction on overall PSNR and bitrate are insignificant
(average ΔPSNR=−0.003 dB and ΔBitrate=0.05%).

3 Proposed Architecture

Figure 4 shows the block diagram for the proposed design
of FME hardware architecture based on three different
pipeline processors: half-pixel processor, quarter-pixel
processor and mode decision processor. This architecture
makes a trade-off between the processing time and the
hardware utilization to reach the capacity of encoding the
high-resolution real-time video stream for HDTV at low
cost in area. It uses a completely standard-compatible full-
search algorithm based on 4×4 block decomposition and a
vertical arrangement to reduce the encoding time.

f

RAM1
18x18 I
18x17 H
17x18 V
17x17 D

Local
RAM

Reference Frame

Current Frame

Local
RAM

Half-pixel
interpolation10 I,H,V,D

Parallel processing Unit

Parallel processing Unit

Quarter-pixel
interpolation

2304 pixels

RAM2

MODE
DECISION

Residual
image

Half -pixel

RAM3

Quarter -pixel

Half-pixel processor

Quarter-pixel
processor

Mode decision processor

Best MVs & Mode

4

512 pixels

Best
Half-MV

Best
Quarter-

MV

4

2304 pixels

14

22

36

32

4

H

PE1 PE8

MV cos t

PE1 PE8

MV cos t

5

V

4

D

5

C

I

Figure 4 Block diagram of
general FME architecture.

J Sign Process Syst

The input data include the best integer MV with its
Langrangian cost acquired in IME, MVpred of the adjacent
MBs and search area data from a local memory which is
input row by row. The half-pixel processor reads the
reference input data from a local RAM and performs half-
pixel interpolation and a full half-pixel search for each
subblock size. The interpolated samples are stored in
RAM1 and processed in the processing unit. This unit is
made up of 8 parallel processing elements (PE) to obtain
the best half-MV according to minimum Lagrangian cost.
The quarter-pixel processor uses the best half-MV and the
interpolated samples stored in RAM1 to generate all the
quarter-pixels around the half/integer samples using a
bilinear filter. These are stored in RAM2. Similarly to the
previous processor, these interpolated quarter-pixels are
processed in the processing unit in order to extract the best
quarter-MVs. After that, the mode decision processor
evaluates, temporarily stores the best matching interpolated
image in RAM3 and makes a decision about block modes
and final MVs. However, the final decision is not taken
until all 41 subblocks are processed. Finally, this processor
generates the best MVs and the best mode of the MB, as
well as the residual image to be coded.

Figure 5 depicts the timing diagram for performing FME
to process one MB. It dispatches all 41 subblocks ranging
from 16×16 to 4×4 reads according to the tree-structured
motion compensation order specified in the JM reference
software. The input reading process consumes 832 clock
cycles (see Table 1) to load all input data which bounds the
whole processing time. The half-pixel processor performs a
half-pixel interpolation, which is stored in a bank of four

double port SRAMs (RAM1), and takes a decision about
the best half-MV after computing the Langrangian cost. On
taking this decision, the quarter-pixel processor starts off
fetching data to RAM1. Here, the reading process takes
fewer clock cycles than the former processor; for a M×N
subblock, it takes (M+1)×N/4 clock cycles in comparison
with the former’s (M+6)×N/4. As a result, this quarter-
pixel processor has idle clocks waiting to finish the
processing of some subblocks in the half-pixel processor.
After taking the best quarter-MVs decision and computing
a new Langragion cost, the mode decision processor starts
off fetching data to a bank of three double-port SRAMs
(RAM2). The reading process takes the same number of
clock cycles as the size of the processing subblock (M×N);
there are also some idle clock cycles here. The candidate
samples specified by the best quarter-MVs are stored in
RAM3 according to a scheme described in Section 7. After
870 clock cycles, the final decision is taken by processing
all 41 subblocks. The proposed architecture for generating
the residual image of a MB takes a total of 936 clock
cycles: 832 cycles for reading the input data, 38 cycles of
latency and 66 cycles to generate the residual image.

4 Half-Pixel Processor

The half-pixel processor performs half-pixel interpolation
and a half-pixel search for each subblock. It is mainly
composed of a half-pixel interpolation unit, four double-
port SRAMs (RAM1) to store integer and half-pixel
samples, a processing unit (PU) to compute the Lagrangian

16◊16 8◊16 8◊16 16◊8

88 56 56 44

16◊8

44

8◊8

28

16◊16

68 36

8◊16

36

8◊16

34

16◊8

Input data

Half interpolation

Write RAM1
Best half-MV

Read RAM1

Quarter interpolation

Best quarter-MV
Write RAM2

64
Read RAM2

Write RAM3

32 32

Decision best MV

4◊4

1010 10

10

8

10

5

444

Residual image & best MVs
64

555

48

cycle

0 832 870 936

H
al

f-
pi

xe
l

pr
oc

es
so

r

Q
ua

rt
er

-p
ix

el
pr

oc
es

so
r

M
od

e
de

ci
si

on
pr

oc
es

so
r

8◊8

Figure 5 Timing diagram for performing FME for one MB.

J Sign Process Syst

cost, and a best half MV unit to select the MVs with
minimum Lagrangian cost. As a result, the best MVs are
passed to the quarter-pixel processor.

