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(in our ase Maple and Matlab) integrating symboli and numeri failitiesan be used to develop a Problem Solving Environment whih is very usefulfor solving problems into a CAD/CAM framework.The utility of CAD/CAM systems as a way of inreasing the eÆieny ofsimulation and design proesses in the produtive area is nowadays unanswer-able. Advantages as prodution time redution, �nal produt improvementand ost redution are freuentely alled as the greatest bene�ts produedby introduing CAD/CAM systems in an industrial environment.In the �rst setion we show how algebrai tehniques and Sienti� Com-puting Systems (as Maple and Matlab) an be very useful in CAGD. Theremaning setions of this paper are Maple spreadsheets, with internal allsto Matlab in order to solve some linear equation systems of big size, solvingin this way some lassial problems in Computer Aided Geometri Design.More preisely, the seond setion presents the omputation, topologiallyexat, of a revolution surfae setioning. The following setions show howMaple an work with B-spline urves and surfaes.This paper gathers three researh lines:� Studying and improving the graphi tools provided by the atual Si-enti� Computing Systems (Mathematia, Matlab, Maple and Axiom)together with simulation module development in these systems, for ge-ometri modelling and visualization.� Adapting, developing and integrating the algebrai equation system so-lution manipulation tehniques developed in the framework of FRISCOprojet (ESPRIT/LTR 21024: European Union) to solve eÆientlyproblems onerning parametri urve and surfae manipulation.� Solving a set of onrete problems (unsolved satisfatorily at this mo-ment) for the CAD/CAM environment CSIS used by CANDEMAT(ompany dediated to make dies for ars). This researh line is ap-proahed by inluding the developed tehniques inside the simulationmethods mentioned above and/or inluding tehniques or software be-fore mentioned.The CAGD systems traditionally have been developed using program-ming languages with good harateristis for sienti� omputing (C, C++,Fortran, Basi, Pasal,...). While the hardware tehnology is progressingrapidly, the software evolution goes on more slowly, although ontinuouslytoo. This paper is foused spei�ally on the integrated symboli and nu-meri omputing pakages having high graphial apaities. This kind ofsoftware has been reahing a large di�usion and importane in the last few74



years. Together with their basi general statements, these systems o�er ad-ditional modules whih inlude more spei� appliations. That is the aseof Mathematia pakages and Matlab toolboxes.In Mathematia, there is a pakage alled 'Graphis Spline', having lim-ited apaities for generating basi entities like Bezier urves and ubisplines. The strong graphial apaities on parametris, operators, et. allowthese primitives to be applied for interesting but limited models. In Matlabthere is a basi funtion for generating ubi splines and (sine 1990) a tool-box alled 'Spline' whih ontains B{spline funtions for urves and surfaes,following the lassi work of Carl de Boor ( [2℄, [3℄).Moreover in the last few years the international sienti� ommunity haslooking for eÆient (i.e. rapid) and as preise as possible (i.e. guaranteedvalidity for the obtained solutions) algorithms/methods for solving algebraior polynomial equations and for manipulating the sets of its solutions. Theexat meaning of the phrase above an be observed more learly in the fol-lowing example with a CAGD avour.Example 1 We onsider the parametri equation of the biubi surfae Sx = 3t(t� 1)2 + (s� 1)3 + 3sy = 3s(s� 1)2 + t3 + 3tz = �3s(s2 � 5s+ 5)t3 � 3(s3 + 6s2 � 9s+ 1)t2 + t(6s3 + 9s2 � 18s+ 3)�3s(s� 1)for parameter values between 0 and 1, displayed in �gure 1.

Figure 1: Biubi surfae presented in Example 1A �rst problem whih an arise in this situation is how to determine theintersetion points of the surfae S with the straight line x = u; y = u; z = u75



(ifsuh a solution exists). That means solving the following equation system:u = 3t(t� 1)2 + (s� 1)3 + 3su = 3s(s� 1)2 + t3 + 3tu = �3s(s2 � 5s+ 5)t3 � 3(s3 + 6s2 � 9s+ 1)t2 + t(6s3 + 9s2 � 18s+ 3)�3s(s� 1)In this partiular ase we get only one intersetion point, having oordinates(0:5561; 0:5561; 0:5561)reahed at s = 0:2748 and t = 0:0408. Another way of solving this problemonsists of determining the impliit equation of S. If this equation has beenomputed, the previous problem redues to solving the equation H(u; u; u) =0. Analogously, every intersetion of S with any urve an be dealt by solvinga single variable equation. In this partiular ase, the impliit equation of Shas the following struture:H(x; y; z) = z9 + 9Xi=1 ri(x; y)z9�ir1(x; y) =�233469x2048 + 188595y2048 � 112832595262144 � 81x264 + 135xy32 � 81y264r2(x; y) =�20972672709381x536870912 + 17975329363179y536870912 � 729y48192 � 729x48192 + 1215x3y2048 �4779x2y24096 + 1215xy32048 � 4105971x365536 + 3129597y365536 + 14456151x2y65536 �13181049xy265536 � 54187594407x216777216 + 48101467761xy8388608 � 38812918311y216777216 �22656991982391171137438953472 � 12 �233469x2048 � 188595y2048 + 112832595262144 + 81x264 �135xy32 + 81y264 � ��233469x2048 + 188595y2048 � 112832595262144 � 81x264 +135xy32 � 81y264 �r3(x; y) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .and by substituting x = u; y = u; z = u we obtain one equation of degree 18in u, very easy to solve:5159780352u18�609499054080u17+: : :+3707912273492242256259566313 = 0The problem whih ours with this philosophy of work resides in thefat that, although there are methods for omputing the impliit equationH(x; y; z), these methods are very ineÆient and an hardly be integratedin the CAD/CAM pakages, where the solutions for any user request mustbe omputed in real time. However, to overome this drawbak it is feasiblethe inorporation of a data base ontaining the implit equations (alreadyomputed and preproessed) of the parametri surfaes of frequent use. For76



