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Abstract

In this paper we discuss several notions of decomposition for multivari-

ate rational functions, and we present algorithms for decomposing multi-

variate rational functions over an arbitrary �eld. We also provide a very

eÆcient method to decide if a unirational �eld has transcendence degree

one, and in the aÆrmative case to compute the generator.

1. Introduction

If K is a �eld, and g; h 2 K (x) are rational functions of degree greater than
one, then f = g Æ h = g(h) is their (functional) composition, (g; h) is a (func-
tional) decomposition of f , and f is a decomposable rational function. The
univariate rational functional decomposition problem can be stated as follows:
given f 2 K (x), determine whether there exists a decomposition (g; h) of f
with g and h of degree greater than one, and in the aÆrmative case, compute
one. When such a decomposition exists some problems become simpler: for in-
stance, the evaluation of a rational function f can be done with fewer arithmetic
operations, the equation f(x) = 0 can be more eÆciently solved, improperly
parametrized algebraic curves can be reparametrized properly, etc. Zippel (1991)
presented a polynomial time algorithm to decompose a univariate rational func-
tion over any �eld with eÆcient polynomial factorization. Alonso, Gutierrez &
Recio (1995) presented two exponential{time algorithms to decompose univariate
rational functions, which are quite eÆcient in practice. Kl�uners (2000) presented
an exponential{time algorithm to decompose univariate rational functions over
the rational numbers �eld Q .
If f; h 2 K (x) are such that K (f) � K (h) � K (x), then f = g(h) for some
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g 2 K (x). By the classical L�uroth's theorem (see L�uroth (1876)) this problem
can be translated into �eld theory: given f 2 K (x) compute, if it exists a proper
intermediate �eld F such that K (f) � F � K (x). The following extended version
of L�uroth's theorem is a central result, as it allows to generalize this problem to
multivariate rational functions.

Theorem 1.1: Let K (x) = K (x1 ; : : : ; xn) be the �eld of rational functions in the
variable x = (x1; : : : ; xn) over an arbitrary �eld K . If F is a �eld of transcendence
degree 1 over K with K � F � K (x), then there exists f 2 K (x) such that
F = K (f). Moreover, if F contains a non{constant polynomial over K , then
there exists a polynomial f 2 K [x] = K [x1 ; : : : ; xn] such that F = K (f).

For a proof, we refer to Schinzel (1982), Theorems 3 and 4, and Nagata (1993).
We will use the above theorem to show that the number of certain types of

multivariate decompositions is �nite. In particular, a univariate rational function
f 2 K (x) is indecomposable if and only if K (f) � K (x) is an algebraic exten-
sion without proper sub�elds, thus by the primitive element theorem (see Lang
(1967)) there exist only a �nite number of intermediate sub�elds; moreover, if f
is a polynomial then f is indecomposable as a rational function if and only if it
is an indecomposable polynomial.
A unirational �eld over K is an intermediate �eld F between K and K (x).

We know that any unirational �eld is �nitely generated over K (see Nagata
(1993)). In the following, whenever we talk about computing an intermediate
�eld we mean that such �nite set of generators is to be calculated. Thus, the
constructive version of the Theorem 1.1 result can be stated as follows:

Problem 1: Given rational functions f1; : : : ; fm 2 K (x) decide if the �eld F =
K (f1 ; : : : ; fm) has transcendence degree 1 over K and in the aÆrmative case,
compute f 2 K (x) such that F = K (f).
Moreover we wish to know if F contains a non{constant polynomial and in the

aÆrmative case, compute a polynomial f 2 K [x] so that F = K (f).

For algorithms related to this problem, we can mention the recent work of
M�uller{Quade & Steinwandt (1999). They have presented a method which re-
quires the computation of a Gr�obner bases using tag variables. In this paper
we present a polynomial time algorithm which only requires the computation
of a greatest common divisor of m multivariate polynomials. We prove that
the algorithm presented in ISSAC'01 conference (see Gutierrez, Rubio & Sevilla
(2001)) only requires a step. As a consequence we provide a new and interesting
characterization of unirational �elds of transcendence degree one.
Another motivation of this paper is, on one hand, to generalize the notions of

decomposable multivariate polynomials introduced by von zur Gathen, Gutierrez
& Rubio (1999) to rational functions; and, on the other hand, to give algorithms
for decomposing multivariate rational functions and to analyze these decompo-
sitions from the �eld theory point of view. In the ISSAC'01 work we presented
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some preliminary results for only one kind of multivariate rational function de-
composition, the so called uni{multivariate one.
The paper is organized as follows. In Section 2, we de�ne and study three no-

tions of decomposition for multivariate rational functions. We state some �nite-
ness results related to these decompositions and we also present algorithms to
�nd such decompositions. Section 3 is devoted to solve Problem 1. We provide
a polynomial time algorithm that works over any �eld. As a consequence of the
results in Section 2 and this algorithm, we provide a method to compute all
unirational �elds of transcendence degree one containing a given �nite set of
multivariate rational functions.

2. Multivariate rational decomposition

The univariate rational function decomposition problem suggests the following
natural decomposition problem.

Problem 2: Given rational functions f1; : : : ; fm 2 K (x) �nd, if there exists, a
proper intermediate sub�eld F such that

K (f1 ; : : : ; fm) � F � K (x):

This problem is equivalent to �nd rational functions h1; : : : ; hs 2 K (x), and
g1; : : : ; gm 2 K (y1 ; : : : ; ys) such that K (f1 ; : : : ; fm) � F � K (x) and

fi(x) = gi(h1; : : : ; hs);

where F = K (h1 ; : : : ; hs). This leads to the following concept.

De�nition: Let f 2 K (x), h1; : : : ; hm 2 K (x) and g 2 K (y1 ; : : : ; ys) such that
f = g(h1; : : : ; hs). Then we say that (g; h1; : : : ; hs) is a decomposition of f .