4.1 Half-Pixel Interpolation Unit

In the H.264/AVC, the prediction luma sample values at the
half pixel are calculated by applying a 6-tap Wiener filter in
both horizontal and vertical directions. The tap coefficients
are (1, −5, 20, 20, −5, 1). For the sake of clarity, Fig. 6
illustrates the spatial relationship of the integer {I}, and
half-pixel vertical {V}, horizontal {H} and diagonal {D}
positions in the luminance interpolation. The horizontal
half-pixel value H0,0 is computed from an intermediate
value H

0
0;0 which is calculated in turn from the six nearest

integer pixel values located at horizontal direction accord-
ing to the following equation

H
0
0;0 ¼ I0;�2 � 5I0;�1 þ 20I0;0 þ 20I0;1 � 5I0;2 þ I0;3 ð2Þ
The half sample H0,0 is calculated by clipping H

0
0;0to lie

in the range [0,255] as

H0;0 ¼ H
0
0;0 þ 1 << 4

� �
>> 5 ð3Þ

In a similar way, the vertical half-pixel value V0,0 is
calculated from an intermediate value V

0
0;0 using the six

nearest integer pixel values located in the vertical direction as

V
0
0;0 ¼ I�2;0 � 5I�1;0 þ 20I0;0 þ 20I1;0 � 5I2;0 þ I3;0 ð4Þ

The half sample V0,0 is calculated by clipping V
0
0;0to the

range [0,255] as

V0;0 ¼ V
0
0;0 þ 1 << 4

� �
>> 5 ð5Þ

The diagonal half-pixel value D
0
0;0 is obtained from the

six nearest intermediate horizontal values H
0
i;j, or alterna-

tively, vertical values V
0
i;j, according to

D
0
0;0 ¼ H

0
�2;0 � 5H

0
�1;0 þ 20H

0
0;0 þ 20H

0
1;0 � 5H

0
2;0

þ H
0
3;0 ð6Þ

D
0
0;0 ¼ V

0
0;�2 � 5V

0
0;�1 þ 20V

0
0;0 þ 20V

0
0;1 � 5V

0
0;2

þ V
0
0;3 ð7Þ

The final value D0,0 is computed as

D0;0 ¼ D
0
0;0 þ 1 << 9

� �
>> 10 ð8Þ

Figure 7 shows the proposed interpolator architecture
based on a 2-D FIR approach which aims for high
throughput and minimum latency. The 2-D FIR is decom-
posed into 1-D FIR horizontal (FIRH) and 1-D FIR vertical
(FIRV) filters. Two parallel groups of FIRV and FIRH
process the 10-pixel integer input data {I}. The first group
generates the interpolated half-pixel vertical data {V}
according to Eqs. 4 and 5. The second one generates the
intermediated data {H′} according to Eq. 2 which are

I0,0

V0,0

I1,0

H0,0

D0,0

H1,0

I0,1

V0,1

I1,1

I-1,0 I-1,1

I-2,0 I-2,1

I2,2

I3,0

H2,0

H3,0

I2,1

I3,1

H-1,0

H-2,0

I0,-1

I1,-1I1,-2

I0,-2 I0,3

I1,3I1,2

I0,2

V0,-1V0,-2 V0,3V0,2

I-1,-1

I-2,-1

I-1,-2

I-2,-2

I-1,2

I-2,2 I-2,3

I-1,3

I2.-1

I3,-1I3,-2

I2,-2 I2,2

I3,2

I2,3

I2,3

Figure 6 Spatial relationship of integer (I) and, half-pixel for vertical
(V), horizontal (H) and diagonal (D) positions in the luminance
interpolation.

Ii,0 Ii,1Ii,-1Ii,-2 Ii,3Ii,2Ii,-3 Ii,4 Ii,6Ii,5

Hi,-1

Hi,-1

FIRV FIRV FIRV FIRV FIRV

FIRH FIRH FIRH FIRH FIRH

FIRV FIRV FIRV FIRV FIRV FIRV

Hi,0

Hi,0

Di,-1 Di,0

Hi,1

Hi,1

Di,1

Hi,2

Hi,2

Di,2

Hi,3

Hi,3

Di,3

’ ’ ’ ’ ’

Vi,-1 Vi,0 Vi,1 Vi,2 Vi,3 Vi,4

Figure 7 Architecture of half-pixel interpolator unit.

J Sign Process Syst

clipped (Eq. 3) to compute the half-pixel horizontal data
{H}. {H′} are processed in series in the FIRV filters to get
the diagonal half-pixel data {D} which are implemented in
Eqs. 6 and 8.

The half-pixel interpolation performed by the 6-tap
Wiener FIR filter is implemented by shifters, additions
and subtraction operations. Moreover, the symmetry of
these filter coefficients can be exploited in order to reduce
the number of operations. Taking into account that 5X=X+
X<<2, and 20X=(X+X<<2)<<2, then Eq. 2 can be
computed [26] as

H
0
0;0 ¼ I0;0 þ I0;1

� �
<< 2þ I0;0 þ I0;1

� �� I0;�1 þ I0;2
� �� �� �

<< 2þ I0;�2 þ I0;3
� �� I0;�1 þ I0;2

� �
ð9Þ

A similar process can be applied to Eqs. 4, 6 and 7.
Figure 8 shows the implementation of the proposed FIRH
datapath according to the decomposition scheme in Eq. 9. It
takes 6 integer input pixels and calculates the intermediate
{H′} and clipped {H} horizontal pixels. The datapath is
pipelined into 2 stages using registers to increase clock
frequency and interpolation throughput. The input lumi-
nance integer pixels {I} are in the range [0,255] using an 8-

bit accuracy. In the interpolation datapath, dynamic range
of the intermediate results leads to modification of the bit
widths required in the arithmetic computation to prevent
overflow, they may even be negative. Although, in practice,
the probability of overflow in intermediate data is low, the
bus widths must be fixed to support the minimum and
maximum value. Figure 8 also indicates bus width and the
range of data in brackets at the output of every arithmetic
element. In this notation, U stands for unsigned number and
S signed number in two’s complement. A 15-bit width in a
signed representation for output {H′} is enough to deal with
all possible values while the clipping circuit limits the {H}
samples to the range [0,255] in an 8-bit unsigned
representation.