instane the impliit equation of the parametri surfaex = x00 t2 � tt2 � t1 + x01 t� t1t2 � t1y = y00 s2 � ss2 � s1 + y11 s� s1s2 � s1z = �z00 s2 � ss2 � s1 + z10 s� s1s2 � s1� t2 � tt2 � t1 + �z10 s2 � ss2 � s1 + z11 s� s1s2 � s1� t� t1t2 � t1is(z00 � 2z10 + z11)xy + (y00z10 + y11z10 � y00z11 � y11z00)x+(x00z10 + x01z10 � x00z11 � x01z00)y + (x00y11 � x00y00 + x01y00 � x01y11)z+x01y11z00 � x00y11z10 + x00y00z11 � x01y00z10for most values of the parameters xij, yij and zij. Likewise it is possible todetermine the algebrai expressions desribing s and t as funtions of x, yand z (see [6℄).The problems onsidered in the following setions are examples of howalgebrai tehniques (suh as subresultants, Sturm-Habiht sequenes, sym-metri funtions et.) an be used for the resolution of CAGD problems.2. Revolution Surfae SetioningThe �rst problem onsidered is the omputation, topologially exat, thesetion of a revolution surfae by using the generi impliitationmethodologybefore mentioned. For that it is used a serie of algebrai tehniques in orderto determine the exat shape of a revolution surfae setioning. The detailsof the algorithm an be found in [7℄ and [5℄.Example 2 The urve in the plane Y = 0 de�ned by the parametrizationx = C1(t), z = C3(t) will be rotated with respet to the OZ axis. In �gure2 it is displayed the 3-dimensional urve C de�ned by the parametrization(C1(t); 0; C2(t)).> plots[setoptions3d℄(saling=CONSTRAINED,axes=FRAMED);> plots[setoptions℄(saling=CONSTRAINED,axes=FRAMED);C1:=(2*t-1)/(1+t**2); C2:=0;C3:=(1-t+t**2)/(2+t+t**2);plot3d([C1,C2,C3℄,t=-15..15,s=-1..1,orientation=[60,75℄,grid=[175,2℄); 77
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Figure 2: Curve C onsidered in Example 2The revolution surfae generated by the urve C is displayed as follows(see �gure 3). The limits of the parameter intervals are �3 and 3 respetively�6 and 6.> T1:=C1*(2*s)/(1+s**2)-C2*(1-s**2)/(1+s**2):> T2:=C2*(2*s)/(1+s**2)+C1*(1-s**2)/(1+s**2):> T3:=C3:{P1:=(a,b)->plot3d([T1,T2,T3℄,s=a..b,t=-6..6,grid=[50,50℄,axes=BOXED,saling=UNCONSTRAINED,projetion=1,tikmarks=[0,0,0℄,orientation=[59,75℄):> P1(-3,3);

Figure 3: Revolution surfae generated by C78



For studying the setions of this revolution surfae, we �rstly omputeits impliit equation by using the generi impliitation method, whih isbased on symmetri funtions.> read "ImpliitSuperfRevol.txt";> toro:=ImpliitSuperfRevol(C1,C2,C3,x,y,z,t);toro := 9 + 8 z x2 y2 + 262 z2 � 308 z3 � 84 z + 8 z4 x2 y2 + 121 z4+16 z2 x2 y2 + 20 z x2 + 20 z y2 � 3 x2 � 3 y2 + x4 + y4 + 16 z3 x2 y2+19 z4 x2 + 19 z4 y2 + 2 x2 y2 + 4 z4 x4 + 4 z4 y4 + 8 z3 x4+8 z3 y4 � 72 z3 x2 � 72 z3 y2 + 8 z2 x4 + 8 z2 y4�28 z2 x2 � 28 z2 y2 + 4 z x4 + 4 z y4First we ompute the setion of this surfae with the plane y = 1=2.> Setion1:=subs(y=1/2,toro);Setion1 := �3154 z + 21z4x2 + 5112 z2 � 6512 z3 + 126z4 + x4 �52x2 + 4z4x4 � 68z3x2 + 8z3 x4 � 24z2x2 +8z2x4 + 4zx4 + 22zx2 + 13316Initially, we determine the topology of this setioning (it is important tomention that it has two isolated points), as displayed in �gure 4a. In thisstep we are interested only in the ritial and regular points of the urve,whih are the graph points. The behaviour of the urve between these pointsis ompletely determined (taking into aount the branh ounting in eahinterval) so we an onnet them by edges. The algorithm we have used todetermine the topologial struture of the urve is di�erent from the lassialalgorithms beause by a simple hange of oordinates we an work with aurve whih ful�ls the following ondition: for every root of the disriminant,we have at most a ritial point of the urve (see [7℄ and [5℄).> read "prGrafos.txt";> prinipal(Seion1,x,z,20,'blak');After determining the topology of the urve, we are able to draw it ex-atly using for example the Newton method, without losing isolated or smallomponents (�gure 4b). 79



