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Abstract
24
Letg > 1 be aninteger and letandb be elements of the residue rifig of integers modulg. We 25
show how, when given a polynomigl € Z,[X] and approximations tog, vy € Zq such thatvy =

f(vp) modg one can recoverg andv; efficiently. This result has direct applications to predicting,-,
the polynomial congruential generator: a sequeigg of pseudorandom numbers defined by the,,
relationv, 11 = f(v,) modg for some polynomialf € Z,[X]. The applications lead to analogues
of results known for the linear congruential generator, = ax, + b modg, although the results w0
are much more restrictive due to nonlinearity of the problem.
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1. Introduction

For an integey > 1 we denote by, the residue ring of integers modujo We always
represent the residue classes fidpby elements of the s¢0, 1, ..., g — 1}. As usual, we
denote byZy the set of invertible elements @, .

Accordingly, for a primep, we denote by, = Z, the field ofp elements and as before, 6
we assume thatitis represented by thg8gt, . .., p —1}. In particular, sometimes, where 7
obvious, we treat elements @f, andF, as integers in the above range. 8

Here we consider theoisy polynomial evaluation problem Z,: given a polynomial 9
f(X) € Z4[X] and approximations tog, v1 € Z,, wherevy = f(vo) modg, recovervg 10
andv;. By an approximation to an integer, we mean an integers; such thajw; — v;|is 11
small. 12

The question has applications to, and has been motivated by, the predictability probkem
for nonlinear pseudorandom number generators. To be more precise, given a polynomial
f(X) € Z4[X], we define thgpolynomial congruential generatdo be a sequena@,) of 15

a A W N P

elements ofZ, satisfying the recurrence relation 16
17

vpt1= f(v,) modg, n=0.1,..., Q) 8
whereug is theinitial value. If deg f = m then we say that the polynomial congruentiafo
generator iof degreen. 20

This generator exhibits very attractive uniformity of distribution and nonlinearity prop-
erties, see [26,27] for surveys or recent results. Here we study some of its cryptograghic
properties, namely the question of so-caleddictabilityof such generators. 23

In the cryptographic setting, the initial valwg (and sometimes the polynomigland 24
the modulug;) is assumed to be secret, and we want to use the output of the generatoreas a
stream cipher. In this setting, we put only the most significant bits of eachin the hope 26
that this makes the resulting output sequence difficult to predict. (Note that if we remewe
thek least significant bits of eacly,, an evesdropper may easily find integegssuch that 28
lw, — v,| < 25~1 by examining the output. This is the connection to the noisy polynomizi
evaluation problem.) The main result ofstpaper may be interpreted as saying that if 30
andg are public, and if too many bits of the elementsare output at each stage, thers:
the generator becomes @wire because the elementsnay be efficiently recovered from 32
the output. Slightly more precisely, we show that the polynomial congruential generategis
polynomial time (in log; and degf) predictable if sufficiently many bits of its consecu-34
tive elements are revealed (even if the degrethe generator is allowed to slowly grow 35
together with the size of the modulyg}. Our results exclude a small set of polynomigls 36
and a small set of starting values: see Theorems 4 and 5 for the details. In the fina
section of the paper, we discuss the case when the polyngni@ims part of the secret 38
key, and show that the unique recovery of the elemegpfsom the output is not possible. 39

For thelinear congruential generator 40

41

Xpt1=ax,+b modg, n=0,1,..., (2) "

similar problems have been introduced by Knuth [18] and then considered in [5,6,10415,
20]; see also surveys [7,21]. We remark that predicting nonlinear generators has beerseon-
sidered in some of these works as well, however only in the case when all terms are given
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in full. Thus the case we consider here, when only some bits of the output are given,thas
not previously been studied for nonlinear generators. 2

Several nonlinear generators have recentigrbstudied in [3,4]. Here, as in [3,4], we3
use some lattice algorithms. However, in contrast to [3,4], the dimension of our lattiees
grows as deg grows, and thus slightly different tools need to be applied. 5