Figure 9 shows the 5-stage pipeline datapath for the
FIRV. There are two implementations of the same circuit
depending on the bus width of the input datapath: unsigned
8-bit width for integer samples {I} and signed 15-bit width
for intermediate data {H′}. New input data arrives in each
clock cycle and the output {D or V} is computed after 5
clock cycles. In the worst case, intermediate data range is
[−2550, 10455] with 15-bit width for {V} or [−214200,
475320] with 20-bit width for {D}.

The timing diagram of the half-pixel interpolation unit is
shown in Fig. 10. The 10-pixel integer data {I} is input row
by row. The interpolated samples, 6 pixels for {V} and 5
pixels for {H} and {D}, are computed with different
latency: 2 clock cycles for {H}, 5 for {V} and 7 for {D}.
{H} and {V} are directly generated from {I}, and {D} from
the intermediate data {H′}.

4.2 Processing Unit (PU)

The PU computes for each subblock the Langragian cost of
the half-pixel search. It is made up of 8 processing elements
(PE), as shown in Fig. 11, operating in parallel in order to
perform the eight half-pixel searches around the integer
pixel. Each PE processes 4 interpolated half pixels and is
composed of an absolute difference module, an adder tree
and a final adder-accumulator.

The absolute difference module implements the absolute
difference operation [27] expressed as

Ri;j � Ci;j

�� �� ¼ Ri;j þ Ci;j þ 1; if Ri;j > Ci;j

Ri;j þ Ci;j; if Ri;j � Ci;j

(
8j 2 0; 3½ �

ð10Þ
where, Ri,j2 Hi;j; Vi;j; Di;j

� �
represents the interpolated

reference pixel and Ci,j denotes the current pixel. To
implement Eq. 10, a first level of adders compute Ri,j+Ci;j

and the most significant bits of output {S3,S2,S1,S0} are
used to decide whether to invert the output through a bit-
XOR or not. In Eq. 10, a 1 must be added if Ri,j>Ci,j, which

Adder Adder Adder

<<2

Adder

Reg

<<2

Adder

Reg

Clipping

Subst.

Reg Reg

9,U
[0,510]

9,U
[0,510]

11,U
[0,2040]

12,S
[-510,2040]

14,S
[-2040,8160]

15,S
[-2550,10200]

9,U
[0,510]

15,S
[-2550,10710]

8,U
[0,255]

(X+16)>>5

10,S
[-80,335]

I0,-2 I0,3 I0,-1 I0,2 I0,0 I0,1

H’0,0 H0,0

8,U
[0,255]

Figure 8 Half-pixel FIRH interpolation datapath. Notation used: bus
width, U for unsigned or S for two’s complement,[min value, max value].

J Sign Process Syst

is equivalent to having the corresponding output Sj at 1. In
order to reduce hardware, the addition of {S3,S2,S1,S0} is
split up among the four adders of the circuit acting as a
carry input. The adder tree scheme calculates partial SADs
by summing all absolute differences. Here, a pipeline stage

has been inserted to reduce the critical path. The final adder
accumulator circuit obtains the total Langragian cost for a
subblock, the register being initialized at λMVcost whose
value has been calculated previously. Figure 11 also shows
all bus widths to prevent overflow. In the worst case, the
biggest SAD corresponds to the 16×16 partition where all
absolute differences are 255, resulting in a maximum value
of 255×16×16=6528, which can be represented by 16 bits.
Taking into account that λMVcost has a 12-bit precision,
the final Lagrangian cost of PE must be 17 bits.

In the PU, each PE is responsible for one search position
around the integer sample: PE1 for (0,−1/2), PE2 for (0,1/2),
PE3 for (−1/2,0), PE4 for (1/2,0), PE5 for (−1/2,−1/2), PE6
for (−1/2,1/2), PE7 for (1/2,−1/2) and PE8 for (1/2,1/2).
However, the half interpolation unit generates the interpolat-

Adder

<<2

<<2

Subst.

Reg

Adder

Reg

Adder

Reg

Subst.

Reg

Adder

Clipping

Reg

(V’+16)>>5

V
D

(D’+512)>>10

Reg

I
H

 8,U [0,255]
’ 15,S [-2550,10710]

 12,S [-1275,255]
17,S [-56100,23460]

{

 14,U [0,10200] {19,S [-51000,214200]

 10,S [-80,335] {10,S [-209,464]

8,U [0,255]

{

{

 11,U [0,1275]
17,S [-12750,53550]

 15,S [-1275,5355] {

19,S [-107100,237660]

 15,S [-1275,10455] {

20,S [-158100,451860]

 15,S [-2550,10710] {

20,S [-214200,475320]

{

 15,S [-2550,10455] {

20,S [-211650,464610]

Figure 9 Half-pixel FIRV inter-
polation datapath. Notation
used: bus width, U for unsigned
or S for signed numbers in two’s
complement, [min value, max
value].

clk

{I}

{H}, {H’}

{V}

{D}

Figure 10 Half-quarter interpolation timing diagram.