Regarding algorithms to solve this general problem we can mention the recent
works of M�uller{Quade & Steinwandt (1999), which requires to compute primary
ideal decomposition on polynomial rings; and the method presented in Rubio
(2001), it needs factorization over algebraic extensions.
Both algorithms lacks of e�ectiveness and does not inherit some good proper-

ties of the univariate case. For instance, there is no relation between the degrees
of the components, and there is not a good behaviour with polynomials, that is,
even if the given rational functions are all polynomials, an intermediate �eld may
not have polynomial generators. On the other hand, for every rational function
f , in at least two variables, there are in�nitely many proper intermediate �elds
F containing K (f).
Thus, it is natural to impose some restrictions on F that make the problem

amenable to computation. Of particular interest are restrictions that make de-
compositions �nite in an appropriate sense. In fact, this is, overall, one of the
main goals of this section. With this restrictions we de�ne and analyze di�erent
de�nitions of decomposable multivariate rational functions, generalizing the ones
formulated for polynomials in von zur Gathen, Gutierrez & Rubio (1999).
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2.1. Uni{multivariate rational decomposition

In this subsection we de�ne and analyze the uni{multivariate decomposition
of a rational function. An extended abstract of these results can be found in
Gutierrez, Rubio & Sevilla (2001).
Given a multivariate rational function f 2 K (x) we will denote as fN ; fD

the numerator and denominator of f , respectively and we will suppose that
gcd(fN ; fD) = 1. We de�ne the degree of the rational function f as deg f =
deg (f) = max fdeg fN ; deg fDg. A rational function of degree one is called a
linear rational function.

De�nition: Let f; h 2 K (x) and g 2 K (y) such that f = g(h). Then we say that
(g; h) is a uni{multivariate decomposition of f . It is non{trivial if 1 <
deg h < deg f . The rational function f is uni{multivariate decomposable if
there exists a non{trivial decomposition.

The uni{multivariate decomposition problem is to decide if the multivariate
rational function f is uni{multivariate decomposable; and in the aÆrmative case,
to compute the rational functions g; h.
It is well known that the degree is multiplicative with respect to the compo-

sition of univariate rational functions, see Alonso, Gutierrez & Recio (1995). In
particular a univariate rational function f 2 K (x) is a composition unit if there
exists g 2 K (x) such that f(g) = g(f) = x. This happens if and only if f is a
linear rational function. Linear rational functions are also called (composition)
units.
One of the most important properties of the uni{multivariate decomposition

is also the good behavior of the degree with respect to this composition.

Proposition 2.1: Let f 2 K (x) be a rational function. If (g; h) is a uni{
multivariate decomposition of f , then

deg (f) = deg (g) � deg (h):

Proof: Let bK be the algebraic clousure of K . There exist (�2; : : : ; �n) 2 bK n�1 and

(�2; : : : ; �n) 2 bK n�1 such that r = deg(f) = deg(f̂) and s = deg(h) = deg(ĥ)
where

f̂ = f(x1; �2 + �2x1; : : : ; �n + �nx1)

and

ĥ = h(x1; �2 + �2x1; : : : ; �n + �nx1):

From the equality f = g(h) we obtain f̂ = g(ĥ) and since the degree of the
univariate rational function is multiplicative with respect to the composition, we
have r = s deg(g). 2
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A consequence of this proposition is the uniqueness of the left component g,
given the rational functions f; h.

Corollary 2.1: Given f; h non-constant rational functions in K (x), if there
exists g such that f = g(h) is unique. Furthermore, it can be computed from f
and h by solving a linear system of equations.

Proof: If f = g1(h) = g2(h), then (g1 � g2)(h) = 0, and by Proposition 2.1,
deg (g1� g2) = 0, thus g1� g2 is constant. Clearly it must be 0, that is, g1 = g2.
Again by Proposition 2.1, the degree of g is determined by those of f and h.
We can write g as a function with the corresponding degree and undetermined
coeÆcients. The equation f � g(h) = 0 provides a linear homogenous system of
equations in the coeÆcients of g. 2

The relation between the decomposition and the sub�eld computation allows
to formulate the problem of the uni{multivariate decomposition in terms of �eld
theory. First we will de�ne the following equivalence relation.

De�nition: Let f 2 K (x) be rational function. Two uni{multivariate decomposi-
tions (g; h) and (g0; h0) of f are equivalent if there exists l 2 K (y) composition
unit such that h = l(h0).

Proposition 2.2: Let f 2 K (x) be a non{constant rational function. Then
the equivalence classes of the uni{multivariate decompositions of f correspond
bijectively to intermediate �elds F, K (f) � F � K (x), with transcendence degree
1 over K .

Proof: The bijection is

f[(g; h)]; f = g(h)g �! fK (f) � F; tr:deg(F=K ) = 1g:
[(g; h)] 7�! F = K (h)

Suppose we have a uni{multivariate decomposition (g; h) of f . Since f = g(h),
F = K (h) is an intermediate �eld of K (f) � K (x) with transcendence degree 1
over K . On the other hand, if (g0; h0) is equivalent to (g; h) then h = l Æ h0 for
some unit l 2 K (y). Consequently h0 = l�1 Æ h and K (h) = K (h0).
If (g; h) and (g0; h0) are two uni{multivariate decompositions of f such that

K (h) = K (h0), then there exist l; l0 2 K (y) rational functions such that h = l Æh0

and h0 = l0 Æ h. By Proposition 2.1, deg (l Æ l0) = 1 and deg l = deg l0 = 1. By
the uniqueness of the left component,(see Corollary 2.1), y = l Æ l0. So, l 2 K (y)
is a composition unit and (g; h), (g0; h0) are equivalent.
Finally, by Theorem 1.1, given the intermediate �eld F there exist h 2 K (x)

and g 2 K (y) such that F = K (h) and f = g(h). 2

Because of this result the uni{multivariate decomposition problem is a partic-
ular case of Problem 2.
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2.1.1. An algorithm

We describe a method to know if a rational function is uni{multivariate decom-
posable and compute a decomposition in the aÆrmative case.
The main idea of the present method generalizes one of the univariate rational

function decomposition methods presented in Alonso, Gutierrez & Recio (1995)
and is based on the near{separated polynomial concept. This notion was de�ned
only for bivariate polynomials, see also Alonso, Gutierrez & Recio (1997). We
will consider near{separated polynomials with 2n variables:

De�nition: Let p 2 K [x;y] = K [x1 ; : : : ; xn; y1; : : : ; xn] be a non{constant poly-
nomial in the variables (x;y) = (x1; : : : ; xn; y1; : : : ; yn) We say that p is near{
separated if there exist non{constant polynomials r1; s1 2 K [x] and r2; s2 2
K [y], such that neither r1; s1 are associated, nor r2; s2 are associated and p =
r1s2 � r2s1.
In the particular case p = r(x)s(y)� s(x)r(y), we say that p is a symmet-

ric near{separated polynomial and (r; s) is a symmetric near{separated
representation of p.

