Analele Universitatii din Timigoara
Vol. XXXVIII, fasc. 2, 2000
Seria Matematica—Informatica

A SYMBOLIC/NUMERIC TOOLBOX FOR COMPUTER
AIDED GEOMETRIC DESIGN

Laureano Gonzélez-Vega, Ioana Necula* and David Sevilla

Presented at 2"¢ Int. Workshop “Symbolic and Numeric

Algorithms on Scientific Computing” - SYNASC 2000,
October 4-6, 2000, Timigoara, Romania

Abstract. This paper is devoted to show how the already widely
used Scientific Computing Systems (in our case Maple and Matlab)
integrating symbolic and numeric capabilities can be used to develop
a Problem Solving Environment very useful to solve problems into a
CAD/CAM framework. First section shows and motivates how alge-
braic techniques and Scientific Computing Systems can be very useful
in CAGD. The remaining sections of this paper are Maple spread-
sheets (with some calls to Matlab to solve some huge linear systems
of equations) where some concrete problems in Computer Aided Ge-
ometric Design are solved. Our interest is focused on the generation
and manipulation of B-spline entities (curves and surfaces) and on the
computation (topologically exact) of a revolution surface sectioning.

1. Introduction

In this paper it is shown how widely used Scientific Computing Systems

Keywords and phrases: CAGD, B-spline entities (curves and surfaces), revolution sur-
face sectioning, Maple and Matlab programming.
Partially supported by DGESIC PB 98-0713-C02-02 (Ministerio de Educacién y Cultura)
Partially supported by the FEDER, Project 1FD97-0409 (Ministerio de Educacién y Cul-
tura)

73

(in our case Maple and Matlab) integrating symbolic and numeric facilities
can be used to develop a Problem Solving Environment which is very useful
for solving problems into a CAD/CAM framework.

The utility of CAD/CAM systems as a way of increasing the efficiency of
simulation and design processes in the productive area is nowadays unanswer-
able. Advantages as production time reduction, final product improvement
and cost reduction are frecuentely called as the greatest benefits produced
by introducing CAD/CAM systems in an industrial environment.

In the first section we show how algebraic techniques and Scientific Com-
puting Systems (as Maple and Matlab) can be very useful in CAGD. The
remaning sections of this paper are Maple spreadsheets, with internal calls
to Matlab in order to solve some linear equation systems of big size, solving
in this way some classical problems in Computer Aided Geometric Design.
More precisely, the second section presents the computation, topologically
exact, of a revolution surface sectioning. The following sections show how
Maple can work with B-spline curves and surfaces.

This paper gathers three research lines:

e Studying and improving the graphic tools provided by the actual Sci-
entific Computing Systems (Mathematica, Matlab, Maple and Axiom)
together with simulation module development in these systems, for ge-
ometric modelling and visualization.

¢ Adapting, developing and integrating the algebraic equation system so-
lution manipulation techniques developed in the framework of FRISCO

project (ESPRIT/LTR 21024: European Union) to solve efficiently
problems concerning parametric curve and surface manipulation.

e Solving a set of concrete problems (unsolved satisfactorily at this mo-
ment) for the CAD/CAM environment CSIS used by CANDEMAT
(company dedicated to make dies for cars). This research line is ap-
proached by including the developed techniques inside the simulation
methods mentioned above and/or including techniques or software be-
fore mentioned.

The CAGD systems traditionally have been developed using program-
ming languages with good characteristics for scientific computing (C, C++,
Fortran, Basic, Pascal,...). While the hardware technology is progressing
rapidly, the software evolution goes on more slowly, although continuously
too. This paper is focused specifically on the integrated symbolic and nu-
meric computing packages having high graphical capacities. This kind of
software has been reaching a large diffusion and importance in the last few

74

years. Together with their basic general statements, these systems offer ad-
ditional modules which include more specific applications. That is the case
of Mathematica packages and Matlab toolboxes.

In Mathematica, there is a package called 'Graphics Spline’, having lim-
ited capacities for generating basic entities like Bezier curves and cubic
splines. The strong graphical capacities on parametrics, operators, etc. allow
these primitives to be applied for interesting but limited models. In Matlab
there is a basic function for generating cubic splines and (since 1990) a tool-
box called *Spline” which contains B—spline functions for curves and surfaces,
following the classic work of Carl de Boor ([2], [3]).