J Sign Process Syst

ed samples with different latency so PEs must process the
input data according to a data flow schedule. Figure 12.a)
shows the distribution of interpolated half−pixels around the
integer pixels; In order to simplify the data flow explanation,
only a 4×4 subblock is considered. For this subblock, 5×4
horizontal samples {H}, 4×5 vertical samples {V} and 5×5
diagonal samples {D} are processed, which means a total of
65 samples,. Figure 12.b) shows the timetable scheduling
used by PU to process the input samples arriving at different
times specified in Fig. 10. In cycle 0, the five horizontal
input samples {H0,−1, H0,0, H0,1, H0,2, H0,3} are processed,
while {H0,−1, H0,0, H0,1, H0,2} in PE1 and {H0,0, H0,1, H0,2,
H0,3} are processed in PE2. The notation Hi;j � Ci;j

�� ��
means

P4
j¼0

Hi;j � Ci;j

�� �� and this arithmetic operation imple-

mented by the circuit in Fig. 11 takes two clock cycles to be
done. In cycle 4, the last row {H3,−1, H3,0, H3,1, H3,2, H3,3}
allows the Lagrangian cost to be computed after a latency
of two clock cycles. PE3 starts off when the four vertical
samples {V−1,0, V−1,1, V−1,2, V−1,3} are input and PE4
begins one clock cycle later with the following row {V0,0,
V0,1, V0,2, V0,3}. The Lagrangian cost of PE3 and PE4
are generated at cycle 9 and 10 respectively. Likewise, in
cycle 6 PE5 and PE6 begin to process the five diagonal
samples {D−1,−1, D−1,0, D−1,1, D−1,2, D−1,3, D−1,4} and one
clock cycle later PE7 and PE8 with the following row. The
Lagrangian costs are generated in cycle 11 for PE5 and PE6,

and in cycle 12 for PE7 and PE8. All Lagrangian costs
generated in PU lead to the best half-MV unit.

The processing time of the PU of a 4×4 subblock takes
10 clock cycles and is limited by the 10 integer input data
of 10 pixels each used in the half-pixel interpolation unit.
As a result, there are 6 idle clock cycles in the PE. In
general, there are 6 idle clock cycles during the processing
of each vertical column belonging to a subblock. As a
result, the number of idle clock cycles for each subblock
are: 6 for 4×4 and 8×4, 12 for 4×8, 8×8 and 16×8, and 24
for 8×16 and 16×16.

4.3 Best Half-MV Unit

The Best half-MV unit finds the best half-MV by searching
for the minimum Lagrangian cost generated in PU.
Figure 13 shows the schematic of this circuit made up of
two comparators and a register which stores the minimum
Lagrangian cost and its corresponding best half MV. This
register is initialized by the data from the IME with the
Lagrangian cost and MV for the best integer position. The
Best half-MV unit processes in parallel two Lagrangian
costs generated in the PU; to maintain the regularity, the
cost of PE3 is delayed 1 clock cycle to coincide in time
with the cost of PE4. The register stores new data whether a
minimum Lagrangian cost is found or not. This process
finishes when all Lagrangian costs are compared. As a
result, the data stored in the register, Lagrangian cost and
half-MV, are passed to the quarter-pixel processor.

4.4 RAM1 Memory

A good compromise between the memory usage and
computational complexity is to interpolate the half-pixel
values and to store all of them in a memory to be computed
in the quarter processor when they are needed. In RAM1
the pixel values {I}, {H}, {V} and {D} generated in the
half-pixel interpolation unit are stored in a bank of four
double port RAMs. For the sake of clarity, Fig. 14 shows
the distribution in RAM1 of pixels for a 4×4 subblock. The
white core contains the pixels used in the half-pixel
processor and the pixels in the grey frame are only used
by the bilinear filters in the quarter interpolation. To
simplify the quarter interpolation, the pixels are stored
row by row using words of 6 pixels for {I} and {V} and
words of 5 pixels for {H} and {D}. Thus, RAM1 must be
able to store the interpolated pixels for a 16×16 block. In
this case, the block is split up in 4 rows of 16+1+1 elements
each for {I} and {H}, which implies 18×4×6 bytes for {I}
and 18×4×5 bytes for {H}. The number of elements for
{V} and {D} in each row is lower resulting in 17×4×6
bytes for {V} and 17×4×5 bytes for {D}. The total size of
RAM1 is 1540 bytes.

Adder
8

S3

Adder

Ri,3
8

Ci,3
8

8

S2

Ri,2
8

Ci,2
8

Adder
8

S1

Ri,1
8

Ci,1
8

Adder
8

S0

Ri,0
8

Ci,0
8

9
Adder

9
RegReg Reg

Adder

Adder

10

MUX

Langragian Cost

Reg

12
λΜVcost

17

Absolute difference

Adder tree

Adder accumulator

Reg

init

Adder

Figure 11 Processing element (PE) circuit.

J Sign Process Syst

5 Quarter-Pixel Processor

The quarter-pixel processor performs quarter -pixel inter-
polation and a quarter-pixel search for each subblock size.
Once the best half-pixel search is completed, the quarter
pixel values are computed around it by bilinear filters
according to the scheme shown in Fig. 15. Here, quarter
pixels are indicated in circles and half and integer pixels in
squares. The half-pixel processor selects 1 out of 9 possible

options: D−1,−1, V−1,0, D−1,0, H0,−1, I0,0, H0,0, D0,−1, V0,0

and D0,0. Thus, only 8 quarter pixels around the best half-
pixel selection must be interpolated into quarter-pixel
resolution.