Given a polynomial q 2 K [x;y] we will denote by deg
x
(p) the total degree

with respect to the variables x and by deg
y
(p) the total degree with respect to

the variables y of p.
In the following proposition we give some basic properties of near{separated

polynomials, for later use.

Proposition 2.3: Let p 2 K [x;y] be a near{separated polynomial and r1; s1; r2; s2
as in the above de�nition. Then

(i) If gcd(r1; s1) = 1 and gcd(r2; s2) = 1, p has no factors in K [x] or K [y].

(ii) deg
x
p = maxfdeg r1; deg s1g and deg

y
p = maxfdeg r2; deg s2g.

(iii) If p is symmetric and (�1; : : : ; �n) 2 K n sati�es p(x; �1; : : : ; �n) 6= 0, then
there exists a symmetric near{separated representation (r; s) of p, such that
r(�1; : : : ; �n) = 0 and s(�1; � � � ; �n) = 1:

(iv) If p is symmetric, the coeÆcient of xiky
j
k in p is the near{separated polyno-

mial

ai(x1; : : : ; xk�1; xk+1; : : : ; xn)bj(y1; : : : ; yk�1; yk+1; : : : ; yn)�
bi(x1; : : : ; xk�1; xk+1; : : : ; xn)aj(y1; : : : ; yk�1; yk+1; : : : ; yn);

where ai is the coeÆcient of xik in r and bi is the coeÆcient of xik in s.

Proof: (i) Suppose v 2 K [x] is a non{constant factor of p. Then there exists i
such that degxi

v � 1. Without loss of generality we will suppose that i = 1.
Let � be a root of v, considering p as a univariate polynomial in the variable x1,
in a suitable extension of K [x2 ; : : : ; xn]. If � is a root of any of the polynomials
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r1 or s1, then it is also a root of the other. This is a contradiction, because
gcd(r1; s1) = 1. Therefore � is neither a root of r1 nor of s1. Then,

r1(�; x2; : : : ; xn)

s1(�; x2; : : : ; xn)
=

r2(y)

s2(y)
2 K :

A contradiction again, since r2; s2 are not associated in K .
(ii) If deg r1 6= deg s1, the equality is trivial. Otherwise, if deg r1 = deg s1 >

deg
x
p, the terms with greatest degree with respect to x must vanish. This is a

contradiction, because r2; s2 are not associated. The proof is similar for r2; s2.
(iii) Let (r; s) be a representation of p.

{ If r(�1; : : : ; �n) = 0, since p(x; �1; : : : ; �n) 6= 0, we have s(�1; : : : ; �n) 6= 0.
Then we have a new near{separated representation:�

r s(�1; : : : ; �n);
s

s(�1; : : : ; �n)

�
:

{ If s(�1; : : : ; �n) = 0, then the representation (�s; r) we are in the previous
case.

{ If r(�1; : : : ; �n); s(�1; : : : ; �n) 6= 0, then we consider the representation�
r s(�1; : : : ; �n)� s r(�1; : : : ; �n);

s

s(�1; : : : ; �n)

�
:

(iv) This is a simple routine con�rmation. 2

Note: By Proposition 2.3, we can decide if p is symmetric and near{separated
polynomial; and in the aÆrmative case, �nd a near{separated representation of
p, that is, compute r; s 2 K [x] such that p = r(x)s(y)� r(y)s(x).
Firstly, we would consider (�1; : : : ; �n) 2 K n with p(x; �1; : : : ; �n) 6= 0 and we

get the polynomial r(x) = p(x; �1; : : : ; �n). If the ground �eld K is suÆciently
\big", the existence of such n{tuple is guaranteed. Secondly, s(x) is computed
by means of the linear systems which provides item iv) of Proposition 2.3. 2

Lemma 2.1: In the above conditions, any other solution s0 gives the same �eld,
that is, K (r=s) = K (r=s0).

Proof: If s0 2 K [x] is another solution, we have: p = r(x)s(y) � r(y)s(x) =
r(x)s0(y) � r(y)s0(x), that is, r(x)(s(y) � s0(y)) = r(y)(s0(x) � s0(x)). Then
there exists 0 6= � 2 K , such that �r(y) = s(y)�s0(y). Let u(x) = x=(��x+1),
which is a unit in K (x). We have r=s0 = u(r=s). 2

We have just seen how we can know if a symmetric polynomial is near{
separated. Now, we state an important theorem that relates uni{multivariate
decompositions to near{separated polynomials, which was proved in Schicho
(1995):
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Theorem 2.1: Let A = K (x) and B = K (y) be rational function �elds over
K . Let f; h 2 A and f 0; h0 2 B be non{constant rational functions. Then the
following statements are equivalent:

A) There exists a rational function g 2 K (t) satisfying f = g(h) and f 0 = g(h0).

B) h� h0 divides f � f 0 in A
K B.

An immediate consequence of the above important theorem is the following
useful result.

Corollary 2.2: Let f; h 2 K (x); f 0 ; h0 2 K (y), be non{constant rational func-
tions. Then the following statements are equivalent:

A) f 2 K (h) and f 0 2 K (h0).