In some sense the problem we solve can be considered as a special case of thegrob-
lem of finding small solutions of multivariate polynomial congruences. For polynomial
congruences in one variable, an algorithm for solving this problem has been given by Gop-
persmith [8], see also [9,13]. However, in the general case only heuristic results are knéwn.
Here we are able to obtain rigorous results, due to the special structure of the polynoriflals
involved. un

Throughout the paper, the constants in thé-hotation are absolute. 12
13

14
15
16
17
18

2. Preliminaries
2.1. Background on lattices

19

Here we review several related results aedimitions concerning lattices, all of which
can be found in [11]. For more details and moecent references, we recommend consult;
ing [15,16,23-25]. 2
Let{bs, ..., bs} be a set of linearly independent vector&ifi The set 2

L={z.z=cib1+ - -+ by, c1, ..., ¢ €7} z:

is called ans-dimensional latticevith basis{b1, ..., by}. If s =r, the latticeL is of full 26
rank. 27
One basic lattice problem is tlshortest vector problengiven a basis of a lattic€ in 28
RS, find a nonzero lattice vectére £ which minimises the Euclidean noriffifl among all 29
lattice vectors. Unfortunately, there are several indications that this problbi-com- 30
plete (when the dimension grows). In particular, it is shown in [1] that the shortest vector
problem isNP-hard under randomized reductions, and so it is now widely believed ttat
there is no polynomial time algorithm to solve SVP. For a slightly weaker task of findinga
short vector, the celebratéd L algorithmof Lenstra, Lenstra and Lovasz [22] provides &4
desirable solution. We however use a slightly stronger result which follows from [28], afid
which we state as Lemma 1. 36
We always assume that the basis/tonsists of vectors with rational components$’
Thus a polynomial time algorithm fof means an algorithm whose running time is poly38
nomial in the total number of bits required for binary representation of numerators &hd

denominators of all components of the basis. 40
41

Lemma 1. There exists a deterministic polynomial time algorithm which, when given an™
dimensional full rank latticeC, finds a nonzero lattice vectbe £ satisfying the inequality 3
44

Ifll <Asmin{lizll: ze L, z#0}, 45
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where

2
)"s — exp<0 <M))
logs

Many other results on both exact and approximate finding of a shortest vector in a laftice
are discussed in [11,15,16,23-25]; see also [2] for the most recent developments (Whlch
however lead to probabilistic algorithms).

In fact, in this paper we consider only vergexial lattices. Namely, we consider only?
lattices which consist of integer solutiorns= (xo, ..., x;—1) € Z* of the system of congru- °

w NP

4

ences 10
s—1 11
ZaijxiEO modqi, j=1,...,€, 12

i=0 13

modulo some integersy, ..., g;. The lattices we consider are full rank lattices of di-**
mensions. All the aforementioned algorithms become polynomial in(dag- - ¢¢) when *°

applied to such lattices.
17

18
19

Our second basic tool is an upper bound on the number of solutions of polynonaﬁal

congruences.
For congruences modulo a prime we can usd_tigrange theorenwhich asserts that a 22

2.2. Polynomial congruences

nonzero polynomial of degreeover any field has no more tharezeros in this field. 23
However for congruences modulo composite numbers we apply an upper botind

from [19]. 25

For a polynomial 26

s 27

— . Y! 28

F(X) gA,X € Z[X] (3) -

of degrees and an integeQ > 1 we denote byl'(F, Q) the number of solutions of the %0

congruence 3

32

F(x)=0 modQ, xeZg. 33

We now defineN,(Q) as the largest possible value BtF, Q) taken over all polyno- 34
mials (3) with gcdAo, ..., Ag, Q) = 1. (Note that there is no restriction oh.) 35
The following bound is a relaxed form of the main result of [19]. 36

