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ABSTRACT
In this paper we present an algorithm to compute all unira-
tional fields of transcendence degree one containing a given
finite set of multivariate rational functions. In particular,
we provide an algorithm to decompose a multivariate ratio-
nal function f of the form f = g(h), where g is a univariate
rational function and h a multivariate one.

1. INTRODUCTION
Let K be an arbitrary field and K(x) = K(x1, . . . , xn) be the
rational function field in the variables x = (x1, . . . , xn). A
unirational field over K is an intermediate field F between
K and K(x). We know that any unirational field is finitely
generated over K (see [6]). In the following whenever we talk
about “computing an intermediate field” we mean that such
finite set of generators is to be calculated. The problem of
finding unirational fields is a classical one. In this paper we
are looking for unirational fields F over K of transcendence
degree one over K, tr.deg(F/K) = 1.

In the univariate case, the problem can be stated as follows:
given univariate rational functions f1, . . . , fm ∈ K(y), we
wish to know if there exists a proper intermediate field F
such that K(f1, . . . , fm) ⊂ F ⊂ K(y); and in the affirmative
case, to compute it. By the classical Lüroth theorem (see
[14]) the problem is divided in two parts: first to compute f
such that K(f1, . . . , fm) = K(f), and second to decompose
the rational function f , i.e., to find g, h ∈ K(y) such that,
F = K(h) with f = g(h). Constructive proofs of Lüroth’s
theorem can be found in [7], [12] and [1]. Algorithms for
decomposition of univariate rational functions can be found
in [17] and [1].

In the multivariate case, the problem is: given f1, . . . , fm

in K(x) we wish to know if there exists a proper inter-
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mediate field F such that K(f1, . . . , fm) ⊂ F ⊂ K(x) with
tr.deg(F/K) = 1; and in the affirmative case, to compute it.
A central result is the following generalization of Lüroth’s
theorem:

Theorem 1 (Extended Lüroth’s Theorem). Let F be
a field such that K ⊂ F ⊂ K(x). If tr.deg(F/K) = 1, then
there exists f ∈ K(x) such that F = K(f).

Such an f is called a Lüroth’s generator of the field F. This
theorem was first proved in [2] for characteristic zero and in
[4] in general, see also [11] Theorem 3. Using Gröbner basis
computation, the paper [5] provides an algorithm to com-
pute a Lüroth’s generator, if it exits. See also [9] for another
algorithmic proof of this result. In this paper we present a
new algorithm, which only requires to compute gcd’s, to de-
tect if a unirational field has transcendence degree 1 and, in
the affirmative case, to compute a Lüroth’s generator. We
also present a constructive proof of the above theorem for
polynomials (see [8]): if the unirational field contains a non-
constant polynomial, then it is generated by a polynomial.

By the Extended Lüroth’s theorem, to find an intermediate
field of transcendence degree one is equivalent to the follow-
ing: first to find a Lüroth’s generator f , i.e., K(f1, . . . , fm) =
K(f), if it exists, and second to decompose the multivariate
rational function f , i.e., to find g ∈ K(y) and h ∈ K(x)
such that f = g(h) in a nontrivial way. The pair (g, h)
is called a uni–multivariate decomposition of f . We present
two algorithms to compute a nontrivial uni–multivariate de-
composition of a multivariate rational function, if it exits.

This paper is divided in four sections. In section 2 we state
the proof of the Extended Lüroth’s theorem and its poly-
nomial version. In section 3 we present and analyze two
algorithms to compute a uni–multivariate decomposition of
a rational function, if it exists. In section 4 we discuss the
performance of these algorithms.

2. THE EXTENDED L ÜROTH THEOREM
In this section we present an algorithm to the following com-
putational problem: given f1, . . . , fm ∈ K(x), to compute a
Lüroth generator f for F = K(f1, . . . , fm) if it exists, more-
over we detect if F contains a non-constant polynomial, and
in the affirmative case we find a generating polynomial. We
start with the following definition:
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Definition 1. Let p ∈ K[x1, . . . , xn, y1, . . . , yn] = K[x,y]
be a non–constant polynomial. We say that p is near–
separated if there exist non–constant polynomials r1, s1 ∈
K[x] = K[x1, . . . , xn] and r2, s2 ∈ K[y] = K[y1, . . . , yn],
such that neither r1, s1 are associated, nor r2, s2 are asso-
ciated and p = r1s2 − r2s1. In the particular case when
p = r(x1, . . . , xn)s(y1, . . . , yn) − s(x1, . . . , xn)r(y1, . . . , yn),
we say that p is a symmetric near–separated polyno-
mial. We say that (r, s) is a symmetric near–separated
representation of p.

In this paper, degx1,...,xn
will denote the total degree with

respect to the variables x1, . . . , xn and deg will denote the
total degree with respect to all the variables. Also, given a
rational function f we will also de note as fn, fd the numer-
ator and denominator of f , respectively.