B) hN(x)h
0
D(y)� hD(x)h

0
N(y) divides fN (x)f

0
D(y)� fD(x)f

0
N (y) in K [x;y].

So, in order to �nd a uni{multivariate decomposition of a rational func-
tion f we should look for symmetric near{separated factors of the polynomial
fN(x)fD(y)� fD(x)fN(y). Let us describe formally this algorithm.

Algorithm 2.1: Input: f 2 K (x).

Output: (g; h) uni{multivariate decomposition of f , if it exists, and \no de-
composition" otherwise.

A Factor the symmetric polynomial

p = fN (x)fD(y)� fD(x)fN(y):

B Let H be a divisor of p:

C Check if H is a symmetric near{separated polynomial using Algorithm ??.

| If H = r(x)s(y) � r(y)s(x), then h =
r

s
. Compute the left compo-

nent g by solving a linear system of equations (see Corollary 2.1) and
RETURN (g; h).

| If there is no factor to take, then RETURN \no decomposition".

| Take H another factor and repeat C. 2

A detailed analysis of this algorithm is rather diÆcult, especially if the analysis
is to match experience. In the worst case, this algorithm is exponential in deg f ,
since p may split into linear factors, yet f may be indecomposable. This would
require step B to examine an exponential number of possible candidates, none
of which is a symmetric near{separated polynomial. Each of the other steps
requires only random polynomial time. However, in practice it seems that most
of the time is spent in step A, factoring the multivariate polynomial p in 2n
variables. An exponential algorithm is presented in Gutierrez, Rubio & Sevilla
(2001) which requires factoring polynomials in only n variables.



J. Gutierrez & R. Rubio & D. Sevilla: On Multivariate Decomposition 9

Corollary 2.3: Given a rational function f 2 K (x) we can compute all the
equivalence classes of the uni{multivariate decompositions of f .

Proof: It is immediate from Algorithm 2.1 and Lemma 2.1. 2

To conclude this subsection, we will illustrate the algorithm by an example.

Example 2.1: Let

f =
y2x2 + 2 x2yz2 � 2 y6x + z4x2 � 2 z2xy5 + y10 � 81 x2 � 450 xyz � 625 y2z2

y2x2 + 2 x2yz2 � 2 y6x + z4x2 � 2 z2xy5 + y10 � 162 x2 � 900 xyz � 1250 y2z2
:

We look for all the intermediate �elds of Q (f) � Q (x; y; z) with transcendence
degree 1 over Q .
First, we factor the polynomial,

fN(x; y; z)fD(s; t; u)� fN(s; t; u)fD(x; y; z) = �625f1f2;

where

f1 = �xtz2u+ 9

25
xt5 � zsty � zu2sy + zt5y � 9

25
xz2s� 9

25
xu2s� 9

25
xys� xyut

� 9

25
xts + 9

25
sy5 + uty5;

f2 = �xtz2u� 9

25
xt5 + zsty + zu2sy � zt5y � 9

25
xz2s+ 9

25
xu2s� 9

25
xys� xyut

+ 9

25
xts + 9

25
sy5 + uty5:

We have f1(x; y; z; x; y; z) 6= 0, then f1 is not symmetric near{separated. On
the other hand, f2(x; y; z; x; y; z) = 0 and moreover,

f2 = �zt5y + uty5 +

�
�

9

25
t5 � tz2u� yut

�
x +

�
zty +

9

25
y5 + zu2y

�
s+�

�
9

25
z2 +

9

25
t+

9

25
u2 �

9

25
y

�
sx:

Now, we check that f2 is a symmetric near{separated polynomial and (r; s) is a
symmetric near{separated representation of f2:

r = �
9

25
xz2 �

9

25
xy +

9

25
y5;

s = x+
25

9
zy:

Finally, we compute g which is a univariate function of degree 2. By solving
the linear system of equations f = g(h) where h = r=s, we obtain

g =
625 t2 � 6561

625 t2 � 13122
:

2
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2.2. Multi{univariate rational decomposition

Gr�obner bases computation can be simplify by means of a polynomial decom-
position, see Gutierrez & Rubio (1998). The behavior of the reduced Gr�obner
bases under the composition suggests a new notion of decomposable polynomial
and consequently of rational function.
In this subsection, we will de�ne the multi{univariate decomposition and an

analysis will be made over this kind of decomposition. We will prove similar
properties to the uni{multivariate case, Subsection 2.1.

De�nition: Let f; g 2 K (x) and hi 2 K (xi), for 1 � i � n, such that f =
g(h1(x1); : : : ; hn(xn)). Then we say that (g; h1; : : : ; hn) is a multi{univariate
decomposition of f . It is non{trivial if deg hi � 1 for any i, and if there exists
j satisfying 1 < deg hj < degxj

f . The rational function f is multi{univariate
decomposable if there exists a non{trivial decomposition.

The multi{univariate decomposition problem is to decide if the multivariate
rational function f is multi{univariate decomposable; and in the aÆrmative case,
compute the rational functions g; h1; : : : ; hn.
Immediately from the de�nition we get the following result about the behavior

of the degrees with respect to the multi-univariate decomposition.

Proposition 2.4: Let f 2 K (x) be a rational function. If (g; h1; : : : ; hn) is a
multi{univariate decomposition of f , then for every 1 � i � n

degxi
f = degxi

g � deg hi:

This result allows to aÆrm that given f; h1; : : : ; hn, the left component g is
unique.
Now, we will see how can formulate the multi{univariate decomposition prob-

lem in terms of �eld theory. Firstly, we will de�ne the equivalence classes for
multi{univariate decompositions.

De�nition: Let f 2 K (x) be a rational function. Two multi{univariate decom-
positions (g; h1; : : : ; hn) and (g0; h01; : : : ; h

0
n) of f are equivalent if for each

1 � i � n there exists li 2 K (y) composition unit, such that hi = li(h
0
i).

The following result relates the multi{univariate decomposition to �elds with
transcendence degree n and generated by univariate rational functions.

Proposition 2.5: Let f 2 K (x) be a rational function with degxi
f � 1 for

any i. Then the equivalence classes of the multi{univariate decompositions of f
correspond bijectively with the intermediate �elds F, K (f) � F � K (x), with
transcendence degree n over K and generated by univariate rational functions.
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Proof: The bijection is

f[(g; h1; : : : ; hn)] j f = g(h1; : : : ; hn)g �!