read "prDibujos.txt";prinipal(Seion1,x,z,20,500,10,'blak');> P2:=y->plot3d([s,y,t℄,s=-4..4,t=-2..2,style=PATCHNOGRID):

Figure 4: (a) Setioning topology and (b) setioning urveIn this way we have obtained, in an exat way, the setion of our revolutionsurfae we are interested in (�gure 5).plots[display℄(P1(-4,4),P2(1),grid=[50,50℄,axes=BOXED,saling=UNCONSTRAINED,projetion=1,tikmarks=[0,0,0℄,orientation=[13,130℄);

Figure 5: Revolution surfae setioning
80



3. Random Generation of Polynomial and Rational B-Spline Curvesand SurfaesIn this setion we will show how Maple an generate symbolially polyno-mial and rational B-spline entities. Before doing this, we will present someuseful de�nitions [11℄ whih will be used in this setion and the in followingones.De�nition 3 The N th{order B-spline basis funtions are de�ned reursivelyas: Bi;1(u) = � 1 ui � u < ui+10 otherwiseBi;N(u) = u�uiui+N�1�uiBi;N�1(u)+ui+N�uui+N�ui+1Bi+1;N�1(u) :De�nition 4 A N th{order rational B-spline urve RN(u) is de�ned by:RN(u) := n�1Xi=0 Bi;N(u)wiPin�1Xi=0 Bi;N(u)wi ; a � u � b;where fPig are the ontrol points, fwig are the weights and fBi;Ng are theN th{order B-spline basis funtions de�ned on the nonperiodi knot vetorU = fu0; u1; : : : ; un+N�2; un+N�1gwith u0 = u1 = : : : = uN�1 = a and un = un+1 = : : : = un+N�1 = b.If for all i wi =  ( 6= 0) then the B-spline urve is alled polynomial.In this ase it has the following representation:RN(u) := n�1Xi=0 Bi;N(u)Pi; a � u � b:If a = 0 and b = 1 we say that the knot vetor is normalised.The polygon formed by the fPig is alled ontrol polygon.De�nition 5 A N1; N2th{order rational B-spline surfae RN1;N2(u; v) is de-�ned byRN1;N2(u; v) := n1�1Xi=0 n2�1Xj=0 Bi;N1(u)Bj;N2(v)wi;jPi;jn1�1Xi=0 n2�1Xj=0 Bi;N1(u)Bj;N2(v)wi;j ; a � u � b;  � v � d;81