In the following theorem we give some basic properties of
near–separated polynomials, for later use.

Theorem 2. Let p ∈ K[x,y] be a near–separated polyno-
mial and r1, s1, r2, s2 as in the above definition. Then

(i) If gcd(r1, s1) = 1 and gcd(r2, s2) = 1, p has no factors
in K[x] or K[y].

(ii) degx1,...,xn
p = max{deg r1, deg s1} and degy1,...,yn

p =
max{deg r2, deg s2}.

(iii) If p is symmetric and (α1, . . . , αn) ∈ Kn verifies
p(x1, . . . , xn, α1, . . . , αn) 6= 0, then there exists (r, s),
a symmetric near–separated representation of p, such
that

r(α1, . . . , αn) = 0 and s(α1, . . . , αn) = 1.

(iv) If p is symmetric, the coefficient of xi0
k yj0

k in p is the
near–separated polynomial

ai0 bj0 − bi0 aj0 ,

where ai is the coefficient of xi
k in r and bi is the co-

efficient of xi
k in s.

Proof. (i) Suppose v ∈ K[x1, . . . , xn] is a non–constant
factor of p. Then there exists i such that degxi

v ≥ 1.
Without loss of generality we will suppose that i = 1. Let
α be a root of v, considering p as a univariate polynomial
in the variable x1, in a suitable extension of K[x2, . . . , xn].
If α is a root of any of the polynomials r1 or s1, then it is
also a root of the other. This is a contradiction, because
gcd(r1, s1) = 1. Therefore α is neither a root of r1 nor of
s1. Then,

r1(α, x2, . . . , xn)

s1(α, x2, . . . , xn)
=

r2(y1, . . . , yn)

s2(y1, . . . , yn)
∈ K.

A contradiction again, since r2, s2 are not associated in K.
(ii) If deg r1 6= deg s1, the equality is trivial. Otherwise,

if deg r1 = deg s1 > degx1,...,xn
p, the terms with greatest

degree with respect to x1, . . . , xn vanish. This is a contra-
diction, because r2, s2 are not associated. The proof is the
same for r2, s2.

(iii) Let (r, s) be a representation of p.

– If r(α1, . . . , αn) = 0, since p(x1, . . . , xn, α1, . . . , αn) 6= 0,
we have s(α1, . . . , αn) 6= 0. Then we have a new near–
separated representation:�

r s(α1, . . . , αn),
s

s(α1, . . . , αn)

�
.

– If s(α1, . . . , αn) = 0, then the representation (−s, r) we
are in the previous case.

– If r(α1, . . . , αn), s(α1, . . . , αn) 6= 0, then we consider the
representation�

r s(α1, . . . , αn)− s r(α1, . . . , αn),
s

s(α1, . . . , αn)

�
.

(iv) This is a simple routine confirmation.

Now, we state an important theorem that relates uni–multi-
variate decompositions to near–separated polynomials, that
is proved in [10]:

Theorem 3. Let A = K(x) and B = K(y) be rational func-
tion fields over K. Let f, h ∈ A and f ′, h′ ∈ B be non–
constant rational functions. Then the following statements
are equivalent:

A) There exists a rational function g ∈ K(t) satisfying f =
g(h) and f ′ = g(h′).

B) h− h′ divides f − f ′ in A⊗K B.

As a consequence, a rational function f ∈ K(x) verifies f =
g(h) for some g, h if and only if hn(x) hd(y) − hd(x) hn(y)
divides fn(x) fd(y)− fd(x) fn(y).

Given an admissible monomial ordering > in a polynomial
ring and a nonzero polynomial G in that ring, we denote by
lm G the leading monomial of G with respect to > and lc G
its leading coefficient.

Algorithm 1.

Input: f1, . . . , fm ∈ K(x).

Output: f ∈ K(x) such that K(f) = F = K(f1, . . . , fm), if
it exists. Otherwise, returns null.

A Let > be a graded lexicographical ordering for
y = (y1, . . . , yn). Let i = m.

B Let Fk = fkn(y)− fk(x)fkd(y) for k = 1, . . . , i.

C Compute Hi = gcd({Fk, k = 1, . . . , i}) with lc Hi = 1.

D – If Hi = 1, RETURN NULL (F does not have tran-
scendence degree 1 over K).

– If there exists j ∈ {1, . . . , i} such that lm Hi =
lm Fj, then RETURN fj.

– Otherwise, let fi+1 be a coefficient of Hi in F \ K.
Increase i and go to B.
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Correctness proof. If F has transcendence degree 1 over
K, we can write F = K(f). By Theorem 3,

fn(y)− f(x)fd(y)

divides Hi for any i. Therefore, Hi is non–constant if a
Lüroth generator exists.