8<
:

K (f) � F � K (x)
tr:deg(F=K ) = n

hi 2 K (xi)

9=
; :

[(g; h1; : : : ; hn)] 7�! F = K (h1 ; : : : ; hn)

Suppose we have a multi{univariate decomposition (g; h1; : : : ; hn) of f . Since
f = g(h1; : : : ; hn), K (f) � K (h1 ; : : : ; hn) � K (x). Moreover, deg(hi) � 1 for
every i, then K (h1 ; : : : ; hn) has transcendence degree n.
On the other hand, if (g0; h01; : : : ; h

0
n) is equivalent to (g; h1; : : : ; hn), then hi =

li Æ h
0
i for some li 2 K (y) composition unit. So, h0i = l�1i Æ hi, in other words,

K (h1 ; : : : ; hn) = K (h01 ; : : : ; h
0
n).

Let (g; h1; : : : ; hn) and (g0; h01; : : : ; h
0
n) be two multi{univariate decompositions

of f such that K (h1 ; : : : ; hn) = K (h01 ; : : : ; h
0
n). For each i 2 f1; : : : ; ng there exists

li 2 K (y), such that hi = li(h
0
1(x1); : : : ; h

0
n(xn)). By Proposition 2.4, li 2 K (y)

and hi = li Æ h
0
i.

Analogously, for each i there exists l0i 2 K (y) such that h0i = l0i Æ h. Therefore,
deg li = deg l0i = 1 and (g; h1; : : : ; hn) and (g0; h01; : : : ; h

0
n) are equivalent. So the

injectivity of the correspondence is done.
Applying Theorem 1.1 to each variable, there exists hi 2 K (xi)nK such that

F = K (h1 ; : : : ; hn). There also exists g 2 K (y) such that f = g(h1; : : : ; hn). 2

2.2.1. An algorithm

Now, we show an algorithm to compute multi{univariate decompositions of ratio-
nal functions. Again, for this algorithm, we suppose that K has suÆciently many
elements. So, we can assume {without loss of generality{ that if we write fi(xi) =
f(0; : : : ; 0; xi; 0; : : : ; 0) then fi(xi) is a non{constant univariate rational function.
Otherwise, we will take another point (�1; : : : ; �n) 2 K n such that fi(xi) is a
non{constant rational function, where fi(xi) = f(�1; : : : ; �i�1; xi; �i+1; : : : ; �n).
On the other hand, if we suppose that f has a multi{univariate decomposition

f = g(h1(x1); : : : ; hn(xn)), then

fi(xi) = g(0; : : : ; 0; hi(xi); 0; : : : ; 0):

So, the univariate rational function fi(xi) has a decomposition fi(xi) = gi(hi(xi))
where gi = g(0; : : : ; 0; xi; 0; : : : ; 0). This observation is the key to the following
algorithm.

Algorithm 2.2: Input: f 2 K (x) and d = (d1; : : : ; dn) a lists of positive
integers, such that di j degxi

f .

Output: (g; h1(x1); : : : ; hn(xn)) multi{univariate decomposition of f such that
di = deg hi, if it exists and \no decomposition" otherwise.
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A Compute all non equivalence univariate decomposition classes (gi; hi(xi)) of
fi(xi) such that di = deg hi for 1 � i � n. (Using an algorithm for univari-
ate decomposition). If there is no decomposition, RETURN \no decompo-
sition".

B For a list L = (h1(x1); : : : ; hn(xn)) consider g a rational function with un-

known coeÆcients in the variables y, and such that degyig =
degxi

f

deg hi
. Solve

the linear system of equations:

f(x1; : : : ; xn) = g(h1(x1); : : : ; hn(xn)):

If the system has solution, then RETURN (g; h1(x1); : : : ; hn(xn)): Otherwise
take another list L and repeat step B. If the corresponding linear system
has no solution for every list, then RETURN \no decomposition" . 2

Proposition 2.5 implies that the algorithm determines correctly whether f has
a multi{univariate decomposition with the required degrees, and if so, computes
a decomposition whenever decompositions over a rational function �eld K (x)
could be computed. Since the numbers of divisors of deg(f) is �nite, we obtain
an algorithm to compute all non-equivalence multi{univariate decompositions
classes of a rational function f . The complexity is dominated in step A by
decomposing univariate rational functions.
The following example illustrates Algorithm 2.2.

Example 2.2: Let

f = �
(x2 + 2 x� 10) (�5 xy2 + 15 y2 + x2y4 � 2 x2y2 + x2 + 2 xy4 + 2 x� 10 y4 � 10)

(x2y2 � x2 + 2 xy2 � 2 x� 10 y2 + 10 + yx+ 5 y) (x+ 5) (y2 � 1)
:

We are looking for all non-equivalence multi{univariate decomposition classes
of f over the rational function �eld Q(x; y). We consider the non{constant uni-
variate rational functions f(x; 0) and f(y; 0):

f(x; 0) = �
x2 + 2 x� 10

x+ 5
; f(0; y) =

4� 6 y2 + 4 y4

�4 y2 + 2 + 2 y4 � y3 + y
:

Using univariate rational function decomposition algorithms, we obtain that
f(x; 0) is indecomposable and f(0; y) has one non{trivial decomposition, with

right component
1� y2

y
. So, we have �ve lists of univariate rational functions

(h1(x); h2(y)):

[(f(x; 0); f(0; y)); (f(x; 0);
1� y2

y
); (x;

1� y2

y
); (f(x; 0); y); (x; f(0; y))]:

Now, for every list (h1; h2) we consider g a rational function with undeter-
mined coeÆcients of degree at most 4. Solving the linear system of equations f =



J. Gutierrez & R. Rubio & D. Sevilla: On Multivariate Decomposition 13

g(h1; h2) we have three multi{univariate decompositions (g(x; y); h1(x); h2(y)) of
f : �

x� x2y2

�y + x
;�

x2 + 2 x� 10

x+ 5
;
1� y2

y

�
;