37

Lemma 2. The bound 38
NS(Q): O(SQlfl/S) 39

40

holds. 41

42
Writing F(X) = DG(X) with D = gcdAy, ..., A, Q) and G(X) € Z[X], we also ,,

have thatl' (F, Q) < DN (Q/D) for any polynomial (3), so s
T(F, Q) =0(so Y D). (4)
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We apply the Lagrange theorem and Lem2nt some families of polynomials para- 1
metrised by small vectors in a certain lattice, thus the size of the family can be kept urder
control. Zeros of these polynomials compesd to potentially “bad” initial values of the 3
polynomial congruential generator (1). Thus, if all polynomials in this family are not iden-
tical to zero modula; (or to be more precise, have a not too large valueoih (4)) 5
then we have an upper bound on the number of such “bad” initial values. Hence, the rhost
crucial part of our approach is to study possible vanishing of polynomials in the abéve
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family and to show that this may happen only for very few values of the coefficients of the

generator (1).

2.3. Residues of small-height fractions

9

10
11
12

. . . . 13
Some exceptional sets of parameters in ogults can be described as sets of residues

of fractions with bounded numerator and denominator. Namely-{gt R, S) be the set
of a € Z* that satisfy a congruence of the foem = s modg for some integers ands,
not both zero modulg, wherejr| < R and|s| < S.

As usual, we use (¢) to denote the sum of divisors gf

Lemma 3. Foranyl < R, S < ¢, the bound

#F(q, R, S) < ags 2D

q
holds.

Proof. For everya € Zj, the congruencer = s modg implies

gcdr, q) | gcd(s, q).

We count the elements ¢f(¢, R, S) by first choosing a divisad < ¢ of ¢, then choosing
r ands such thatlr| < R, |s| < S, gcdr, ¢g) =d andd | s, and finally choosing: such

thatar = s modgq. Note that oncé is chosen, there are at mofR 24 choices for- and at

most 25 /d choices fors (because X R, S < g we see thats # 0). Moreover, once and

s such that gcd, ¢) = d are fixed, there are at masgtchoices for. Hence

2R 28
#F(q.R.<Y. == d<4RS) - _4RS@
dlq dlg

which finishes the proof. O

Recall that

o(q) = O(qloglogg),
see [12, Theorem 323]. In particular,

#F(q, R, S) = O(RSloglogq).

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
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3. Main results
3.1. Predicting the polynomial generator modulo an arbitrary integer

Let A be a positive integer. We say an integeis a A-approximatiorto an integew if
lw—v| < A.

Recall that we use (¢) to denote the sum of the divisors of an integeand we define
As to be the “stretch” factok, givenin Lemma 1.

We are now ready to state the main theorem of the paper.

© 0 N o g b~ W N P

[y
o

Theorem 4. There exists an algorithm with the following properties. ge&tnd A be inte- 11

gers such thag > A > 1andgcdg, A) = 1. Let 12
m 13

fX) =) aiX € Zy[X] 1

i=0 15

be a polynomial of degree > 2 overZ, whose leading coefficien, lies inZ;\Au (¢, A),
for some setd,, (¢, A) of cardinality at most

16(m + 2))»,zn+2Am+l—U @) . 19

The algorithm, when givery and A-approximationswg, w1 t0 vg,v1 Wherevy = =21
f(vp) modg, recoversug, v1 in time polynomial inm and logg provided thatvg does 22
not lie in a certain seV(f) C Z, of cardinality#V(f) = 0((24)"ng~Y =1y where 23

m3+3m—2
Oy = ——— =
2m—1)

Proof. We may assume that

q > 2m+1\/ m + 2)\,m+2Am_1 and q > AT (5) 29
for if either of these inequalities fail to holté result is trivially true (by examining bound *
on the cardinality of the set,,, (g, A)). 31

We define the setd,, (¢, A) = F(q, R, S), with R = 2m + 21, 42A™ and S =
2J/m + 2 24, Where F(q, R, S) is defined in Section 2.3. By (5) we see that< 33
§ < g.Now the bound on #,,(¢, 4) is immediate by Lemma 3. 34