If there are i, j such that lm Hi = lm Fj , then Fj is a greatest
common divisor of {Fk, k = 1, . . . , i}. Therefore, Fj divides

Fk for every k. Fix such a k. Let q = fkn(y)
{Fj}

, s =

fkd(y)
{Fj}

the normal form with respect to the monomial
ordering >; then there exist p, q, r, s ∈ F[y] such that

fjn(y) = p(y)Fi − q(y)
fjd(y) = r(y)Fi − s(y)

where lm Fj does not divide any monomial of q or s. By
theorem 2(i), q, s 6= 0. By the definition in step B,

Fk = Fj(p− r fk(x))− (q − s fk(x)).

Hence Fj divides q − s fk(x1, . . . , xn) and we conclude that
q − s fk(x) = 0, since otherwise we would get that lm Fj

divides lm (q−s fk(x1, . . . , xn)), which contradicts the choice

of the polynomials q, s. Thus fk(x1, . . . , xn) =
q

s
∈ F =

K(fj).

Now we suppose that lm Hi < lm Fk for all k. Again, fix
a value for k. Then there exists a C ∈ F[y] \ F such that
Fk = HiC. Let d, α be the lowest common multiples of the
denominators of the coefficients of Hi and C, respectively.
Then D = Hid, C′ = αC ∈ K[x,y]. Since Hi is monic, the
polynomial D is primitive. Then,

fkn(y) fkd(x)− fkn(x) fkd(y) =
D

d

C′

α
fkd

and by theorem 2,

fkn(y) fkd(x)− fkn(x) fkd(y) = D bC,

bC ∈ K[x,y]. On one hand, D 6∈ K[y], thus D (and Hi) have

a non–constant coefficient. On the other hand, bC 6∈ K[y],
then the non–constant coefficients of D in the ring K(x)[y]
have smaller degree than that of fk(x). The choice of d
assures that the coefficients of H have smaller degree than
fk. Summarizing, there exists a coefficient a ∈ F of Hi that
can be added to the list of generators and has smaller degree
than them. If tr.deg (F/K) = 1, Hi is non–constant for all
i, and the generator has smaller degree than the others.
Therefore, the algorithm ends in a finite number of steps.

Finally, we note that complexity is dominated in the step C
by computing gcd’s of multivariate polynomials, so the al-
gorithm is polynomial in the degree of the rational functions
and in n (see [16]).

From the fact that the Lüroth generator can be found with
only some gcd computations, we obtain that if f is a Lüroth
generator of K(f1, . . . , fn) then it is also a Lüroth generator
of K′(f1, . . . , fn) for any field extension K′ of K, K ⊂ K′.

Example 1. Let Q(f1, f2) ⊂ Q(x, y, z) where

f1 =
y2x4 − 2y2x2z + y2z2 + x2 − 2xz + z2

yx3 − yxz − yzx2 + z2y

f2 =
y2x4 − 2y2x2z + y2z2

x2 − 2xz + yx3 − yxz + z2 − yzx2 + z2y
.

Let

Fi = fin(s, t, u)− fi(x, y, z)fid(s, t, u) , i = 1, 2.

Compute

H2 = gcd(F1, F2) = −tu + s2t +
x2y − zy

x− z
u +

−x2y + zy

x− z
s.

Since lm H2 < lm Fi with respect to the lexicographical or-
dering s > t > u, we take a non–constant coefficient of H2:

f3 =
x2y − zy

x− z
. Now

H3 = −tu + s2t +
x2y − zy

x− z
u +

−x2y + zy

x− z
s

and H3 = F3, since H3 = H2. The algorithm returns f3, a
Lüroth generator of Q(f1, f2).

It is important to highlight that when the field F contains a
non–constant polynomial you can compute a polynomial as a
generator, and this generator neither depends on the ground
field K. This result was proved in [8], for zero characteristic.
A general proof can be found in [11].

Algorithm 2.

Input: f1, . . . , fm ∈ K(x).

Output: f ∈ K[x] such that K(f) = F = K(f1, . . . , fm), if
it exists. Otherwise, returns null.

A Compute a Lüroth generator f of K(f1, . . . , fm) using Al-
gorithm 1.

B Let s be the degree of f ′.

— If s > deg f ′n and f ′n is not constant, return null.
Otherwise, let f = 1/f ′.

— If s > deg f ′d and f ′d is not constant, return null.
Otherwise, let f = f ′.

— Let f
(s)
n

′
, f

(s)
d

′
be the homogeneous components of

degree s of f ′n, f ′d, respectively. Let a =
f

(s)
n

′

f
(s)
d

′ . If

a or f ′n − af ′d are not constant, return null.

Otherwise, let f =
1

y − a
◦ f ′.

Correctness proof. Once a Lüroth’s generator has been
computed, take a generator f with degree m such that if

f =
fn

fd
and

fn = f
(s)
n + · · ·+ f

(0)
n ,

fd = f
(s)
d + · · ·+ f

(0)
d ,
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the sum in homogeneous polynomials, then either f
(s)
d = 0

or
f

(s)
n

f
(s)
d

6∈ K.