17
PEi Cost

17 C
O

M
P

Min Cost/
MV

R
eg

is
te

r

Min Cost/
Best half-MV

C
O

M
P

PEj Cost M
U

X

Minimum integer
Lagrangian cost/MV

init

Figure 13 Schematic of best half-MV unit.

{I} {H} {V} {D}
Figure 14 Distribution of pixels in RAM1 for a 4×4 subblock.

Figure 12 Data flow schedule
of PU for a 4×4 subblock:
a) Half-pixel interpolation,
b) timing diagram.

J Sign Process Syst

In the grey box in Fig. 15, twelve different types of
quarter pixels are highlighted, classified as horizontal {ha,
hb, hc, hd}, vertical {va, vb, vc, vd} and diagonal {da, db,
dc, dd}, according to the direction used in their generation
from half and integer pixels. The four quarter pixels in the
horizontal direction are defined as

ha0;0 ¼ I0;0 þ H0;0 þ 1
� �

>> 1 ð11Þ

hb0;0 ¼ H0;0 þ I0;1 þ 1
� �

>> 1 ð12Þ

hc0;0 ¼ V0;0 þ D0;0 þ 1
� �

>> 1 ð13Þ

hd0;0 ¼ D0;0 þ V0;1 þ 1
� �

>> 1 ð14Þ
The four quarter-pixel values in the vertical direction are

defined as

va0;0 ¼ I0;0 þ V0;0 þ 1
� �

>> 1 ð15Þ

vb0;0 ¼ H0;0 þ D0;0 þ 1
� �

>> 1 ð16Þ

vc0;0 ¼ V0;0 þ I1;0 þ 1
� �

>> 1 ð17Þ

vd0;0 ¼ D0;0 þ H1;0 þ 1
� �

>> 1 ð18Þ

Finally, the four quarter-pixel values in the diagonal
direction are defined as

da0;0 ¼ H0;0 þ V0;0 þ 1
� �

>> 1 ð19Þ

db0;0 ¼ H0;0 þ V0;1 þ 1
� �

>> 1 ð20Þ

dc0;0 ¼ V0;0 þ H1;0 þ 1
� �

>> 1 ð21Þ

dd0;0 ¼ V0;1 þ H1;0 þ 1
� �

>> 1 ð22Þ
Figure 16 illustrates the scheme of the quarter-pixel

interpolation unit. During each clock cycle, 22 input pixels
{I}, {H}, {V} and {D} are read in parallel from RAM1 row
by row in vertical order, which are selected according to
best half-pixel MVs. If the best half-pixel is {V} or {D},
then two adjacent rows of {I} and {H} samples are
necessary to perform the quarter-pixel interpolation. Other-
wise, if the best half-pixel is {I} or {H} then two adjacent
rows of {V} and {D} samples are used. Two multiplexers
perform this kind of selection, storing the two adjacent
rows in registers REG1 and REG2 and the best half-pixel in
REG3. The 33 pixels of these registers run into the bilinear
filter array arranged in 8 blocks of 4 basic elements
belonging to the same type of quarter pixel. Each basic
bilinear filter is implemented by means of the optimized
scheme of Fig. 17 where a 7-bit adder is used instead of the
8-bit adder used in a classic implementation. The rounding

I0,0

V0,0

H0,0

D0,0

I1,0 H1,0

V0,1

I0,1

I1,1

ha0,0 hb0,0

va0,0 vb0,0 va0,1da0,0 db0,0

hc0,0 hd0,0

vc0,0 vd0,0dc0,0 dd0,0

ha1,0 hb1,0

vc0,1

H0,-1

D0,-1

hb0,-1

vb0,-1 db0,-1

hd0,-1

vc-1,0 vd-1,0 vc-1,0dc-1,0 dd-1,0vd-1,-1 dd-1,-1

V-1,0 D-1,0 V1,1hc-1,0 hd-1,0D-1,-1 hd-1,-1

H1,-1

vd0,-1 dd0,-1

hb1,-1

va-1,0 vb-1,0 va-1,1da-1,0 db-1,0vb-1,-1 db-1,-1

I-1,0 H0,0 I-1,1ha-1,0 hb-1,0H0,-1 hb-1,-1

I0,-1

V0,-1

I1,-1

ha0,-1

va0,-1 da0,-1

hc0,-1

vc0,-1 dc0,-1

ha1,-1

vc-1,-1 dc-1,-1

V-1,-1 hc-1,-1

va-1,-1 da-1,-1

I-1,-1 ha-1,-1

Figure 15 Interpolation of quarter-pixel samples (shown in circles)
by bi-linear filters centred around integer sample I0,0.

H

REG 1

REG 2

REG 3

MUXMUX
{I},{H}

or
{D},{V}

I DV

RAM1

Bilinear
filter array

6 5 6 5

11 11 11

Interpolated quarter pixels

4 4 4 4 4 4 4 4

BF 1 BF 2 BF 3 BF 4 BF 5 BF 6 BF 7 BF 8

Figure 16 Architecture of quarter-pixel interpolator unit.

J Sign Process Syst

operation defined in Eqs. 11 to 22 is performed by an OR
logic gate of less significant bits labelled as A[0] and B[0],
which act as carry-in. The result S is the 8-bit interpolated
quarter pixel.