Moreover in the last few years the international scientific community has
looking for efficient (i.e. rapid) and as precise as possible (i.e. guaranteed
validity for the obtained solutions) algorithms/methods for solving algebraic
or polynomial equations and for manipulating the sets of its solutions. The
exact meaning of the phrase above can be observed more clearly in the fol-
lowing example with a CAGD flavour.

Example 1 We consider the parametric equation of the bicubic surface S

3t(t —1)2+ (s — 1)* + 3s

3s(s — 1)+ 1>+ 3¢

—3s(s? — 5s + 5)t% — 3(s* + 652 — 9s + 1)t2 + (6s® + 9s® — 185 + 3)—
3s(s —1)

x
Y
z

for parameter values between 0 and 1, displayed in figure 1.

Y/
7 i
L
//I/I,I/IIIIIII;II"'"
5

/. 777
s
s

Figure 1: Bicubic surface presented in Example 1

A first problem which can arise in this situation is how to determine the
intersection points of the surface S with the straight line v = u,y = u,z =u

I5)

(ifsuch a solution exists). That means solving the following equation system:

u=3t(t—1)24(s—1)*+3s

u=3s(s—1)2+t3+3t

u = —3s(s* — 5s+ 5)t> — 3(s® + 65> — 95 + 1)t? + t(65> + 9s* — 185 + 3)—
3s(s —1)

In this particular case we get only one intersection point, having coordinates
(0.5561, 0.5561, 0.5561)

reached at s = 0.2748 and ¢ = 0.0408. Another way of solving this problem
consists of determining the implicit equation of S. If this equation has been
computed, the previous problem reduces to solving the equation H (u, u,u) =
0. Analogously, every intersection of S with any curve can be dealt by solving
a single variable equation. In this particular case, the implicit equation of S
has the following structure:

9
H(z,y,2) =2+ 3 ri(z,y)2"

=1

_ 233469z 188595y 112832595 8122 1352y 81y2
rl(a:,y) =—"%0s T 2048 — 262144 64 T 32 T 61
r (x) — _20072672709381z 17975329363179y 729y* 729z 121523y
20T, Y 536870912 536870912 8192 8192 2048
477922 y> + 12152y% 410597123 + 312959743 + 1445615122y
4096 2048 65536 65536 65536
13181049zy> 54187594407z + 48101467761xy 38812918311y%
65536 16777216 8388608 16777216
22656991982391171 _ 1 (233469:1: _ 188505y 112832595 81z
137438953472 2\ 2048 2048 262144 64
1352y + M) (_23346990 + 188595y 112832595 M—i—
32 64 2048 2048 262144 64
135zy 8ly?)
32 64

and by substituting x = u, y = u, 2 = u we obtain one equation of degree 18
in u, very easy to solve:

51597803521 —609499054080u' " +. . .4+-3707912273492242256259566313 = 0

The problem which occurs with this philosophy of work resides in the
fact that, although there are methods for computing the implicit equation
H(z,y, z), these methods are very inefficient and can hardly be integrated
in the CAD/CAM packages, where the solutions for any user request must
be computed in real time. However, to overcome this drawback it is feasible
the incorporation of a data base containing the implict equations (already
computed and preprocessed) of the parametric surfaces of frequent use. For

76

instance the implicit equation of the parametric surface

ot t-h
r= x T
OOtQ — 1 01t2 — 1
S9 — S S — 51
Y= Yoo + Y1
S2 — 81 S2 — 81
Sg— 8 §$—581\ ta—1 Sg— 8 s—s\t—t
z = (Zoo 2 + 210 1) 2 +<Z10 2 + 211 1) !
S9 — S1 Sog — 81/ 1o — 11 S9 — S1 Sog— 81/ 1g — 11
is

(Zoo — 2210 + 211)5031 + (yUOZw + V11210 — Yoo 211 — 3111200)5C
+ (200210 + To1210 — Too211 — ZTo1200)Y + (ZooY11 — TooYoo + To1Yoo — To1Y11)2
+To1Y11200 — TooY11210 + TooYoo211 — To1Yo0210

for most values of the parameters x;;, y;; and z;;. Likewise it is possible to

determine the algebraic expressions describing s and t as functions of z, y
and z (see [6]).

The problems considered in the following sections are examples of how
algebraic techniques (such as subresultants, Sturm-Habicht sequences, sym-
metric functions etc.) can be used for the resolution of CAGD problems.