�
7 x2 � y2x4 + x3 � 4 x3y2 � 50� 100 y2 + 40 xy2 + 16 x2y2

�25 y � x2y + 7 x2y2 � 10 yx� 50 y2 + x3y2
; x;

1� y2

y

�

�
�x2 + xy2 � x2y4 + 2 x2y2

xy4 � 2 xy2 + x + y3 � y
;�

x2 + 2 x� 10

x+ 5
; y

�
:

2

Remark: The rational function of the Example 2.1 is multi{univariate indecom-
posable and the rational function of the above Example 2.2 is uni{multivariate
indecomposable. So, we have two independent decompositions. 2

2.3. Single{variable decomposition

This subsection will introduce the last notion of multivariate rational function
decomposable. We will show that this includes as special cases the two concepts
of uni{multivariate and multi{univariate decomposition discussed in Subsection
2.1 and Subsection 2.2. The underlying idea of this new decomposition arises
when we consider the multivariate rational functions as functions in one variable.

De�nition: Let i be an integer with 1 � i � n, L = K (x1 ; : : : ; xi�1; xi+1; : : : ; xn)
and f; g; h 2 L(xi), such that f = g(h). Then we say that (i; g; h) is a single{
variable decomposition of f . It is non{trivial if 1 < degxi

h < degxi
f . The

rational function f is single{variable decomposable if there exists a non{trivial
decomposition.

The single{variable decomposition problem is to decide if the multivariate ra-
tional function f 2 K (x) is single{variable decomposable; and in the aÆrmative
case, compute the integer i and the rational functions g; h.
It is important to stand out the existence of the integer i. We need to know

with respect to which variable we are decomposing. For example, f 2 K (x) can
be decomposable with respect to xi, but be indecomposable with respect to the
rest of the variables.
Directly from the de�nition we obtain that the degree is multiplicative with

respect the single{variable decomposition in an appropriate sense.

Proposition 2.6: Let f 2 K (x) be a rational function. If (i; g; h) is a single{
variable decomposition of f , then

degxi
f = degxi

g � degxi
h:
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Next comes the corresponding equivalence relation.

De�nition: Let f 2 K (x) be rational function. Two single{variable decomposi-
tions (i; g; h) and (j; g0; h0) of f are equivalent if i = j and there exists a unit
l 2 L(y) such that h = l(h0), where L = K (x1 ; : : : ; xi�1; xi+1; : : : ; xn).

The following proposition states that single{variable decomposition simulta-
neously generalizes the two previous ones, uni{multivariate and multi{univariate
decompositions. We have seen in Remark 2.1 these two are independent of each
other.

Proposition 2.7: Let f 2 K (x) be a non{constant rational function. Then,

i) A non{trivial equivalence class of of uni{multivariate decompositions of f is
contained in an equivalence class of single{variable decompositions.

ii) A non{trivial equivalence class of multi{univariate decompositions of f is
contained in non{trivial equivalence class of single{variable decompositions.

Proof: i) Suppose (g; h) is a non{trivial uni{multivariate decomposition of f .

Then f = g(h(x)) and 1 < deg h < deg f . Therefore, there exists i such that
degxi

h � 1 and (i; g; h) is a uni{multivariate decomposition of f .
Let (g0; h0) be a uni{multivariate decomposition equivalent to (g; h). Then,

there exists l 2 K (y) composition unit such that h = l Æ h0. And therefore,
degxi

h0 = degxi
h and (i; g0; h0) is a single{variable decomposition of f . Hence,

(i; g; h) and (i; g0; h0) are equivalent single{variable decompositions.

ii) Suppose (g; h1; : : : ; hn) is a non{trivial multi{univariate decomposition

of f . Then f = g(h1(x1); : : : ; hn(xn)) and there exists i 2 f1; : : : ; ng such that
1 < deg hi < degxi

f .
We have h0(x) = hi(xi) and g0(x) = g(h1; : : : ; hi�1; xi; hi+1; : : : ; hn), (i; g

0; h0)
is a non{trivial single{variable decomposition.
On the other hand, if (eg;eh1; : : : ;ehn) is a multi{univariate decomposition equiv-

alent to (g; h1; : : : ; hn), then there exists lj 2 K (y) such that hj = lj Æ ehj
for any j. Thus, deg hj = deg ehj, and we can take the integer i. If eg0 =eg(eh1; : : : ;ehi�1; xi;ehi+1; : : : ;ehn) and eh0 = ehi, then (i; eg0;eh0) is a single{variable
decomposition of f equivalent to (i; g0; h0). 2

Next comes an example of a rational function which is uni{multivariate and
multi{univariate indecomposable, but does have nontrivial single{variable de-
composition.

Example 2.3: The rational function

f =
x5 � x4 � 2 x3y + 2 x2y � 3 y2x� y2 + y4x3 � 2 x2y2 + x+ 2 y4x2 + 2

(y2x� 1)2 (x� 1)
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has the non trivial single{variable decomposition (2; g; h), where

g = y2 +
x + 2

x� 1
; h =

x2 � y

y2x� 1
;

that is, f = g(x; h). But f is uni{multivariate and multi{univariate rational
function indecomposable. 2

The following example illustrates a decomposition of a rational function which
is single{variable indecomposable.

Example 2.4: The rational function

f = �
�x2y + y2 + x5 � x3y � 2 yx+ 2

x2 � y � yx+ 1

can be decomposed as g(h1; h2), where

g(y1; y2) =
yx+ 2

x� 1
; h1 =

x2 � y

yx� 1
; h2 = y � x3:

But it is single{variable indecomposable. 2

As in the polynomial case (see von zur Gathen, Gutierrez & Rubio (1999)), the
situation on multivariate rational function can be also illustrated in the following
diagram of decompositions.

Multi−univariateUni−multivariate

Single−variable

Decomposition

The single{variable decomposition problem also admits its version in �eld
theory terms.