where fPi;jg are the ontrol points, fwi;jg are the weights , fBi;N1g andfBj;N2g are the B-spline basis funtions de�ned on the nonperiodi knot ve-tors U = fu0; u1; : : : ; un1+N1�1g and V = fv0; v1; : : : ; vn2+N2�1g respetively,with u0 = u1 = : : : = uN1�1 = a, un1 = un1+1 = : : : = un1+N1�1 = b,v0 = v1 = : : : = vN2�1 =  and vn2 = vn2+1 = : : : = vn2+N2�1 = d.If for all i; j wi;j =  ( 6= 0) then the B-spline surfae is alled polyno-mial and its representation is the following one:RN1;N2(u; v) := n1�1Xi=0 n2�1Xj=0 Bi;N1(u)Bj;N2(v)Pi;j:In the two following examples, the polynomial and rational expressionsde�ning an entity will be generated in eah interval (ui; ui+1) of the knotvetors. The Maple program will randomly generate the elements whihde�ne a B-spline entity.Example 6 We onsider the B-spline urves (polynomial and rational) de-�ned by the following parameters:> read "simbC.txt";Curve order: 6Knot vetor: [0,0,0,0,0,0,.1210225739,1.,1.,1.,1.,1.,1.℄Control points: [[1813.213542, 3155.072848, 7292.017654,10852.09613, 11970.06777, 13138.01982, 5307.115079℄,[15411.10969, 6888.316017, 7878.233333, 4268.225166,9045.040000, 6034.080537, 9315.020747℄, [22834.01291,13631.11796, 26325.11671, 23448.19923, 5654.282051,18408.02733, 22853.31278℄℄Weights: [.1883026555, .1081886648e-1, .5431078818e-1,.5421364074, .1062056055, .6872239468, .2581224202e-1℄First we generate two polynomial expressions and by using them we de-termine the symboli expression of the polynomial B-spline urve. We dothe same in the rational ase. Finally, we display (see �gure 6) the ontrolpolygon (in red), the polynomial B-spline urve (in green) and the rationalone (in blue).Example 7 In this example we will onsider the B-spline surfaes (polyno-mial and rational) de�ned by the parameters:82
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Figure 6: Polynomial and rational B-spline urves presented in example 6> read "simbS.txt";Surfae orders: 3 4Knot vetors: [0, 0, 0, 1., 1., 1.℄ [0, 0, 0, 0, 1., 1., 1., 1.℄Control points: [[[3372.184932, 5567.160321, 7405.187500℄,[5472.689076, 4983.023544, 4507.052356℄, [7855.042857, 9212.056291,8272.083333℄, [11016.06109, 7460.165692, 3563.137184℄℄,[[10457.15273, 17624.11443, 16674.14440℄, [4417.028646,15924.12000, 6384.092138℄, [12073.08661, 9125.182609, 10439.03580℄,[9301.109023, 17020.02273, 9594.065432℄℄, [[20276.15139,19382.05319, 19076.02711℄, [17741.09483, 16728.07711, 16773.04392℄,[15851.06977, 5130.083645, 20085.10056℄, [3995.063830, 26465.03774,17510.08246℄℄℄Weights: [[.1467061818e-1, .2056977801, .8521961580℄,[.6275754910, .2828278577, .3739758365e-1℄, [.1426845549,.2486348262, .3187999143℄, [.5673102039, .3234548536,.3034818421℄℄We generate the expressions (polynomial and rational) whih de�ne sym-bolially the entities and afterwards we display the ontrol polyhedra (inred) and the border urves of the polynomial and rational B-spline surfae(in green and blue respetively) (see �gure 7).
4. Polynomial and Rational B-Spline Curve ManipulationIn this setion it is shown how Maple an perform, in a very eÆientway, several operations with polynomial and rational B-spline urves (using83
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Figure 7: Polynomial and rational B-spline surfaes presented in example 7the same knot vetor and ontrol points for both polynomial and rationalentities). These operations are the following ones (see for instane [11℄):� Numerial generation of polynomial and rational B-spline urves.� Computation of the B-spline urve derivatives, using:{ basis funtion method{ ontrol point method.� Knot vetor re�nement.� Bezier deomposition.� Approximation of rational B-spline urves with polynomial ones.Example 8 Taking into aount de�nition 4, we onsider the following pa-rameters de�ning a polynomial B-spline urve and the following weight vetorde�ning the orresponding rational B-spline urve:> read "manipBspline.txt";Knots:=[0.,0.,0.,0.,0.,0.25,0.5,0.75,1.,1.,1.,1.,1.℄:order:=5:nrPoints:=nops(Knots)-order:Points:=[[0.,10.,10.,20.,30.,40.,25.,15.℄,[0.,20.,30.,35.,35.,25.,5.,10.℄,[0.,5.,5.,10.,10.,20.,5.,15.℄℄:84



> Weights:=[℄: for i from 1 to nrPoints do Weights:=[op(Weights),evalf(rand()/10**12)℄ od: Weights;[:7924959004; :7512095393; :6283634430; :3137460865; :005862664913;:07481365622; :6438424438; :1319057546℄For omputing a point on a polynomial B-spline urve at a �xed value u,three steps are required:1. Find the knot span in whih u lies.2. Compute the non-zero basis funtions.3. Multiply the values of the non-zero basis funtions with the orrespond-ing ontrol points.In the rational ase the algorithm is similar. Applying several times thesealgorithms and using afterwards the prede�ned Maple interpolation funtionplottools[urve℄, we generate the urves (polynomial and rational one)whih orrespond to the anterior data and display them together with theontrol polygon using our Maple proedures displayPol and displayRa.In �gure 8 the ontrol polygon appears in red, the polynomial B-spline urvein green and the rational B-spline urve in blue.
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Figure 8: Polynomial and rational B-spline urves presented in example 8It is important to mention that in the algorithms we have used, espeiallyfor the omputation of the rational B-spline derivatives (whih are ompli-ated and involve denominators to high powers), we have represented the85



rational B-spline entities in homogeneous oordinates, working with polyno-mial B-spline entities in four dimensions.Let us start with a 3-dimensional point P = (x; y; z). Then P is writtenas Pw = (wx;wy; wz; w) = (X; Y; Z;W ) in 4-dimensional spae, w 6= 0. Pis obtained from Pw by dividing all oordinates by the fourth oordinate,W (i.e. by mapping Pw from the origin to the hyperplane W = 1). Thismapping, denoted by H, is a perspetive map with enter at the origin.P = H(Pw) = H((X; Y; Z;W )) = � (XW ; YW ; ZW ) ;W 6= 0diretion(X; Y; Z) ;W = 0Now for a given set of ontrol points fPig = f(xi; yi; zi)g and weights fwig,we onstrut the weighted ontrol points Pwi = (wixi; wiyi; wizi; wi) and thende�ne the polynomial B-spline urve in 4-dimensional spaeCw(u) = nXi=0Bi;N(u)Pwi :Thus, rational B-spline entities an be proessed in 4-dimensional spae andthe results are loated in 3-dimensional spae using the map H.Example 9 Now we ompute the �rst and the seond derivatives of theurves, �rstly with the basis funtion method and then with the ontrol pointmethod, at some points randomly generated.The basis funtion method onsists basially in implementing an algorithmusing the following formula:C(k)(u) = nXi=0B(k)i;p (u)Pi:The ontrol point method onsists in representing the derivative of apolynomial B-spline urve as a polynomial B-spline urve of lower order:C(k)(u) = n�kXi=0 Bi;p�k(u)P (k)iwith P (k)i = ( Pi ; k = 0p�k+1ui+p+1�ui+k (P (k�1)i+1 � P (k�1)i ) ; k > 0and U (k) = f0; : : : ; 0| {z }p�k+1 ; up+1; : : : ; um�p�1; 1; : : : ; 1| {z }p�k+1 g:86