If p ∈ K(f) is a polynomial, then there exists g ∈ K(y) with

degree r such that p = g(f). If g =
ary

r + · · ·+ a0

bryr + · · ·+ b0
,

p =
arf

r
n + · · ·+ a0f

r
d

brfr
n + · · ·+ b0fr

d

=
ar(f

(s)
n + · · ·+ f

(0)
n )

r
+ · · ·+ a0(f

(s)
d + · · ·+ f

(0)
d )r

br(f
(s)
n + · · ·+ f

(0)
n )r + · · ·+ b0(f

(s)
d + · · ·+ f

(0)
d )r

.

Since p is a polynomial, the degree of the previous denomi-
nator is smaller than the degree of the numerator. Therefore

brf
(s)
n

r
+ · · ·+ b0f

(s)
d

r
= 0.

If f
(s)
d = 0 then br = 0 and p =

arf
r
n + · · ·+ a0f

r
d

fd(br−1f
r−1
n + · · ·+ b0f

r−1
d )

.

Hence fd divides the numerator of p, and therefore divides
fn. This proves that f is a polynomial.

If, on the contrary, f
(s)
d 6= 0, gd

 
f

(s)
n

f
(s)
d

!
= 0. Contradiction,

since
f

(s)
n

f
(s)
d

6∈ K.

3. TWO UNI–MULTIVARIATE DECOMPO-
SITION ALGORITHMS

We define the degree of a rational function f = fn/fd ∈
K(x) as deg f = max {deg fn, deg fd} if gcd(fn, fd) = 1.
The following definition was introduced in [15] for polyno-
mials.

Definition 2. Let f, h ∈ K(x) and g ∈ K(y) such that
f = g(h). Then we say that (g, h) is a uni-multivariate de-
composition of f . It is non-trivial if 1 < deg h < deg f . The
rational function is uni-multivariate decomposable if there
exits a non-trivial decomposition.

If f is a polynomial having a nontrivial uni-multivariate de-
composition, then by Algorithm 2 we get that there exits a
uni-multivariate decomposition (g, h) with g and h polyno-
mials. The paper [15] provides an algorithm to compute a
nontrivial uni-multivariate decomposition of a polynomial f
of degree m that only requires O(nm(m + 1)n log m) arith-
metic operations in the ground field K.

The known techniques for decomposition all divide the prob-
lem into two parts. Given f , in order to find a decomposition
f = g(h),

1. one first computes candidates h,

2. then computes g given h.

Determining g from f and h is a subfield membership prob-
lem. The paper [13] gives a solution to this part. We also
present another faster method, that only requires solving a

linear system of equations. Usually, the harder step is to find
candidates for h. One goal in decomposition is to have com-
ponents of smaller degree than the composed polynomial.
This will be the case here.

3.1 Preliminary results
First, we state some results that will be used in the algo-
rithms presented later. On the properties to highlight out
of uni-multivariate decomposition is the good behaviour of
the degree with respect to this composition.

Theorem 4. Let g ∈ K(y) and h ∈ K(x), and f = g(h).
Then deg f = deg g · deg h.

Proof. Let g =
gn

gd
and h =

hn

hd
with gcd(gn, gd) = 1 and

gcd(hn, hd) = 1. Then there exist polynomials A, B ∈ K[y]
such that

gn(y) A(y) + gd(y) B(y) = 1.

Homogenizing the polynomials gn, gd, A, B we obtain, re-
spectively, the bivariate polynomials egn(y1, y2), egd(y1, y2),eA(y1, y2), eB(y1, y2) verifying

egn(y1, y2) eA(y1, y2) yu
2 + egd(y1, y2) eB(y1, y2) yv

2 = yw
2

with either u = 0 or v = 0 and w =max{u, v}. Therefore,

egn(hn, hd) eA(hn, hd) hu
d + egd(hn, hd) eB(hn, hd) hv

d = hw
d .

If d is an irreducible factor of gcd(egn(hn, hd), egd(hn, hd)),
then d divides hd. On the other hand, d divides egn(hn, hd)
and egd(hn, hd); this implies that d divides hn. As a conse-
quence, gcd(egn(hn, hd), egd(hn, hd)) = 1. So,

f =
egn(hn, hd)egd(hn, hd)

ha
d , |a| = |deg hn − deg hd|

is in reduced form. Without loss of generality, we can take
deg gn = rn ≥ rd =deg gd with

gn(y) = arn yrn + · · ·+ a0

gd(y) = brd yrd + · · ·+ b0.

Then, deg f = max {deg egn(hn, hd), deg egd(hn, hd) h
rn−rd
d }

and egn(hn, hd) = arnhrn
n + · · ·+ a0h

rn
degd(hn, hd) = brdh

rd
n + · · ·+ b0h

rd
d .