2. Revolution Surface Sectioning

The first problem considered is the computation, topologically exact, the
section of a revolution surface by using the generic implicitation methodology
before mentioned. For that it is used a serie of algebraic techniques in order
to determine the exact shape of a revolution surface sectioning. The details
of the algorithm can be found in [7] and [5].

Example 2 The curve in the plane Y = 0 defined by the parametrization
x = Cy(t), z = C3(t) will be rotated with respect to the OZ axis. In figure
2 it is displayed the 3-dimensional curve C' defined by the parametrization

(C1(1), 0, Ca(1)).

> plots[setoptions3d] (scaling=CONSTRAINED,axes=FRAMED) ;
> plots[setoptions] (scaling=CONSTRAINED,axes=FRAMED) ;

Cl:=(2xt-1)/(1+t*x2); C2:=0;

C3:=(1-t+t*%x2) / (2+t+t**2) ;
plot3d([C1,C2,C3],t=-15..15,8=-1..1,0orientation=[60,75],
grid=[175,2]);

77

!
s

Figure 2: Curve C' considered in Example 2

The revolution surface generated by the curve C' is displayed as follows
(see figure 3). The limits of the parameter intervals are —3 and 3 respectively
—6 and 6.

> T1:=C1%(2%s)/(1+s**2)-C2* (1-s**2) / (1+s**2) :
> T2:=C2%(2%s8)/ (1+s*x2) +C1* (1-s**2) / (1+s**2) :
> T3:=C3:

{P1:=(a,b)->plot3d([T1,T2,T3],s=a..b,t=-6..6,grid=[50,50],
axes=B0XED, scaling=UNCONSTRAINED,projection=1,
tickmarks=[0,0,0],orientation=[59,75]):

> P1(-3,3);

Figure 3: Revolution surface generated by C

78

For studying the sections of this revolution surface, we firstly compute
its implicit equation by using the generic implicitation method, which is
based on symmetric functions.

> read "ImplicitSuperfRevol.txt";
> toro:=ImplicitSuperfRevol(C1,C2,C3,x,y,z,t);
toro =9+ 8za2y? + 26222 — 308 2% — 842+ 82122 y? + 121 21+
16222292 +20222 +202y? — 322 — 392 + 't + ¢yt + 16 23 22 °+
192022 41924y + 2022 + 4242 + 424y 4823 0+
83yt — 122322 — 1228y + 827 2 + 822y —
28 222% — 2822y +dzat + 42yt

First we compute the section of this surface with the plane y = 1/2.

> Sectionl:=subs(y=1/2,toro);

315 511 651
Sectionl = —Tz + 212422 + 722 — 723 +1262* + 2 —
5
5:1:2 + 4242 — 682%22 + 823 2t — 242%2% +
133

822x 4+ dzat + 2222° + 16

Initially, we determine the topology of this sectioning (it is important to
mention that it has two isolated points), as displayed in figure 4a. In this
step we are interested only in the critical and regular points of the curve,
which are the graph points. The behaviour of the curve between these points
is completely determined (taking into account the branch counting in each
interval) so we can connect them by edges. The algorithm we have used to
determine the topological structure of the curve is different from the classical
algorithms because by a simple change of coordinates we can work with a
curve which fulfils the following condition: for every root of the discriminant,
we have at most a critical point of the curve (see [7] and [5]).

> read '"prGrafos.txt";
> principal(Seccionl,x,z,20,’black’);

After determining the topology of the curve, we are able to draw it ex-
actly using for example the Newton method, without losing isolated or small
components (figure 4b).

79

read "prDibujos.txt";
principal(Seccionl,x,z,20,500,10, ’black’);

> P2:=y->plot3d([s,y,t],s=-4..4,t=-2..2,style=PATCHNOGRID) :

(2

Figure 4: (a) Sectioning topology and (b) sectioning curve

In this way we have obtained, in an exact way, the section of our revolution
surface we are interested in (figure 5).

plots[display] (P1(-4,4),P2(1),grid=[50,50] ,axes=BOXED,
scaling=UNCONSTRAINED,projection=1,tickmarks=[0,0,0],
orientation=[13,130]);

Figure 5: Revolution surface sectioning

80

3. Random Generation of Polynomial and Rational B-Spline Curves
and Surfaces

In this section we will show how Maple can generate symbolically polyno-
mial and rational B-spline entities. Before doing this, we will present some
useful definitions [11] which will be used in this section and the in following
ones.