Proposition 2.8: Let f 2 K (x) be a non{constant rational function and 1 �
i � n. Then the equivalence classes of the single{variable decompositions of f ,
(i; g; h), correspond bijectively to intermediate �elds F, such that

L(f) � F � L(xi):
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Proof: The bijection is

f(i; g; h)g �! fL(f) � F � L(xi) g :
[(i; g; h)] 7�! L(h)

Suppose we have a single{variable decomposition (i; g; h) of f . If we consider
f; g; h as rational functions in L(xi), f = g(h), therefore it is well{de�ned.
On the other hand, if (i; g0; h0) is equivalent to (i; g; h), then h = l(h0) for some

composition unit l 2 L(y), then h0 = l�1(hi) and L(h) = L(h0), and therefore it
is an application.
Let (i; g; h) and (i; g0; h0) be two single{variable decompositions of f such that

L(h) = L(h0). Then, there exists l 2 L(y) composition unit satisfying h = l(h0).
Finally, if F is an intermediate �eld between L(f) and L(xi), then by Theo-

rem 1.1 there exists h 2 L(xi) such that F = L(h). Besides, there exists g 2 L(y)
such that f = g(h). 2

One of our goals was to �nd a reasonable de�nition for decomposing multi-
variate rational functions that makes the problem amenable to computation. Of
particular interest is �niteness.

Corollary 2.4: Let f 2 K (x) be a rational function such that 0 < degxi
f

for 1 � i � n. Then there exists a �nite number of equivalence classes of uni{
multivariate, multi{univariate and single{variable decompositions of f .

Proof: If 0 < degxi
f then the primitive element theorem (see Lang (1967) )

asserts that there exists a �nite number of intermediate sub�elds in the extension
L(f) � L(x). As consequence of Proposition 2.8 we have a �nite number of
single{variable decompositions of f .
On the other hand, it is straightforward to check that the number of trivial

equivalence classes of uni{multivariate, multi{univariate and single{variable de-
composition of f is �nite, see Rubio (2001) for details. And the claim follows of
Proposition 2.7. 2

Then, we have single{variable decomposition of a rational function is essen-
tially univariate decomposition over a �eld L = K (x1 ; : : : ; xi�1; xi+1; : : : ; xn). We
simply need to know with respect to which variable we are decomposing. In the
worst case, this algorithm has to compute n di�erent decompositions. Then the
complexity is n multiply by the cost of the computation of a univariate decom-
position over the �eld L = K(x1; : : : ; xn�1).

3. Unirational �elds of tanscendence degree one

In this last section we will solve Problem 1. Our method only requires compute
a gcd of m multivariate polynomials, so it is more e�ective than the algorithm
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presented in the recent work of M�uller{Quade & Steinwandt (1999), which re-
quires the computation of a Gr�obner bases using tag variables in a polynomial
ring in n variables with coeÆcients in a unirational �eld. As a consequence we
provide a method to compute all unirational �elds of transcendence degree one
contained in a �eld, given a �nite set of generators. We also obtain some improve-
ments results with respect to previous work Gutierrez, Rubio & Sevilla (2001)
and Rubio (2001) concerning the Theorem 1.1 and we state a characterization
of unirational �elds of transcendence degree one.

Notation 1: In this section we use the following notation:

{ Let F = K (f1 ; : : : ; fm) be a rational �eld, K � F � K (x). We denote by
Ideal(H1; : : : ; Hm) the ideal generated by the polynomials H1; : : : ; Hm 2
F[y].

{ If M 2 F[y], we denote by Ideal(H1; : : : ; Hm) : (M)1 the saturation ideal of
Ideal(H1; : : : ; Hm) with respect to the polynomial M , namely the set

fG 2 F[y] j 9p 2 N : MpG 2 Ideal(H1; : : : ; Hm)g:

{ We consider the map �F : F[y] ! K (x) de�ned by �F(yi) = xi (i = 1; : : : ; n)
is the ring homomorphism leaving F �xed, the kernel of �F is an ideal in
the polynomial ring F[y] and it denoted by BF=K . It was introduced in the
classical book of Weil (1964).

{ Given an admissible monomial ordering > in a polynomial ring and a nonzero
polynomial G in that ring, we denote by lm G the leading monomial of G
with respect to > and lc G its leading coeÆcient.

{ Finally, we associate to f = fN=fD 2 K (x) the multivariate rational function
F = fN(y)� f(x)fD(y) as an element in the polynomial ring K (f)[y]. 2

We will use the following result which was proved in M�uller{Quade & Steinwandt
(1999).

Lemma 3.1: With the above notation, BF=K = Ideal(F1; : : : ; Fm) : (df(y))
1,

where df =
mQ
j=1

fjD.

In the following we obtain an interesting property of unirational �elds, for
later use.

Proposition 3.1: Let g1; : : : ; gr be multivariate rational function in K (x) such
that F = K (g1 ; : : : ; gr). We have H = gcd(F1; : : : ; Fm) = gcd(G1; : : : ; Gr).
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Proof: Let df =
mQ
j=1

fjD and dg =
rQ

j=1

gjD. By Lemma 3.1, the ideal BF=K does

not depend on the generators; in other terms, Ideal(F1; : : : ; Fm) : (df(y))
1 =

Ideal(G1; : : : ; Gr) : (dg(y))
1. Therefore, there exists p 2 N such that Gi �

df(y)
p 2Ideal(F1; : : : ; Fm). This implies H divides Gi � df(y)

p. Since H divides
the near{separated polynomials associated to the fi's, it has no factors in K [y]
(see Proposition 2.3). Hence H j Gi, for all i � r.
On the other hand, there exists p 2 N such that Fj �dg(y)

p 2Ideal(G1; : : : ; Gr).
Let d be a polynomial in F[y], if d j Gi for all i then d also divides Fjdg. Again,
we have that d has no factors in F[y] and d j Fj. As consequence, d j H and
H = gcd(G1; : : : ; Gr). 2

Now, we have all ingredients to solve Problem 1.

Algorithm 3.1: Input: f1; : : : ; fm 2 K (x).

Output: f 2 K (x) such that K (f) = F = K (f1 ; : : : ; fm), if it exists, and \no
L�uroth's generator" otherwise.