If deg egn(hn, hd) = rn deg h, we immediately obtain that
deg f = deg g deg h. If deg egn(hn, hd) < rndeg h, then
s = deg hn = deg hd. Write

hn = h
(s)
n + h

(s−1)
n + · · ·+ h

(0)
n

hd = h
(s)
d + h

(s−1)
d + · · ·+ h

(0)
d

where h
(j)
n , h

(j)
d are the homogeneous components of hn and

hd with degree j, respectively. Since the degree decreases,

deg egn(h
(s)
n , h

(s)
d ) = 0 and deg egn

 
h

(s)
n

h
(s)
d

!
= 0. Therefore,

h
(s)
n

h
(s)
d

∈ K. In this case, you can take h′ ∈ K(x) a rational

function with deg h = degh′, deg h′n 6= deg h′d and such
that f = g′(h′) for some g′ ∈ K(y) with deg g = deg g′.
Under these hypothesis, we proved before that deg f =
deg g′ deg h′ = deg g deg h.
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Corollary 1. Let g = gn/gd with gn = auyu + · · · +
a0, gd = bvyv+· · ·+b0 and h = hn/hd verifying gcd(gn, gd) =
gcd(hn, hd) = 1. If f = fn/fd = g(h) with

fn = (au hu
n + · · ·+ a0 hu

d) h
max{v−u,0}
d

fd = (bv hv
n + · · ·+ b0 hv

d) h
max{u−v,0}
d

then gcd(fn, fd) = 1.

Proof. It is easy to prove that

deg fn, deg fd ≤ max{u, v} ·max{deg hn, deg hd}.

If gcd(fn, fd) 6= 1, then deg f < deg g deg h, contradicting
theorem 4.

Corollary 2. Given f and h, if there exists g such that
f = g(h), then g is unique. Furthermore, it can be computed
from f and h by solving a linear system of equations.

Proof. If f = g1(h) = g2(h), then (g1 − g2)(h) = 0, and
by theorem 4, deg (g1 − g2) = 0, thus g1 − g2 is constant.
It is then clear that it must be 0, that is, g1 = g2. Again
by theorem 4, the degree of g is determined by those of f
and h. We can write g as a function with the corresponding
degree and undetermined coefficients. Equating to zero the
coefficients of the numerator of f − g(h), we obtain a linear
homogeneous system of equations in the coefficients of g. If
we compute a non–trivial solution to this system, we find
g.

Definition 3. Let f ∈ K(x) be a rational function. Two
uni–multivariate decompositions (g, h) and (g′, h′) of f are
equivalent if there exists a composition unit l ∈ K(y), i.e.,
deg l = 1, such that h = l(h′).

Corollary 3. Let f ∈ K(x) be a non–constant rational
function. Then the equivalence classes of uni–multivariate
decompositions of f correspond bijectively to intermediate
fields F, K(f) ⊂ F ⊂ K(x), with transcendence degree 1 over
K.

Proof. The bijection is

{[(g, h)], f = g(h)} −→ {K(f) ⊂ F, (F/K) = 1}.
[(g, h)] 7−→ F = K(h)

Suppose we have a uni–multivariate decomposition (g, h) of
f . Since f = g(h), F = K(h) is an intermediate field of
K(f) ⊂ K(x) with transcendence degree 1 over K. Also, if
(g′, h′) is equivalent to (g, h), h = l(h′) for some composition
unit l ∈ K(y). Consequently, h′ = l−1(h) and K(h) = K(h′).
Let (g, h) and (g′, h′) be two uni–multivariate decomposi-
tions of f such that K(h) = K(h′). Then there exists ratio-
nal functions l, l′ ∈ K(y) such that h = l(h′) and h′ = l′(h).
By theorem 4, deg l(l′) = 1 and deg l = deg l′ = 1.
By the uniqueness (see Corollary 2) of the left component,
y = l(l′). So, l ∈ K(y) is a composition unit and (g, h),
(g′, h′) are equivalent. By Theorem 1, there exist h ∈ K(x)
and g ∈ K(y) such that F = K(h) and f = g(h).

3.2 First algorithm
We now proceed with the first algorithm for computing can-
didates h = hn/hd. This algorithm is based on Theorem
3. Since hn(x) hd(y) − hd(x) hn(y) divides fn(x) fd(y) −
fd(x)fn(y), one can compute candidates for h from f merely
looking at the near-separated divisors H = r(x) s(y) −

r(y)s(x). Next, the problem is: given a multivariate polyno-
mial H = (x,y), how can one determine if it is a symmetric
near-separated polynomial? This is a consequence of theo-
rem 2:

Corollary 4. Given a polynomial p ∈ K[x , y], it is pos-
sible to find a near–separated representation (r, s) ∈ K[x]2

of p, if it exists, by solving a linear system of equations with
coefficients in K. Moreover, any other solution (r′, s′) of this
linear system of equations gives an equivalent decomposition.

Algorithm 3.

Input: f ∈ K(x).

Output: A uni–multivariate decomposition (g, h) of f , if it
exists.