The results are displayed as follows:[[Cx(u); Cy(u); Cz(u)℄; [�Cx�u ; �Cy�u ; �Cz�u ℄; [�2Cx�u2 ; �2Cy�u2 ; �2Cz�u2 ℄℄where Cx(u), Cy(u) and Cz(u) represent the three omponents of the urveC(u). After eah operation the time is displayed.> omputeDerivatives(order,nrPoints,Knots,Weights,Points);Argument: .8458933315Polynomial derivative BF: [[32.05687097, 17.50040607, 12.54996778℄,[-54.43263906, -102.3150315, -37.93511739℄, [-749.8846345,-41.0448997, -154.5126604℄℄Time : .10e-1Polynomial derivative CP: [[32.05687097, 17.50040607, 12.54996778℄,[-54.43263912, -102.3150317, -37.93511741℄, [-749.8846338,-41.0448993, -154.5126601℄℄Time : .20e-1Rational derivative BF: [[29.11414329, 13.78607835, 9.128659526℄,[-37.30823064, -110.0511479, -37.68651421℄, [12.73743261,732.2496156, 21.86782408℄℄Time : .260Rational derivative CP: [[29.11414329, 13.78607835, 9.128659526℄,[-37.30823073, -110.0511479, -37.68651425℄, [12.73743218,732.2496156, 21.86782409℄℄Time : .20e-1A very important operation with B-splines is the knot vetor re�nement.To state the problem, let Cw(u) = Pni=0Bi;N(u)Pwi be de�ned on the knotvetor U = fu0; : : : ; umg and let X = fx0; : : : ; xrg satisfy xi � xi+1 andu0 < xi < um for all i. The elements of X are to be inserted in U and theorresponding new set of ontrol points fQwi g; i = 0; : : : ; n + r + 1 is to beomputed. New knots xi should be repeated in X with their multipliities.The prinipal ideas of the re�nement algorithm are the following ones:87



� Find indies a and b suh that ua � xj < ub for all j.� Compute the new ontrol points:{ The ontrol points Pw0 ; : : : ; Pwa�p and Pwb�1; : : : ; Pwn do not hange.{ The remaining ontrol points are omputed using the formula:Qwi;r = � Pwi ; r = 0�i;rQwi;r�1 + (1� �i;r)Qwi�1;r�1 ; r > 0where �i;r = 8><>: 1 i � k � p+ r � 1xj�uiui+p�r+1�ui k � p+ r � i � k � s0 i > k � s+ 1and s represents the multipliity of xj.The appliations of the knot re�nement operation inlude:� Deomposing the B-spline entities into its onstituent Bezier ompo-nents.� Merging two or more knot vetors in order to obtain a set of urvesde�ned on one ommon knot vetor.� Obtaining polygonal and polyhedral approximations for the B-splineurves and surfaes respetively. Re�ning knot vetors brings the on-trol polygon (polyhedra) loser to the urve (surfae), and in the limitthe polygon (polyhedra) onverges to the urve (surfae).Example 10 We will re�ne now our B-spline urves using the interior knots[0:4; 0:7; 0:7; 0:7℄. After the re�nement operation, we will redisplay the urves,together with the new ontrol polygon.NewKnots:=[0.4,0.7,0.7,0.7℄:dib:=refine(order,nrPoints,Knots,Weights,Points,NewKnots):plots[display℄([op(dibPol),op(dib[1℄)℄,axes=NORMAL,orientation=[7,96℄);plots[display℄([op(dibRa),op(dib[2℄)℄,axes=NORMAL,orientation=[7,96℄);}The re�ned urves are displayed in �gure 9a,b. In �gure 9a the polyno-mial B-spline urve is displayed in grey, the initial ontrol polygon in orangeand the �nal ontrol polygon in red meanwhile in �gure 9b the rational88
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Figure 9: Re�ned (a) polynomial and (b) rational B-spline urveB-spline urve is displayed in blue, the initial ontrol polygon in orange andthe �nal ontrol polygon in green.An important appliation of the knot vetor re�nement is the problemof deomposing a rational B-spline urve into its 4-dimensional polynomialsegments. This operation is required for onverting rational B-splines intoother spline forms, for instane into an entity type in IGES format, the IGESspline parametri urve, Entity type 112 ( [9℄). In order to perform thisonversion, the �rst step onsists in deomposing the urve into its Bezieromponents. The ontrol points of the Bezier segments are obtained byinserting eah interior knot until it has multipliity equal to the order.In our ase, the inital urves (polynomial anr rational one) are deom-posed into its Bezier omponents, whih are displayed together with theorresponding ontrol polygons.> BezierPol:=BezCompPol(order,nrPoints,Knots,Points):BezierRa:=BezCompRa(order,nrPoints,Knots,Weights,Points):> dib:=displayBezComp(order,BezierPol,BezierRa):plots[display℄([op(dib[1℄)℄,axes=NORMAL);plots[display℄([op(dib[2℄)℄,axes=NORMAL);In �gure 10a,b are displayed the Bezier omponents of the B-spline urves(polynomial anr rational respetively). The ontrol polygons are displayedin orange and the four Bezier omponents (in eah ase) are displayed in adi�erent olor. 89
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Figure 10: (a) Polynomial and (b) rational Bezier urve omponentsAnother important operation for the rational B-spline urves is the ap-proximation with polynomial B-spline urves. This operation is neessaryfor two reasons (whih apply also for the surfae ase that will be studied inthe next setion):� It is frequently neessary to interhange information between di�erentworking systems. These systems aept information in formats suhas IGES or VDA, but IGES (see [9℄) inorporates for urves and sur-faes the rational B-spline representation, meanwhile VDA (see [12℄)inorporates the polynomial representation in power basis form.� During the proess of impliitation, whih ould imply ompliatedomputations, it is useful to �rstly approximate the rational B-splineentities with polynomial ones, in order to obtain entities easier to im-pliitate.The approximation algorithm onsists of the following steps [10℄:1. Certain ontinuity onditions are imposed at the exterior points in orderto determine some ontrol points.2. The remaining ontrol points are determined by interpolation.3. The di�erenes between the urves (the initial one and the approximat-ing one), the tangent vetors and the urvatures are evaluated at someadeuately hoosen points and tested against the error parameters.4. If the di�erenes are not small enough, new internal knots are addedand a new iteration begins, starting with the omputation of the newontrol polygon. 90