A Let > be a graded lexicographical ordering for y = (y1; : : : ; yn).

B Let

{ Fk = fkN(y)� fk(x)fkD(y) for k = 1; : : : ; m.

{ i 2 f1; : : : ; mg such that lm Fi � lm Fj

C Compute H = gcd(fFk; k = 1; : : : ; mg) with lc H = 1.

{ If H = 1, RETURN \no L�uroth's generator" ( F does not have transcen-
dence degree 1 over K ).

{ Otherwise, H = fN(y)� f(x)fD(y) for some f(x) 2 F, RETURN f .

Correctness proof. If F has transcendence degree 1 over K ; we can write
F = K (f). By Corollary 2.2, fN(y)� f(x)fD(y) divides H. Therefore H cannot
be constant if a L�uroth's generator exists.
If lm H = lm Fi, then Fi is a greater common divisor of fFj; j = 1; : : : ; mg.

Then for any i, Fi divides Fj.

Let q = fjN (y)
fFig

; s = fjD(y)
fFig

be the normal form with respect to the
monomial ordering >, that is, there exist p; q; r; s 2 F[y] such that

fjN (y) = p(y)Fi � q(y)
fjD(y) = r(y)Fi � s(y);

and lm Fi doesn't divide any monomial of q neither of s. By Proposition 2.3,
q; s 6= 0 and moreover,

Fj = Fi(p� fj(x)r) + (q � fj(x)s):
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Hence Fi divides q�fj(x)s and we conclude that q�fj(x)s = 0, since otherwise
we would get lm Fi divides lm(q � fj(x)s), which contradicts the choice of the

polynomials q; s. Thus fj(x) =
q

s
2 F = K (fi).

If lm H < lm Fi, there exists C 2 F[y] non{constant such that Fi = HC. Let
d; � be the lowest common multiples of the denominators of the coeÆcients of
H and C, respectively. Then D = Hd;C 0 = �C 2 K [x; y]. Since H is monic, the
polynomial D is primitive. Then,

fiN(y)fiD(x)� fiN(x)fiD(y) =
D

d

C 0

�
fiD:

By Proposition 2.3 there exists bC 2 K [x;y] such that

fiN(y)fiD(x)� fiN(x)fiD(y) = D bC:
On one hand, D 62 K [y], then D and H have a non{constant coeÆcient. On

the other hand, bC 62 K [y], then the non{constant coeÆcients of D in the ring
K (x)[y] have smaller degree than deg (fi(x)). The choice of d assures that the
coeÆcients of H have smaller degree than fi.
Summarizing, every non{constant coeÆcient f 2 F of H has smaller degree

than the generators, and there is at least one non{constant coeÆcient. We choose
f a non{constant coeÆcient of H with smallest degree. By Proposition 3.1,
H = gcd(F1; : : : ; Fm; F ), and therefore lm(F ) = lm(H): Otherwise, as above,
there would exist a non{constant coeÆcient of H with degree less then deg(f)
which is a contradiction.
As we showed before, since lm(F ) = lm(H), f is a L�uroth's generator and

H = fN (y)� f(x)fD(y). 2

The complexity of this algorithm is dominated in the step C by computing
gcd's of multivariate polynomials, so the algorithm is polynomial in the degree
of the rational functions and in n (see von zur Gathen & Gerhard (1999)).
On the other hand, it is interesting to remark that the L�uroth's generator

is independent in the �eld that we are working on, i.e., from the fact that the
L�uroth generator can be found with only a gcd computation, we obtain that if
f is a L�uroth generator of K (f1 ; : : : ; fm) then it is also a L�uroth generator of
K 0(f1; : : : ; fm) for any �eld extension K 0 of K , K � K 0 .

Example 3.1: Let Q(f1 ; f2) � Q(x; y; z) where

f1 =
y2x4 � 2y2x2z + y2z2 + x2 � 2xz + z2

yx3 � yxz � yzx2 + z2y

f2 =
y2x4 � 2y2x2z + y2z2

x2 � 2xz + yx3 � yxz + z2 � yzx2 + z2y
:

Let
Fi = fiN(s; t; u)� fi(x; y; z)fiD(s; t; u) ; i = 1; 2:
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Compute

H = gcd(F1; F2) = �tu+ s2t+
x2y � zy

x� z
u+

�x2y + zy

x� z
s:

Then, we can take f =
x2y � zy

x� z
as a L�uroth generator of Q(f1 ; f2).

Next comes an interesting characterization of unirational �elds with tanscen-
dence degree one over K .

Theorem 3.1: Let F = K (f1 ; : : : ; fm) be a rational �eld in K (x). Then F has
transcendence degree one if and only if H =gcd(F1; : : : ; Fm) 6= 1.

Proof: =) If tr.deg.(F=K ) = 1 then there exists f 2 F such that F = K (f).
By Corollary 2.2 we have F (y) = fN (y) � f(x)fD(y) divides Fj; 8j. Thus F
divides H, and the greatest common divisor is not a constant.
(= Suppose H 6= 1, the above algorithm computes a L�uroth's generator and
we are done. 2

It is important to highlight that when the �eld F contains a non{constant
polynomial you can compute a polynomial as a generator, and this generator
neither depends on the ground �eld K .

Corollary 3.1: If the unirational �eld F contains a non{constant polynomial
over K and tr:deg(F=K ) = 1, then the algorithm returns a polynomial.

Proof: By Theorem 1.1 there exists p 2 K [x] such that F = K (p). By Proposi-
tion 3.1, H = p(y)� p(x), (lc(H) = 1). 2

We have just solved Problem 1. Finally, as consequence of Algorithms 2.1, 3.1
and Corollary 2.3 we are able to solve the following computational problem.

Problem 3: Given f1; : : : ; fm 2 K (x) rational functions; compute all rational
�elds E with tr:deg(E=K ) = 1 such that

K (f1 ; : : : ; fm) � E � K (x):

There are �nite number of them, because the number of non equivalence classes
of uni{multivariate rational function are �nite.
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