The 8 outputs of 4 pixels each generated by the quarter-
pixel interpolation unit are stored in RAM2 and processed
in the PU to compute the Lagrangian cost and the best
quarter MVs. RAM2 has been split into a bank of three
double port SRAMs due to limitations in the input
bandwidth of the technology. Each RAM has a capacity
to store 64×12 pixels, the full capacity of RAM2 being
2304 bytes.

The PU and best quarter MV units are similar to those
described in the half-pixel processor. Here, each PE is
responsible for one search position around the integer/half
sample: PE1 for (x,y-1/4), PE2 for (x,y+1/4), PE3 for (x-1/
4,y), PE4 for (x+1/4,y), PE5 for (x-1/4,y-1/4), PE6 for (x-1/
4,y+1/4), PE7 for (x+1/4,y-1/4) and PE8 for (x+1/4,y+1/4),
where x,y2 0;�1=2f g. Unlike the former processor, eight
Lagrangian costs are computed in parallel so all quarter
interpolated samples are generated at same time. Thus, the
best quarter-MV unit shown in Fig. 18 performs a parallel
comparison of these costs using binary tree architecture of
comparators in order to obtain the minimum value. This
value is finally compared with the minimum Lagrangian
cost derived in the half pixel processor. Here, a pipeline
stage has been inserted to reduce the critical path. As a
result, only the best quarter-MV is stored in the output
register which will be used by the mode decision processor.

6 Mode Decision Processor

In the inter prediction for the H.264, the MBs are processed
in a specific order to ensure that in ME all MVpreds
neighbouring each MB are available. Moreover, the tree-
structured motion compensation method enables a 16×
16 MB to be split up into subblock partitions of varying
size according to a two-level hierarchy. The first level
includes modes of 16×16, 16×8, 8×16, while in the second
level every four 8×8 subblocks includes modes of 8×8, 8×
4, 4×8, and 4×4 (see Fig. 1). The mode decision processor
uses the best quarter-MVs obtained in quarter-pixel
processor as input. It selects the best mode by comparing
the total minimum Langrangian cost of all the subblocks
belonging to a mode (JMode). The final best mode decision
is worked out once all 41 modes have been processed. As a
result, the mode decision processor obtains the best MVs
and mode, and generates the residual image to be coded. In
this process, the memory RAM3 temporally stores the best
subblock candidates and it is split into two halves: The first
one contains the best candidate in the first level hierarchy
and the second one contains the best candidate in the
second level.

The mode decision processor starts off when the quarter-
pixel processor has just finished with the first 16×16 MB
and the best quarter-MV is obtained. The mode decision
method consists of the following steps according to level of
hierarchy.

& First level. Modes 16×16, 16×8 and 8×16. Only the
first half of RAM3 is used.

Step 1: Initial best mode is 16×16. The interpolated
16×16 MB defined by best quarter-MV (lowest value
of J16×16) is stored in RAM3.
Step 2: If J8×16(subblock 0)+J8×16(subblock 1)<J16×16,
then the best mode is 8×16 and both 8×16 subblocks
are stored in RAM3.

Adder

A[7:0] B[7:0]

[7:1] [7:1] [0] [0]

S[7:0]

Figure 17 Bilinear filter
implementation.

17PE1 Cost

17

Best quarter-MV

C
O

M
P

PE2 Cost

Min half-Cost/MV

17PE3 Cost

17
PE4 Cost

17PE5 Cost

17
PE6 Cost

17PE7 Cost

17
PE8 Cost

C
O

M
P

C
O

M
P

C
O

M
P

C
O

M
P

C
O

M
P

C
O

M
P

C
O

M
P

R
eg

is
te

r

R
eg

is
te

r
R

eg
is

te
r

Figure 18 Schematic of best
quarter-MV unit.

J Sign Process Syst

Step 3: If J16×8(0)+J16×8(1)<J(best mode step 2), then the
best mode is 16×8 and both 16×8 subblocks are stored
in RAM3.

& Second level. Modes 8×8, 8×4, 4×8, and 4×4.
Repeated for each four 8×8 subblocks. Only the second
half of RAM3 is used, which is split into four parts each
one managed by an 8×8 subblock.

Step 4: The initial best mode is 8×8. The interpolated
8×8 subblock defined by the best quarter-MV (lowest
value of J8×8) is stored in RAM3.
Step 5: If J4×8(0)+J4×8(1)<J8×8, then the best mode is
4×8 and both 4×8 subblocks are stored in RAM3.
Step 6: If J8×4(0)+J8×4(1)<J(best mode step 5), then the
best mode is 8×4 and both 8×4 subblocks are stored in
RAM3.
Step 7: If J4×4(0)+J4×4(1)+J4×4(3)+J4×4(4)<J(best mode

step 6), then the best mode is 4×4 and all 4×4 subblocks
are stored in RAM3.

& Final decision. The best mode for candidates in first
and second level are compared searching for the
minimum JMode, then the best mode and MVs are

found. The residual image is computed by substracting
the best interpolated image and the current image.

7 Implementation Results

The proposed FME architecture has been designed aiming for
regular flow and efficient hardware utilization. This circuit
has been implemented in Verilog VHDL at RTL level and it
has been synthesized using a TSMC 180 nm CMOS library.
The final layout is shown is Fig. 19 and its area is 1.2×
1.1 mm2. It uses 11.4 k gates and a total of 4356 Bytes in
different RAMs. In typical working conditions (1.8 V, 25°C),
the maximum frequency of 290 MHz can be achieved
including wire delays. It takes a total of 870 clock cycles
(832 for input data and 38 of latency) to process a MB and an
additional 66 clock cycles to generate the residual image. It
can provide enough processing capacity for 1920×
1088@30fps real-time video streams.