> read "aprox.txt": dib:=aproxBezComp(order,BezierRa):plots[display℄([op(dib[1℄),op(dib[2℄)℄,axes=NORMAL,orientation=[7,96℄);The result of the approximation proess is presented in �gure 11: therational B-spline urve is displayed in blue, the initial ontrol polygon inred and the new ontrol polygon (orresponding to the polynomial B-splinerepresentation of our urve) in green.
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Figure 11: B-spline urve approximation
5. Polynomial and RationalB-Spline Surfae ManipulationIn this setion it is shown how Maple an perform, in a very eÆient way,several operations with polynomial and rational B-spline surfaes. We willpresent the same operations as in the previous setion:� Numerial generation of polynomial and rational B-spline surfaes.� Computation of the B-spline surfae derivatives, using:{ basis funtion method{ ontrol point method.� Knot vetor re�nement.� Bezier deomposition. 91



� Approximation of rational B-spline surfae with polynomial ones.Example 11 Taking into aount de�nition 5, we onsider the following pa-rameters de�ning a polynomial B-spline surfae (the ontrol points are readfrom the �le "datos.txt") and the weights de�ning the orresponding rationalB-spline surfae:> read "manipBsplineSur.txt";> KnotsU:=[0.,0.,0.,0.,0.,0.,0.25,0.25,0.25,0.25,0.75,0.75,0.75,0.75,1.,1.,1.,1.,1.,1.℄:orderU:=6:nrPointsU:=nops(KnotsU)-orderU:KnotsV:=[0.,0.,0.,0.,0.,0.,0.3,0.3,0.3,0.3,0.6,0.6,0.6,0.6,1.,1.,1.,1.,1.,1.℄: orderV:=6:nrPointsV:=nops(KnotsV)-orderV;> fis:=fopen(`datos.txt`, READ): PointsX:=[℄: PointsY:=[℄:PointsZ:=[℄:for i from 1 to nrPointsV doListaX:=[℄; ListaY:=[℄; ListaZ:=[℄;for j from 1 to nrPointsU doListaX:=[op(ListaX), fsanf(fis, \%f)[1℄℄;ListaY:=[op(ListaY), fsanf(fis, \%f)[1℄℄;ListaZ:=[op(ListaZ), fsanf(fis, \%f)[1℄℄;od:PointsX:=[op(PointsX), ListaX℄;PointsY:=[op(PointsY), ListaY℄;PointsZ:=[op(PointsZ), ListaZ℄;od:flose(fis): Points:=[PointsX, PointsY,PointsZ℄:> Weights:=[℄: for i from 1 to nrPointsV doLista:=[℄;for j from 1 to nrPointsU doLista:=[op(Lista), evalf(rand()/10**12)℄ od:Weights:=[op(Weights), Lista℄ od:Five steps are required to ompute a point on a polynomial B-splinesurfae at �xed (u; v) parameter values:1. Find the knot span in whih u lies, say u 2 [ui; ui+1).92