A Factor the symmetric polynomial

p = fn(x) fd(y)− fd(x) fn(y).

Let D = {H1, . . . , Hm} the set of factors of p (up to
product by constants). Let i = 1.

B Check if Hi is a symmetric near–separated polynomial.

If H = r(x) s(y) − r(y) s(x), then h =
r

s
is a right–

component for f ; compute the left component g by solv-
ing a linear system (see Corollary 2) and RETURN
(g, h).

C If i < m, then increase i and go to B. Otherwise, RE-
TURN NULL (f is uni–multivariate indecomposable).

Example 2. Let

f = 4z4y2 − 8z3y3 + 8z2yx + 4z2y4 − 8zy2x
+4x2 − 2z2y + 2zy2 − 2x + 10.

The factorization of the polynomial f(x, y, z)− f(s, t, u) is

2
�
2x− 1 + 2s− 2ut2 + 2u2t− 2zy2 + 2z2y

��
x− s + z2y − zy2 − u2t + ut2

�
.

The first factor f1 = 2x−1+2s−2ut2+2u2t−2zy2+2z2y is
not symmetric near–separated because f1(x, y, z, x, y, z) 6= 0.
On the other hand, the second factor f2 = x−s+z2y−zy2−
u2t + ut2 does satisfy f2(x, y, z, x, y, z) = 0. Note that by a
previous remark, the components of the decomposition can be
considered as polynomials. Then f2 can be written as f2 =
h(x, y, z)− h(s, t, u). Taking h(x, y, z) = f2(x, y, z, 0, 0, 0) =
x+z2y−zy2, we check that it satisfies the previous equation
(see theorem 2). The left component g is also a polynomial,
and by theorem 4, has degree 2. Solving the equation f =
g(h) we have the multi–univariate decomposition:

(4t2 − 2t + 10, x + z2y − zy2).

Example 3. Let f =
fn

fd
with

fn = y2x2 + 2x2yz2 − 2y6x + z4x2 − 2z2xy5 + y10

−81x2 − 450xyz − 625y2z2,
fd = y2x2 + 2x2yz2 − 2y6x + z4x2 − 2z2xy5 + y10

−162x2 − 900xyz − 1250y2z2.

We look for all the intermediate fields of Q(f) ⊂ Q(x, y, z)
with transcendence degree 1 over Q. First, we will factor the
polynomial

fn(x, y, z) fd(s, t, u)− fn(s, t, u) fd(x, y, z) = −625f1 f2,
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where

f1=−xtz2u + 9
25

xt5 − zsty − zu2sy + zt5y − 9
25

xz2s
− 9

25
xu2s− 9

25
xys− xyut− 9

25
xts + 9

25
sy5 + uty5,

f2=−xtz2u− 9
25

xt5 + zsty + zu2sy − zt5y − 9
25

xz2s
+ 9

25
xu2s− 9

25
xys− xyut + 9

25
xts + 9

25
sy5 + uty5.

We have f1(x, y, z, x, y, z) 6= 0, thus f1 is not symmetric
near–separated. On the other hand, f2(x, y, z, x, y, z) = 0.
Moreover,

f2 = −zt5y + uty5 +

�
− 9

25
t5 − tz2u− yut

�
x

+

�
zty +

9

25
y5 + zu2y

�
s

+

�
− 9

25
z2 +

9

25
t +

9

25
U2 − 9

25
y

�
sx.

We check that f2 is symmetric near–separated, by solving a
linear system of equations. Define

f2(x, y, z, 1, 0, 0) = r(x, y, z) =− 9

25
xz2 − 9

25
xy +

9

25
y5

=

�
− 9

25
z2 − 9

25
y

�
x +

9

25
y5

Next, we compute s0(y, z) such that

9

25
y5s0(t, u)− 9

25
t5s0(y, z) = −zt5y + uty5.

Let s0(y, z) = a5(z) y5 + · · · + a0(z). Then a1 =
25

9
z and

a0 = a2 = a3 = a4 = a5 = 0. Hence, s0 =
25

9
zy and

s1(y, z) =
r1(y, z) s0(t, u)− c10

r0(t, u)
= 1. Thus s = x +

25

9
zy,

s(1, 0, 0) = 1 and (r, s) is a symmetric near–separated rep-
resentation of p:

r = − 9

25
xz2 − 9

25
xy +

9

25
y5

s = x +
25

9
zy.

Now we compute g, which is a univariate function with de-
gree 2. Solving the corresponding linear system of equations
we obtain

g =
625t2 − 6561

625t2 − 13122
.

3.3 Second algorithm
For this algorithm, we suppose that K has sufficiently many
elements. If it is not the case, then we can decompose f
in an algebraic extension K[ω] of K, and then check if it is
equivalent to a decomposition with coefficients in K; this last
step can be done by solving a system of linear equations in
the same fashion as the computation of g. The algorithm is
based on Corollary 1; we will need several technical results
too.