An outline of the algorithm is as follows. The algorithm first constructs a laflitem
the information it is given. This lattice has a short nonzero veetwhich may be used 3
to derivevg and vy from wg andw;. The lattice£ has the additional property that any®
reasonably short vector ifi is parallel toe. It is also important to observe that the bit-size®
of all coordinates of the basis vectorsffis O(logq). The algorithm finds a reasonably 3
short nonzero vectdre £ by using the techniques of Lemma 1. It is then easy to éind “°
and henceg andv. 41

Lete; =v; —wj, j =0, 1. Then we have 42
43

m
wyt+e1= Zai(wo—i—so)i modg. 4

i=0

45
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If we expand the right hand side of this equation in terms of powess 0§ing Taylor’'s
formula, and then introduce various powersthat cancel each other, we obtain
m
AA™+ BA" g1+ ) CiA"ehp=0 modg,
i=1
where

Az(f(wo)—wl)A_m modg,
B=-A""*'" modg,

— f(i)(wO)A*n%H

Ci= modg, i=1...,m,

i!
and f @ denotes theth derivative off.
Let £ be the lattice consisting of integer solutions= (xo, . . ., Xu+1) € Z"™ 12 of the
system of congruences:
m
Ax0+Bxl+ZC[xi+lEo modg,
i=1
x0=0 moda™, (6)
x1=0 moda™ 1

xit2=0 modA™ =1 i=0,....m—1

Note that can be computed from the information given to the algorithm and in fact it §

© 0 N o g b~ W N P
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easy to see that it is a simple lineag@bra problem to compute a basisivhose basis »5

vectors consist of elements of bit-siz¥logg).
Clearly, £ contains the nonzero vector

e= (A", A" ey, A e, L AT L, s 80)
= (A'"eo, A" Lo Aoy o AmTit L e,n+1).
We have
eo=1, le1] < A, lei| <AL i=2... . m+1.
SinceA > 2 andm > 2, we see that the Euclidean nofiej| of e satisfies the inequality

lel < v(m+2)A2" = /m +24™.
The algorithm of Lemma 1 applied to the latti€areturns a nonzero vector
f= (A" fo, A", A" o AT ) €L
such thatf|| < Anrollell < v/m + 2hu42A™. In particular, we have the inequalities
| fol < vV/m+2Amy2. |1l < Vm + 2hmi2A,
| fil SV/m+ 2Ama2AY, i=2... m+1

We aim to show thattis parallel toe, provided that does not lie in a se¢( /) which we
define below.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
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The vector foe — eof € £ has first component zero, and so using the first congruence

in (6) we obtain 2
m ) 3

BA™ Y1+ CiA"di1=0 modg, 4

i=1 Z

whered; = foe; —eofi = foei — fi,i=1,...,m+ 1. Hence 7
d1] < 2V + 2hm24, i

. 7
ldi| <2V/m 4 2hmy2AY, =2 om+1. @ 10

Using the definitions oB andCy, ..., C, (and the fact thatC,, is equal to the leading
coefficienta,, of (X)) we have

m—1 P
F®(wo) 14
‘7'61,'4_1 =dy — amd,n+1 mOdq (8) 15
i=1 : 16
We remark that itl; = - - - = d,, = 0 modg, then (8) implies thatl; = a,,d,, 1 modg. '

Recalling that,, € Z;\ A (g, A) we then derive thady = dj,+1 = 0 modg. Taking into
account the bound (7) we conclude that in this cgse 0,i =1, ...,m + 1. Hencefpe —
eof =0, and sof ande are parallel. Hence we may assume that onéxofls, ..., d,, is
nonzero modulg.

Substitutingwg = vg — &g in the congruence (8), we obtain the congruence

F(vo)=ap modg, (9) 24

25

where 26
m—1 27

F(X)= Z aiXi 28

i=1 29

andg;, i =0,...,m — 1, are polynomials irzg, di, . .., dn+1. We place any solutiomg
to (9) for any possible values @f, ..., d,+1 andeg into the setV(f). Thuse andf are
parallel, so long asg ¢ V(f). We need to show that the cardinality¥{ 1) is as claimed
in the statement of the theorem.