Table 2 shows the hardware comparison of the FME
designs implemented in a similar technology. Our design
generates the residual image and the best MVs with a high
throughput and low area cost architecture. Part of this
hardware reduction is achieved using SAD as a distortion
measure instead of the sum of absolute transformed differ-
ences (SATD) implemented in [16–18, 20]. The designs
[16, 20] and ours use the same input bandwidth of 10
pixels. However, our design roughly multiplies by three the
operating frequency and the reduction of latency is enough
to process 1080p@30fps videos. In [17], the input
bandwidth is increased to 22 pixels to remove all the
redundant columns by adopting a 16-pixel interpolation
unit. It operates at the same frequency as ours with a slight
reduction in latency and a bigger area cost (2.7 mm2 in
comparison with 1.32 mm2). Moreover, it does not explain
whether the best interpolated MB is stored or not. A very
different scheme is used in the design presented in [18]
which is focused on low hardware cost but with a great
latency. Finally, the three-engine architecture [19] operates
at 150 MHz and it takes 616 clock cycles to process a MB.

RAM1

RAM2

RAM3RAM3

Figure 19 Lay-out of proposed FME with Faraday 180 nm CMOS
technology.

Ref. [16] [17] [18] [20] [19] Ours

Tech. (µm) UMC 0.18 TSMC 0.18 TSMC 0.18 UMC 0.18 TSMC 0.13 UMC 0.18

Freq. (MHz) 100 285 274 100 150 290

Gate Count 79 k 188 k 24 k 48 k 188 k 11.4 k

RAM No No 1904 bits No 9724 Bytes 4356 Bytes

Area (mm2) NA 1.8×1.5 0.58×0.66 NA NA 1.2×1.1

Resolution 720×576 1920×1088 NA 720×576 1920×1088 1920×1088

Input pixels 10 22 1 10 NA 10

Latency 1648 790 39551 2000 616 870

Table 2 Comparison of the
FME with other designs.

J Sign Process Syst

Each engine processes different kinds of subblocks in a
pipelined way to increase throughput. However, it requires
more gates and RAM than ours and its area is much bigger
even using a better technology.

8 Conclusions

In this paper, we propose a high performance VLSI
architecture for FME in H.264/AVC with enough process-
ing capacity for 1080HD real-time video streams. This archi-
tecture is made up of three different pipelined processors
to provide a trade-off between processing time and hard-
ware utilization. These processors implement a completely
standard-compatible full-search algorithm and are capable
of processing a macroblock (MB) in 870 clock cycles using
4-pixel interpolation units with a 10-pixel input bandwidth of
reference pixels. Our design is implemented with only 11.4 k
gates and 4.4kBytes of RAM in a standard 180 nm CMOS
technology at an operating frequency of 290 MHz. Com-
pared with previous works, it presents a high throughput and
low area cost architecture, which can generate the residual
image and the best MVs ready to be encoded.

Acknowledgment We wish to acknowledge the Spanish Ministry of
Education and Science for the financial help TEC2006-12438/TCM
received to support this work.

References

1. Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M.,
Pereira, F., et al. (2004). Video coding with H.264/AVC: tools,
performance, and complexity. IEEE Circuits and Systems Maga-
zine, 4(1), 7–28. First Quarter.

2. Wiegand, T., Sullivan, G. J., Bjontegaard, G., & Luthra, A.
(2003). Overview of H.264/AVC video coding standard. IEEE
Transactions on Circuits and Systems for Video Technology, 13
(7), 560–576.

3. ITU-T Rec. H.264/ISO/IEC 11496-10 (2003). Advanced Video
Coding. Final Committee Draft, Document JVTG050.

4. Online document. http://iphome.hhi.de/suehring/tml/. Accessed 17
September 2009.

5. Yap, S. Y., & McCanny, J. V. (1989). A VLSI architecture for
variable block size video motion estimation. IEEE Transactions
on Circuits and Systems for Video Technology, 36(2), 1301–1308.

6. Komarek, T., & Pirsh, P. (2006). Array architectures for block
matching algorithms. IEEE Transactions on Circuits and Systems
for Video Technology, 16(7), 876–883.

7. Jong, H. M., Chen, L. G., & Chiueh, T. D. (1994). Parallel
architecture for 3-step hierarchical search block-matching algo-
rithm. IEEE Transactions on Circuits and Systems for Video
Technology, 4(4), 407–416.

8. Zhu, C., Lin, X., & Chau, L. P. (2002). Hexagon-based search
pattern for fast block motion estimation. IEEE Transactions on
Circuits and Systems for Video Technology, 12(5), 349–355.

9. Zhu, C., & Ma, K. K. (2000). A new diamond search algorithm,
for fast block matching motion estimation. IEEE Transactions on
Image Processing, 9(2), 287–290.

10. Chen, T. C., Chen, Y. H., Tsai, S. F., Chien, S. I., & Chen, L. G.
(2007). Fast algorithm and architecture design of low-power
integer motion estimation for H.264/AVC. IEEE Transactions on
Circuits and Systems for Video Technology, 17(5), 568–577.

11. Li, D. X., & Zhang, M. (2007). Architecture design for H.264/AVC
integer motion estimation with minimum memory bandwidth. IEEE
Transactions on Consumer Electronics, 53(3), 1053–1060.