Definition 3 The Nth—order B-spline basis functions are defined recursively
as:

1w S u<uigy
Bi(u) = {0 otherwise

Bi’N(U) = MBi’]\]fl(U)—i‘

Ui+ N—1—Uj
Uj 4 N —U
Ui+ N —Ui+1

Definition 4 A Nth-order rational B-spline curve Ry (u) is defined by:

n—1

Z Bz’,N(u)wilDi
Ry (u) := Zj‘il
Z Bi,N(u)wi
i=0

where {P;} are the control points, {w;} are the weights and {B; x} are the
Nth—order B-spline basis functions defined on the nonperiodic knot vector

Bi+1,N—1 (U) '

a<u<b

3 — — 3

U= {Uﬂaula s 7un+N72aun+N71}
with ug =uy = ... =uy_y =a and up = Upy1 = ... = Uyyn_1 = b.

If for alli w; =c (¢ # 0) then the B-spline curve is called polynomial.
In this case it has the following representation:

n—1
Ry(u) =" Bin(u)P, a<u<hb.
i=0

If a =0 and b =1 we say that the knot vector is normalised.

The polygon formed by the {P;} is called control polygon.

Definition 5 A N,, Nyth—order rational B-spline surface Ry, n,(u,v) is de-
fined by

ni—1lno—1

> > Bin (u)Bjn, (v)w; ;P
i=0 j=0

ni—1na—1

> > Bin (u)Bj N, (v)wi

i=0 ;=0

a<u<bcec<ov<d

RNl,Nz(uav) = s > >~>0,0x U~ W,

81

where {P;;} are the control points, {w;;} are the weights , {B;n,} and
{Bjn,} are the B-spline basis functions defined on the nonperiodic knot vec-

tors U = {ug,ur, ..., up,on,—1} and V = {vg,v1, ..., Unyin,—1} TESPEctively,
with wp = w1 = ... = UN,—1 = G, Up, = Up 41 = ... = Up N1 = b,
Vg =01 =...=Uny—1 =C and Upy = Upyy1 = ... = UpytNy—1 = d.

If for alli,j w;; =c (c# 0) then the B-spline surface is called polyno-
mial and its representation is the following one:

ni—1ns—1

Ry, o (u,v) == Y > By n, (u)Bjn, (v) Py

i=0 ;=0

In the two following examples, the polynomial and rational expressions
defining an entity will be generated in each interval (u;, u;y1) of the knot
vectors. The Maple program will randomly generate the elements which
define a B-spline entity.

Example 6 We consider the B-spline curves (polynomial and rational) de-
fined by the following parameters:

> read "simbC.txt";

Curve order: 6
Knot vector: [0,0,0,0,0,0,.1210225739,1.,1.,1.,1.,1.,1.]

Control points: [[1813.213542, 3155.072848, 7292.017654,
10852.09613, 11970.06777, 13138.01982, 5307.115079],
[15411.10969, 6888.316017, 7878.233333, 4268.225166,
9045.040000, 6034.080537, 9315.020747], [22834.01291,
13631.11796, 26325.11671, 23448.19923, 5654.282051,
18408.02733, 22853.31278]]

Weights: [.1883026555, .1081886648e-1, .5431078818e-1,
.5421364074, .1062056055, .6872239468, .2581224202e-1]

First we generate two polynomial expressions and by using them we de-
termine the symbolic expression of the polynomial B-spline curve. We do
the same in the rational case. Finally, we display (see figure 6) the control
polygon (in red), the polynomial B-spline curve (in green) and the rational
one (in blue).

Example 7 In this ezample we will consider the B-spline surfaces (polyno-
mial and rational) defined by the parameters:

82

Figure 6: Polynomial and rational B-spline curves presented in example 6

> read "simbS.txt";

Surface orders: 3 4
Knot vectors: [0, O, O, 1., 1., 1.] [0, O, O, O, 1., 1., 1., 1.]