We definev by the conditiongl = - -- =d, = 0,d,+1 # 0. We are assuming that not all
of do, ..., d, are zero, and so < m — 1. ThenF is of degree de§ =degf™) =m — v
and the leading coefficient &f is

m d 38
Ump—y = . amady+1. 39

Note that this coefficient is nonzero modulaincea,, € Z; and that by (7)

m
‘ ( >dv+1
vV

by our assumption (5). Moreover we see that 45

< 2"dyr1 < 2"PNm + 22’ < g 43
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m
gcdal’ ML) al‘n—la CI) g gcdam—v’ Q) - ng<< V)dv+la q>

m
< ‘( )dv+l
V

Thus by (4) we see that each congruence (9) can be satisfied by at most
0((m . U)qlfl/(mfu)(2m+l\/m—+2)hm+2Au)l/(m7v))
valuesuvg. Note that, for IK v <m — 1,

(m — u)qlfl/(mfv)(2m+l\/m)tm+2Av)l/(mfu)
= 0(mzm)»m-;-qu_l/(m_v)A”/(’"—”))

< 2" 4 2hmg24”.

— 0(mznl)\’rn‘kzqA*l(Anl/q)l/(mfv))
— 0(mzm)\m+2qA_l(Am/CI)l/(m_l)),

where the last equality follows from (5).
Thus we have placed at mot(m2™ 4,21~ =D AYm=Dy values ofvg in V(f)

© 0 N o g b~ W N P

A L L
N o o0 W N B O

18

for each choice oy, d1, ..., dn+1. By (7) the total number of possible choices for the®

integersd;,i =1,...,m+ 1, is at most

m+1

(4Vm + 2hmi24 + 1) [ [ (4Vm + 2241+ 1)

i=2
< (5mkm+2)m+lAm(m+l)/2+l

and the total number of possible choices dgtis at most 24 4+ 1. Thus the total number
of values ofvg that we have placed iV(f) is

0 (m (10¢m—_i_2Am+2)m+2q1—1/(,n—1)Am(m+1)/2+2+1/(m—1))
— 0 ((ZA)ﬂmqlfl/(m*l)) s
where
m@m + 1) 1 m3+3m—2
= + 24+ =
2 m-—1 2m —1)

We have shown that andf are always parallel, for otherwisg would lie in the set
V(f) of values which we have excluded. Singe= 1, we find thate = f/fo and thus the
algorithm may now recoves from f. Obviously, given the third component” ¢q of e
the algorithm can findo. This completes the proof.0

Uim

3.2. Predicting the polynomial generator modulo a prime

Let p be a prime. LetA andm be integers such that> A > 1 andm > 2. We also use
the notion of aA-approximation given in Section 3.1.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
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Theorem 5. There exists an algorithm with the following property. lpelbe a prime num- 1
ber, and letA be an integer such that > A > 1. Let 2
m 3
fX)=)"a;X eF,[X] ¢

i=0 Z

be a polynomial of degree > 2 overF, whose leading coefficiea}, lies inF;\ A (p, 4) 7
for some seid,, (p, A) of cardinality 8
9

#A(p, A) < 1T22 5(m +2)A™ T o
Then the algorithm, when givefi and A-approximationswo, wi to vg, v1 Wherevy = 11
f(vp) mod p, recoversug, v1 in time polynomial inn andlog p provided thatvg does not 12
lie in a certain sed(f) C F, of cardinality#)(f) = O ((24)""m+D/2+2), 13