12. Zhenyu, W., Baochen, J., Xudong, Z., & Yu, C. (2004). A new
full-pixel and sub-pixel motion vector search algorithm for fast
block-matching motion estimation in H.264. Proceedings of the
Third International Conference on Image and Graphics, 345–348.

13. La, B., Eom, M., & Choe, Y. (2007). Fast sub-pixel search control
by using neighbour motion vector in H.264. 9th International
Conference on Advanced Communication Technology, 1, 62–65.

14. Hyun, C. J., Kim, S. D., & Sunwoo, M. H. (2006). Efficient
memory reuse and sub-pixel interpolation algorithms for ME/MC
of H.264/AVC. IEEE Workshop on Signal Processing Systems
Design and Implementation, 377–382. October.

15. Song, Y., Ma, Y., Liu, Z., Ikenaga, T., & Goto, S. (2008).
Hardware-oriented direction-based fast fractional motion estima-
tion algorithm in H.264/AVC. IEEE International Conference on
Multimedia and Expo, 1009–1012, June.

16. Chen, T. C., Huang, Y. W., & Chen, L. G. (2004). Fully utilized
and reusable architecture for fractional motion estimation of
H.264/AVC. IEEE International Conference on Acoustics,
Speech, and Signal Processing, 5, 9–12.

17. Yang, C., Goto, S., Ikenaga, T. (2006). High performance VLSI
architecture of fractional motion estimation in H.264 for HDTV.
IEEE International Symposium on Circuits and Systems, 2605–2608.

18. Song, Y., Liu, Z., Goto, S., & Ikenaga, T. (2005). A VLSI
architecture for Motion compensation interpolation in H.264/
AVC. 6th International Conference on ASIC, 279–282. October.

19. Wu, C. L., Kao, C. Y., & Lin, Y. L. (2008). A high performance
three-engine architecture for H.264/AVC fractional motion esti-
mation. IEEE International Conference on Multimedia and Expo,
133–136.

20. Wang, Y. J., Cheng, C. C., & Chang, T. S. (2007). A fast algorithm
and its VLSI architecture for fractional motion estimation for
H.264/MPEG-4 AVC video coding. IEEE Transactions on Circuits
and Systems for Video Technology, 17(5), 578–583.

21. Lin, Y. K., Lin, C. C., Kuo, T. Y., & Chang, T. S. (2008). A
hardware-efficient H.264/AVC motion-estimation design for high-
definition video. IEEE Transactions on Circuits and Systems, 55
(6), 1526–1535.

22. Yalcin, S., & Hamzaoglu, I. (2006). A high performance hardware
architecture for half-pixel accurate H.264 motion estimation. IFIP
International Conference on Very Large Scale Integration, 63–67.
October.

23. Rahman, C. A. & Badawy, W. (2005). A quarter pel full search
block motion estimation architecture for H.264/AVC. IEEE
International Conference on Multimedia and Expo, 414–417. July.

24. Chen, T. C., Chien, S. Y., Huang, Y. W., Tsai, C. H., Chen, C. Y.,
Chen, T. W., et al. (2006). Analysis and architecture design of an
HDTV720p 30 frames/s H.264/AVC encoder. IEEE Transactions
on Circuits and Systems for Video Technology, 16(6), 673–688.

25. Huang, Y. W., Chen, T. C., Tsai, C. H., Chen, C. Y., Chen, T. W.,
Chen, C. S., et al. (2005). A 1.3TOPS H.264/AVC Single-Chip
Encoder for HDTV Applications. ISSCC Digest of Technical
Paper, 128–129. February.

26. Sihvo, T., & Niittylahti, J. (2005). H.264/AVC interpolation
optimization. IEEE Workshop on Signal Processing Systems
Design and Implementation, 307–312. November.

27. Vanne, J., Ahn, E., Hämäläinen, T. D., & Kuusilinna, K. (2006). A
high-performance sum of absolute difference implementation for
motion estimation. IEEE Transactions on Circuits and Systems for
Video Technology, 16(7), 876–883.

J Sign Process Syst

http://iphome.hhi.de/suehring/tml/

Gustavo A. Ruiz was born in Burgos, Spain, in 1962. He received the
M.Sc. degree in physics in 1985 from the University of Navarra,
Spain, and the Ph.D. degree in physical science in 1989 from the
University of Cantabria, Santander, Spain. Since 1985, he has been
with the Department of Electronics and Computers at the University of
Cantabria, where he is currently an Associate Professor. His current
research interests are mainly focused on VLSI architectures for signal
processing and high-speed arithmetic circuits.

Juan A. Michell was born in Cáceres, Spain, in 1952. He received the
M.S. and the Ph.D. degrees in physical sciences from the University
of Cantabria, Spain, in 1974 and 1977, respectively. Since 1974 he has
been with the Department of Electronics and Computers at the
University of Cantabria, where he was appointed Professor in
Electronics in 1991. His current research interests are VLSI
architectures and integrated circuit design for digital signal processing
applications.

J Sign Process Syst

	An Efficient VLSI Architecture of Fractional Motion Estimation in H.264 for HDTV
	Abstract
	Introduction
	Description of the FME Algorithm
	Langrangian Cost

	Proposed Architecture
	Half-Pixel Processor
	Half-Pixel Interpolation Unit
	Processing Unit (PU)
	Best Half-MV Unit
	RAM1 Memory

	Quarter-Pixel Processor
	Mode Decision Processor
	Implementation Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