2. Compute the non-zero basis funtions Bi�p;p(u); : : : ; Bi;p(u).3. Find the knot span in whih v lies, say v 2 [vj; vj+1).4. Compute the non-zero basis funtions Bj�q;q(v); : : : ; Bj;q(v).5. Multiply the values of the non-zero basis funtions with the orrespond-ing ontrol points.In the rational ase the algorithm is similar. Applying several times thesealgorithms and using afterwards the prede�ned Maple interpolation funtionplottools[urve℄, we generate the border urves of the B-spline surfaes(polynomial and rational one) whih orrespond to the anterior data anddisplay them together with the ontrol polyhedra using our Maple proeduresdisplaySurPol and displaySurRa. In �gure 12a the ontrol polyhedraappears in red and the border urves of the polynomial B-spline surfae ingreen, meanwhile in �gure 12b the ontrol polyhedra appears in magentaand the border urves of the rational B-spline surfae in blue.> dibPol:=displaySurPol(orderU,orderV,nrPointsU,nrPointsV,KnotsU,KnotsV,Points,0.,1.,0.,1.,'red','green'):dibRa:=displaySurRa(orderU,orderV,nrPointsU,nrPointsV,KnotsU,KnotsV,Weights,Points,0.,1.,0.,1.,'blue','magenta'):plots[display℄([op(dibPol)℄, axes=NORMAL);plots[display℄([op(dibRa)℄, axes=NORMAL);
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Figure 12: (a) Polynomial and (b) rational B-spline surfaes presented inexample 11 93



Let denote by S6;6 our polynomial B-spline surfae and by R6;6 our ratio-nal B-spline surfae. Now we will ompute the derivatives of total order atmost 2:S6;6; �S6;6(u; v)�u ; �S6;6(u; v)�v ; �2S6;6(u; v)�u2 ; �2S6;6(u; v)�u�v ; �2S6;6(u; v)�v2 ;where S6;6 is one of our B-spline surfaes (polynomial or rational), in �vepoints randomly generated, using two methods: the basis funtion method(used in the Maple proedures DerivPolSurBF and DerivRaSurBF) and theontrol point method (used in the Maple proedures DerivPolSurCP andDerivRaSurCP) (for details about these methods see setion 3). In the aseof the basis funtion method, the results are displayed as follows:"S6;6; �S6;6(u; v)�u ; �S6;6(u; v)�v ; �2S6;6(u; v)�u2 ; �2S6;6(u; v)�u�v ; �2S6;6(u; v)�v2 #meanwhile in the ase of the basis funtion method, the results are displayedin this order:"S6;6; �S6;6(u; v)�v ; �S6;6(u; v)�v2 ; �2S6;6(u; v)�u ; �2S6;6(u; v)�u�v ; �2S6;6(u; v)�u2 # :Part of the output has been deleted.> Digits:=16: for i from 1 to 5 do argU:=evalf(rand()/10**12);argV:=evalf(rand()/10**12); timp3:=time();derPolFB:=DerivPolSurFB(argU,argV,orderU,nrPpointsU,orderV,nrPointsV,KnotsU,KnotsV,Points);timp3:=time()-timp3;timp4:=time();derPolPC:=DerivPolSurPC(argU,argV,orderU,nrPpointsU,orderV,nrPointsV,KnotsU,KnotsV,Points,2);timp4:=time()-timp4;timp1:=time();> derRaFB:=DerivRaSurFB(argU,argV,orderU,nrPpointsU,orderV,nrPointsV,KnotsU,KnotsV,Weights,Points);timp1:=time()-timp1; timp2:=time();derRaPC:=DerivRaSurPC(argU,argV,orderU,nrPpointsU,orderV,nrPointsV,KnotsU,KnotsV,Weights,Points,2);timp2:=time()-timp2; lprint(`Argumets:`,argU,argV);> lprint(`Polynomial Derivatives BF:`); for j from 1tonops(derPolFB) do lprint(derPolFB[j℄) od;lprint(`Time`,timp3);lprint(`Polynomial Derivatives CP:`); for j94