Lemma 1. Let f ∈ K(x). Then for any admissible mono-
mial ordering > there are units u ∈ K(y), vi ∈ K(xi), i =
1, . . . , n such that, if f = fn / fd = u ◦ f(v1, . . . , vn), then
lm fn > lm fd, fn(0, . . . , 0) = 0 and fd(0, . . . , 0) 6= 0.

Proof. Let > be any admissible monomial ordering. Let
u1 ∈ K(y) be a unit such that f1 = f1n / f1d = u1(f) verifies
lm f1n > lm f1d. Such a unit always exists:

– If lm fn < lm fd, let u1 = 1/y.

– If lm fn = lm fd, let u1 = (1/y) ◦ (y − lc fn

lc fd
).

– If lm fn > lm fd, let u1 = y.

Let α = (α1, . . . , αn) ∈ Kn such that f1d(α) 6= 0 (such
a α exists if K has sufficiently many elements). Let vi =
xi + αi, i = 1, . . . , n and f2 = f2n/f2d = f1(v1, . . . , vn).
Then f2d(0, . . . , 0) 6= 0, and we can take

u = y − f2n(0, . . . , 0)

f2d(0, . . . , 0)

so that f = u ◦ f(v1, . . . , vn) verifies all the conditions.

Lemma 2. Let i, j, k ∈ N with i < j ≤ k, P, Q ∈ K[x] and
> an admissible monomial ordering such that lm P > lm Q.
Then lm P jQk−j > lm P iQk−i.

Lemma 3. Let f = fn/fd ∈ K(x) such that lm fn >
lm fd, fn(0, . . . , 0) = 0 and fd(0, . . . , 0) 6= 0. Then, for
every uni–multivariate decomposition f = g(h) there exists
an equivalent decomposition f = g(h) with g = gn/gd, deg gn >
deg gd and gn(0) = 0 (thus gd(0) 6= 0).

Proof. As in the proof of Lemma 1, there exists a unit u1

such that if h1 = u(h) = h1n/h1d, then h1n(0, . . . , 0) = 0.
Let g1 = g(u−1) = (auyu + · · ·+a0)/(bvyv + · · ·+ b0). Then

f =
auhu

1n + · · ·+ a0h
u
1d

bvhv
1n + · · ·+ b0hv

1d

hv−u
1d

and by Corollary 1, fd = (bvhv
1n + · · ·+ b0h

v
1d)h

max{u−v,0}
1d .

As fd(0, . . . , 0) 6= 0 and h1n(0, . . . , 0) = 0 we must have
h1d(0, . . . , 0) 6= 0. But fn(0, . . . , 0) = 0 and fn = (auhu

1n +

· · · + a0h
u
1d)h

max{v−u,0}
1d , thus a0 = 0. Next, we will prove

that there is an equivalent decomposition verifying the con-
dition on the degrees of the left–component. To that end, we
will consider three cases. Let > be any admissible monomial
ordering and w = deg g1 = max{u, v}.

– If lm h1n < lm h1d then using repeatedly Lemma 2,

lm fn = lm h1nhw−1
1d < lm hw

1d = lm fd

which contradicts our hypothesis.

– If lm h1n > lm h1d, then applying Lemma 2,

lm fn = lm hu
1nh

max{v−u,0}
1d

lm fd = lmhv
1nh

max{u−v,0}
1d .

As lm fn > lm fd by hypothesis, by Lemma 2 again
we must have u > v, that is, deg g1n > deg g1d.

– If lm h1n = lm h1d then, as in Lemma 1, we can cancel
the leading monomial of h1d with a unit u2 on the left,
so that f = g2(h2) with lm h2n > lm h2d which is the
previous case.

Let f = g(h) be a uni–multivariate decomposition of f with
f = fn/fd, g = (auyu + · · · + a0)/(bvyv + · · · + b0) and
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h = hn/hd. By the previous lemma, we can suppose u > v
and g(0) = 0, i.e. a0 = 0. Then, as

f =
auhu

n + · · ·+ a1hnhu−1
d

(bvhv
n + · · ·+ b0hv

d)hu−v
d

we have that hn | fn and hd | fd. This is the key to the fol-
lowing algorithm.

Algorithm 4.

Input: f ∈ K(x).

Output: (g, h) a uni–multivariate decomposition of f , if it
exists.

A Compute u, v1, . . . , vn as in Lemma 1. Let

f = fn/fd = u ◦ f(v1, . . . , vn)

B Factor fn and fd. Let D = {(A1, B1), . . . , (Am, Bm)}
be the set of pairs (A, B) such that A, B divide fn, fd

respectively (up to product by constants). Let i = 1.

C Check if there exists g ∈ K(y) with f = g(Ai/Bi); if such
a g exists, RETURN

�
u−1(g), h(v−1

1 , . . . , v−1
n )
�
.

