A VLBI study of the gravitational lens JVAS B0218+357

Rupal Mittal (MPIFR, Bonn), Richard Porcas (MPIFR, Bonn), Andy Biggs (JIVE), Olaf Wucknitz (U. Potsdam), Ian Browne (JBO, Manchester)

25 years after the discovery: Some current topics on lensed QSO's

Image flux ratios

γ (GHz)	Interferometer	Resolution (mas)	Flux Density: F^{A} (mJy)	Flux Density: F^{B} (mJy)	F^A/F^B
1.7	VLBI	5	445	170	2.62
5	MERLIN	50	728	245	2.97
5	EVN	5	660	210	3.14
5	VLBI	1	515	196	2.63
8.4	VLA	200	767	236	3.25
8.4	VLBI	1.3	777 ± 30	230.9 ±8	3.37±0.17
8.4	VLBI	1	690	202	3.41
15	VLA	120	698	189	3.69
15.3	VLBA	0.5	1000 ± 12	276±6	3.62±0.09

The image flux density A/B drops from ~ 3.6 at 15 GHz to ~ 2.6 at 1.65 GHz

25 years after the discovery: Some current topics on lensed QSO's

Relative magnification gradient across the image plane

Wucknitz (LensClean), 2002

25 years after the discovery: Some current topics on lensed QSO's

Sources of contamination

- I. Changing image positions with frequency
- II. An extended background source structure
- **III.** Absorption/Scattering
- IV. Substructure
- V. Instrumental shortcomings

Phase-referenced observations : 2002 Jan – 13th/14th/15th (VLBA + EB)

- [•] 15.3, 8.4, 4.9, 2.3 and 1.7 GHz (2 cm, 3.6 cm, 6 cm, 13 cm, 18 cm)
- Phase references selected on the criteria of having flat spectrum indices and point like structure
- Lens ~ $1Jy \rightarrow$ inversion of "target" and "phase calibrators" labels.
- Data reduction using AIPS software, manual ionospheric phase calibrations.

γ (GHz)	Pixel size (mas)	Flux Density: F ^A (mJy)	Flux Density: F ^B (mJy)	F^A/F^B
1.65	N	549±5	266 ± 5	2.06 ± 0.04
2.25	ε	695 ± 10	255 ± 15	2.73 ± 0.17
4.96	6	652 ± 5	220 ± 5	2.96 ± 0.07
8.40	1	690 ± 5	205 ± 5	3.37 ± 0.10
15.35	0.5	695 ± 10	177 ± 10	3.93 ± 0.23

[Santander (Spain), 15th-17th December]

25 years after the discovery: Some current topics on lensed QSO's

Another component detected in image A

The ratios are determined by dividing the total flux density of image A by that of image B...under what conditions is that valid?

v (GHz)	Pixel size (mas)	Flux Density: F ^A (mJy)	Flux Density: F^B (mJy)	F^A/F^B
1.65	5	5 4 9 ± 5	266 ± 5	2.06 ± 0.04
2.25	3	695 ± 10	255 ± 15	2.73 ± 0.17
4.96	2	652 ± 5	220 ± 5	2.96 ± 0.07
8.40	1	690 ± 5	205 ± 5	3.37 ± 0.10
15.35	0.5 695 ± 10		177 ± 10	3.93 ± 0.23

25 years after the discovery: Some current topics on lensed QSO's

Relative Magnification

$$RM = \frac{\mu_A}{\mu_B} = \frac{F_A}{F_B} \quad \longleftarrow \text{ for a point source}$$
$$\mu = \frac{d\Omega_{ing}}{d\Omega_{sou}}$$

where Ω is the image or the source area (solid angle) in the sky. For a source of finite size with varying surface brightness the above expression for the image flux ratio modifies to,

$$\frac{F_A}{F_B} = \frac{\iint_{\Omega_A} \mu_A I_s \, d\Omega_A}{\iint_{\Omega_B} \mu_B I_s \, d\Omega_B} \quad \leftarrow \text{ for an extended source}$$
$$S = \sum_{i,j} \frac{f_{ij}}{\mu_{ij}}$$

25 years after the discovery: Some current topics on lensed QSO's

Observations (2 cm) A1 - A2 = $(0.98, -0.92) \pm 0.07$ B1 - B2 = $(1.40, 0.03) \pm 0.07$

Model

B1 - B2 = (1.17, 0.19)

The component separation B1-B2 is off by ~ 3σ in RA

25 years after the discovery: Some current topics on lensed QSO's

2 cm ... (Observations)

 $A1/B1 = 3.88 \pm 0.06$

 $A2/B2 = 3.44 \pm 0.10$

The optimal lens model predicts a change in the relative magnification by not more than ~ 0.1 for a shift in position of the order of a mas.

Summary

- Frequency dependant core-shift very small in the context of anomalous flux ratios.
- The simple SIEP model does not comply with the VLBI constraints obtained from the sub-component separation in the individual images making determination of averaged relative magnification difficult.
- Image A flux density remains constant to within ± 25 mJy at 15.35, 8.4, 4.96 and
 2.25 GHz and drops by ~ 150 mJy at 1.65 GHz. At the same frequency a third component is detected.
- The issue of varying flux ratios still not solved, the other plausible reasons like absorption or scattering in the lens galaxy or the effect of sub-structure lensing have still to be investigated.

Sources of contamination, so far... (summary of the summary)

- I. Changing image positions
- II. Magnification gradient across the image plane ?
- III. Absorption/Scattering.....still to be quantified
- IV. Substructure.....still to be quantified