from 1 to nops(derPolPC) do lprint(derPolPC[j℄) od;lprint(`Time`,timp4);lprint(`Rational Derivatives BF: `); for jfrom 1 to nops(derRaFB) do lprint(derRaFB[j℄) od;lprint(`Time`,timp1);lprint(`Rational Derivatives CP: `); for jfrom 1 to nops(derRaPC) do lprint(derRaPC[j℄)od;lprint(`Time`,timp2); od: Digits:=10:Arguments: .2343384383590000 .4638661136260000Polynomial Derivatives BF:[2359.518940493465, 487.0311374040819, 1061.277007256592℄[-1.6944287778418, -.87185075402776, 2.7732192030585℄[-10.7077915869695, 14.11671900866031, -1.9524893749358℄[-18.621023679972, -9.5753667293827, 30.463574828936℄[.601405722411, .201018274149, -.807455668135℄[6.569414433638, -9.286303630796, 1.756269732548℄Time: .110Polynomial Derivatives CP:[[2359.518940493467, 487.0311374040819, 1061.277007256593℄,[-10.70779158696980, 14.11671900866196, -1.952489374935699℄,[6.569414433575617, -9.286303630814925, 1.756269732523466℄℄[[-1.694428777840756, -.8718507540276519, 2.773219203059553℄,[.6014057224017089, .2010182741482566, -.8074556681440215℄℄[[-18.62102368007849, -9.575366729395748, 30.46357482892405℄℄Time: .520Now we will re�ne the knot vetors, using the following interior knot:[0:1; 0:5; 0:9℄ in the u diretion and [0:2; 0:5; 0:8℄ in the v diretion. There�nement algorithm onsisits basially in :� Applying a U knot re�nement (by applying the re�nement algorithmused in the urve ase to all the olumns of ontrol points).� Applying a V knot re�nement, by applying the re�nement algorithmused in the urve ase to all the lines of ontrol points. The algorithmis organized so that redundant operations are eliminated.Finally we display the obtained "new" surfaes, together with the newontrol polyhedras. In �gure 13a the border urves of the polynomial B-splinesurfae are displayed in blue and the ontrol polyhedra in red meanwhile in�gure 13b the border urves of the rational B-spline surfae are displayed inred and the ontrol polyhedra in blue.> NewKnotsU:=[0.1,0.5,0.9℄: NewKnotsV:=[0.2,0.5,0.8℄:refinePol(orderU,orderV,nrPointsU,nrPointsV,KnotsU,KnotsV,Points,NewKnotsU,NewKnotsV);refineRa(orderU,orderV,nrPointsU,nrPointsV,KnotsU,KnotsV,Weights,Points,NewKnotsU,NewKnotsV);95
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Figure 13: Re�ned (a) polynomial and (b) rational B-spline surfaeWe deompose now the B-spline surfaes into their Bezier omponents(segments). The algorithm [11℄ we have implemented omputes a Bezierstrip (i.e. a B-spline surfae whih is Bezier in one diretion and B-spline inthe other). The proedure has to be alled twie, one in the u diretion toget the Bezier strips and then the strips must be fed into the proedure inthe v diretion to get the Bezier pathes. Finally we display the inital sur-faes (polynomial and rational one) together with the orresponding ontrolpolyhedras.> BezierPol:=PathesBezPol(orderU,orderV,nrPointsU,nrPointsV,KnotsU,KnotsV,Points):dib:=CompBez(orderU,orderV,BezierPol):plots[display℄(dib,axes=NORMAL,orientation=[-24,99℄);BezierRa:=PathesBezPol(orderU,orderV,nrPointsU,nrPointsV,KnotsU,KnotsV,Weights,Points):dib:=CompBez(orderU,orderV,BezierRa):plots[display℄(dib,axes=NORMAL,orientation=[-24,99℄);In �gure 14a,b are displayed the Bezier omponents of the B-spline sur-faes (polynomial and rational respetively). The ontrol polygons are dis-played in red and magenta respetively and the nine Bezier omponents (ineah ase) are displayed in a di�erent olor.The rational B-spline surfaes are approximated with polynomial B-splineones. The approximation algorithm [1℄ is similar to the urve approximationalgorithm, desribed in the previous setion:1. The border urves are approximated (using the urve approximatingalgorithm) and the outermost ontrol points are generated.96



1060.6
1060.8

1061
1061.2
1061.4
1061.6
1061.8

1062
1062.2
1062.4
1062.6
1062.8

1063
1063.2
1063.4
1063.6
1063.8

1064
1064.2
1064.4

484 485 486 487 488 489

2358
2360

 

1060.6
1060.8

1061
1061.2
1061.4
1061.6
1061.8

1062
1062.2
1062.4
1062.6
1062.8

1063
1063.2
1063.4
1063.6
1063.8

1064
1064.2
1064.4

484 485 486 487 488 489

2358
2360

 

Figure 14: (a) Polynomial and (b) rational Bezier surfae omponents2. The remaining ontrol points are determined by interpolation.3. The di�erenes between the surfaes (the initial one and the approx-imating one), the normal vetors and the urvatures are evaluated atsome adeuately hoosen points and tested against the error parame-ters.4. If the di�erenes are not small enough, new internal knots are addedand a new iteration begins, starting with the omputation of the newontrol polygon.Three steps of the algorithm are implemented in Maple (steps 1,3 and 4)and step 2 is implemented in Matlab, beause it requires the resolution oflinear equation systems of big size ([Golu89℄).The C-shell presented immediately after realize the following operations:� Reading IGES �le (Maple)� Approximating the rational B-spline surfaes with polynomial B-splineones (Maple and Matlab)� Generating output IGES �le (Maple)maple < varia20p nuevo.txt end.txtwhile (-z end.txt)p nuevo.txt finish.txtmaple < varia2I 97



while (-z finish.txt)p nuevo.txt final.txtmaple < varia211matlab < varia2Matmaple < varia221while (-z final.txt)maple < varia231matlab < varia2Matmaple < varia241endendmaple < varia2Fendat Info.txt Out.txt > fiheroIGESOut.txtmaple < dibujarSup.txtghostview dibujos.ps&After the exeution of this C-shell, we obtain the results presented in �g-ure 15, where there are displayed all the rational B-spline surfaes ontainedin the onsidered IGES �le, together with the orresponding polynomial B-spline surfaes, whih aproximate them.
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Figure 15: Surfae approximation
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