D If i < m, increase i and go to C, otherwise RETURN
NULL (f is uni–multivariate indecomposable).

Example 4. Let

f = 4z4y2 − 8z3y3 + 8z2yx + 4z2y4 − 8zy2x
+4x2 − 2z2y + 2zy2 − 2x + 10

as in Example 2. We take u = t − 10 ∈ K(t) and v1 =
x, v2 = y, v3 = z. Then

f = 4z4y2 − 8z3y3 + 8z2yx + 4z2y4 − 8zy2x
+4x2 − 2z2y + 2zy2 − 2x.

We factor f = 2(x + z2y − zy2)(2x− 1 + 2z2y − 2zy2). We
first take the candidate (x + z2y − zy2). We have to check
if there are values of a1, a2 for which g = a2t

2 + a1t verifies
f = g(x+ z2y− zy2). We find the solution a2 = 4, a1 = −2.
Thus f = (4t2 − 2t + 10)(x + z2y − zy2).

Example 5. Let f =
fn

fd
with

fn = y2x2 + 2x2yz2 − 2y6x + z4x2 − 2z2xy5

+y10 − 81x2 − 450xyz − 625y2z2,
fd = y2x2 + 2x2yz2 − 2y6x + z4x2 − 2z2xy5

+y10 − 162x2 − 900xyz − 1250y2z2,

as in Example 3. Let > be the pure lexicographical ordering
with y > x > z. Then lm fn = lm fd = y10. Following the
proof of lemma 1, let u1 = 1/(t − 1), then u1(f) = f1n/f1d

with

f1n = y2x2 + 2x2yz2 − 2y6x + z4x2 − 2z2xy5

+y10 − 162x2 − 900xyz − 1250y2z2,
f1d = 81x2 + 450xyz + 625y2z2.

Now, let α = (1, 0, 0), so that the denominator of the previ-
ous expression is non–zero at the point α. Then f2n/f2d =
u(f(x + 1, y, z)) with

f2n = y2x2 + 2y2x + y2 + 2x2yz2 + 4yz2x + 2yz2

−2y6x− 2y6 + z4x2 + 2z4x + z4 − 2z2xy5

−2z2y5 + y10 − 162x2 − 324x− 162
−900xyz − 900yz − 1250y2z2,

f2d = 81x2 + 162x + 81 + 450xyz + 450yz + 625y2z2.

Table 1: Average computing times (in seconds)
n d Alg 3 Fact. Alg 4 Fact.
2 10 32.17 23.15 27.03 22.44
2 25 68.20 46.34 51.10 40.33
2 30 89.40 62.48 91.22 71.06
4 8 54.37 38.56 32.07 25.47
4 25 89.75 65.95 64.41 46.72
4 30 156.87 110.30 134.60 99.87
8 10 234.90 162.89 156.12 116.66
8 25 349.44 235.41 341.11 276.85
8 30 654.72 454.36 678.89 511.01

As f2n(0, 0, 0) = −162 and f2d(0, 0, 0) = 81, if u2 = t + 2,
we have that

u2(u1(f(x + 1, y, z))) = f =
fn

fd

verifies the conditions of Lemma 3. We factor fn and fd:

fn =
�
z2 + z2x + y + xy − y5

�2
,

fd = (9x + 9 + 25yz)2 .

As the degree is multiplicative and deg f = 10, and also
lm hn > lm hd, the possible values of hn, hd are

hn = z2 + z2x + y + xy − y5,

hd ∈ {1, 9x + 9 + 25yz, (9x + 9 + 25yz)2.}

To check them, let g = a2t2+a1t
b1t+b0

. We substitute h in g and
solve the homogeneous linear system obtained by comparing
the coefficients with those of f .

– If hd = 1, there is only the trivial solution, thus h is not
a candidate for f .

– If hd = 9x + 9 + 25yz, we get the non–trivial solution
a2 = b0 = 1, a1 = b1 = 0, thus f has a uni–multivariate
decomposition

(u−1
1 (u−1

2 (g)) , h(x− 1, y, z)) = (−1+t2

t2−2
, z2x+yx−y5

9x+25yz
).

– If hd = (9x + 9 + 25yz)2, the only solution is the trivial
one.

Therefore, any uni–multivariate decomposition of f is equiv-
alent to the decomposition (g, h) computed before.

4. PERFORMANCE
Both algorithms run in exponential time, since the number
of candidates to be tested is, in the worst case, exponen-
tial in the degree of the input; the rest of the steps in both
algorithms are in polynomial time. However, in practical
examples it seems that most of the time is spent in the fac-
torization of the associated symmetric near–separated poly-
nomial, in Algorithm 3, or the numerator and denominator
in Algorithm 4. We show in Table 1 the average times ob-
tained by running implementations of these algorithms in
Maple VI (see [3]) on a collection of random functions. The
parameters are the number of variables n and the degree of
the rational function d. We have also included the factor-
ization times for each algorithm.
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