Proof. The proof of this theorem is almost identical to that of Theorem 4.
In particular, we defined,,(p, A) = F(p, R, S) whereR = 2/m + 21, 24", S = 1°
2Jm + 2,124 and F(p, R, S) is defined as in Section 2.3. Again, we can assume thdt
2Vm 4+ 2xm2A™ < p, and also thap > 17, so that (p)/p = (p +1)/p < 17/16.Now '8
the bound on #,, (p, A) follows from Lemma 3. 19
The only other place where the proof differs from that of Theorem 4 is when we caléU-
late the cardinality of the sét(f); so we need to count the number of possible solutiorfs

to congruences of the form 2
23

F(vp) =ap modp, (10) 24

25

where 26
m-1 27

F(X)= Z o X! 28

i=1 29

ande;,i =0,...,m—1, are polynomials img, d1, . . ., dy41. Just as in the proof of Theo- *°
rem 4, all these congruences are nontrivial, and so (since we are working modulo a prithe)
each instance of (10) has at mast— 1 solutions. Moreover, as in the proof of Theo-**
rem 4 we see by (7) that there are at m@y/m + 2A,,42)" 1AM +D/2+1 possibilities 32

fords, ...,dn,+1 and at most 2 + 1 possibilities foreg and hence at most %
35

(m —1)(2A + 1) (5 /m + 2 2}\m+2)m+lAm(m+l)/2+1 _ O((ZA)nz(m+1)/2+2) 36
37

solutions to a congruence of the form (10). The proof of Theorem 4, with this countigg
argument changed, now suffices to prove Theorem5. 39
40
41
4. Remarksand open questions 42

43
It would be very natural to study the case when the polynoryiiéd not known and 44
forms a part of the secret key. However, we observe that in this case the unique recodery
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of vp (and f) is not possible. Indeed, it is easy to see that given any nuibg&fappro- 1
Ximations’ w;, which are actually the exact values; = v;, j =0,...,k — 1, and an 2
integerk, each of the sequences, 3
4

véh) =vg—h and U(,h) = fi (v;hjl) modg, j=1 ... k-1 5

6

where f,(X) = f(X+h) —h SatISerSv )_v, h. Therefore, for any integer with 7

|h] < A we have|w; — v(h)| < A. Thus each of the sequence@ (and each polyno- 8
mial f;) may give rise to the same sequence of approxmamnsWe remark that this ©
argument works for any familyr of functions which is closed under the transformai©
tion f(X) — f(X + h) — h. The fact that the family of functiong, »(X) = aX14p 1
does not satisfy this property explains why theersive congruential generatog,,.1 = 12
au, 1 + b modg, can be completely recovered even in the case of unknown coefficierifs;
see [3,4] for the case whege= p is prime. On the other hand, in cryptographic applical*
tions we do not need to completely recovgand f: we merely need to be able to continue'®
to generate the sequence of “approximations”(formed, say, by taking thé > 0 most
significant bits ofv;, thatisw; = 2°(2~%v;]). In the case of the linear congruential gener?’
ator (2), that is, for the family of functiong(X) = a X + b, this issue has been discussed?®
in Section 3 of [10]. In particular it has been noted in [10] that the difference sequeﬁ%e

Yn = Xn+1 — X, Satisfies the homogeneous relations
21

Vnr1=ay, (modg), n=0,1,..., 22
23
and can be recovered, which can then be used for finding approximations to the secpen-
ce x,. However, for nonlinear functiong this method no longer applies, and finding ares
analogous method (even a heuristic one) remains an open problem. 26
In Theorem 4 we have the technical condition that(gtd;) = 1. This condition is 27
needed to be able to define the coefficieatsB, C1, ..., C,,. However, the condition is 28
rather an artificial one: the valug in the algorithm of Theorem 4 may be replaced by ang®
slightly larger valueag without significantly altering the algorithm’s performance, and sé&
we may ensure that g¢do, g) = 1. For exampleAp can be chosen to be the smallesf?
prime number which is greater thaft and does not dividg. Becausey has at most 2
O(logq/loglogq) prime divisors this would lead to only slightly weaker estimates. Mor&
precisely, the largest distandeq) between two integers relatively prime dois called 34
the Jacobsthal functiorand has been extensively studied in the literature, in partlcul%{’r
J(q) = 0((logq)?), see [14].
We have not used the full power of the boundJgnin Lemma 1. However using the
original estimater, < 26=1/2 of [22] would force us to replace2 in our bounds on
An(p, A) andV(f) in Sections 3.1 and 3.2 with a slightly larger multiplef %9

Uncited references 43

[17] 45
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