Control points: [[[3372.184932, 5567.160321, 7405.187500],
[6472.689076, 4983.023544, 4507.052356], [7855.042857, 9212.056291,
8272.083333], [11016.06109, 7460.165692, 3563.137184]],
[[10457.15273, 17624.11443, 16674.14440], [4417.028646,
15924.12000, 6384.092138], [12073.08661, 9125.182609, 10439.03580],
[9301.109023, 17020.02273, 9594.065432]]1, [[20276.15139,
19382.05319, 19076.02711], [17741.09483, 16728.07711, 16773.04392],
[156851.06977, 5130.083645, 20085.10056], [3995.063830, 26465.03774,
17510.08246]11]

Weights: [[.1467061818e-1, .2056977801, .8521961580],
[.6275754910, .2828278577, .3739758365e-1], [.1426845549,
.2486348262, .3187999143], [.5673102039, .3234548536,
.30348184211]1

We generate the expressions (polynomial and rational) which define sym-
bolically the entities and afterwards we display the control polyhedra (in
red) and the border curves of the polynomial and rational B-spline surface
(in green and blue respectively) (see figure 7).

4. Polynomial and Rational B-Spline Curve Manipulation

In this section it is shown how Maple can perform, in a very efficient
way, several operations with polynomial and rational B-spline curves (using

83

Figure 7: Polynomial and rational B-spline surfaces presented in example 7

the same knot vector and control points for both polynomial and rational
entities). These operations are the following ones (see for instance [11]):

e Numerical generation of polynomial and rational B-spline curves.

Computation of the B-spline curve derivatives, using:

— basis function method

— control point method.

e Knot vector refinement.

Bezier decomposition.

e Approximation of rational B-spline curves with polynomial ones.

Example 8 Taking into acount definition 4, we consider the following pa-
rameters defining a polynomial B-spline curve and the following weight vector
defining the corresponding rational B-spline curve:

> read "manipBspline.txt";

Knots:=[0.,0.,0.,0.,0.,0.25,0.5,0.75,1.,1.,1.,1.,1.]:

order:=5:

nrPoints:=nops (Knots)-order:

Points:=[[0.,10.,10.,20.,30.,40.,25.,15.1,
[0.,20.,30.,35.,35.,25.,5.,10.],
(0.,5.,5.,10.,10.,20.,5.,15.11:

84

> Weights:=[]: for i from 1 to nrPoints do Weights:=[op(Weights),
evalf(rand()/10%x12)] od: Weights;

[.7924959004, .7512095393, .6283634430, .3137460865, .005862664913,
07481365622, .6438424438, .1319057546)]

For computing a point on a polynomial B-spline curve at a fixed value u,
three steps are required:

1. Find the knot span in which u lies.
2. Compute the non-zero basis functions.

3. Multiply the values of the non-zero basis functions with the correspond-
ing control points.

In the rational case the algorithm is similar. Applying several times these
algorithms and using afterwards the predefined Maple interpolation function
plottools[curvel, we generate the curves (polynomial and rational one)
which correspond to the anterior data and display them together with the
control polygon using our Maple procedures displayPol and displayRac.
In figure 8 the control polygon appears in red, the polynomial B-spline curve
in green and the rational B-spline curve in blue.

CurvasBSpline

20

10

40
20

277476 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Figure 8: Polynomial and rational B-spline curves presented in example 8

It is important to mention that in the algorithms we have used, especially
for the computation of the rational B-spline derivatives (which are compli-
cated and involve denominators to high powers), we have represented the

85

rational B-spline entities in homogeneous coordinates, working with polyno-
mial B-spline entities in four dimensions.

Let us start with a 3-dimensional point P = (x,y, z). Then P is written
as P* = (wz,wy,wz,w) = (X,Y,Z, W) in 4-dimensional space, w # 0. P
is obtained from P by dividing all coordinates by the fourth coordinate,
W (i.e. by mapping P* from the origin to the hyperplane W = 1). This
mapping, denoted by H, is a perspective map with center at the origin.
(Fdrf) WO

Wowrw

P=H(PY) = H((X,Y,Z.W)) = {dz‘rection(X;Y:Z) W =0

Now for a given set of control points {P;} = {(z;,y;, 2:)} and weights {w;},
we construct the weighted control points PY = (w;x;, w;y;, w;2z;, w;) and then
define the polynomial B-spline curve in 4-dimensional space

n
Cw(U) = Z Bi’N(U)piw.
i=0
Thus, rational B-spline entities can be processed in 4-dimensional space and
the results are located in 3-dimensional space using the map H.

Example 9 Now we compute the first and the second derivatives of the
curves, firstly with the basis function method and then with the control point
method, at some points randomly generated.

The basis funtion method consists basically in implementing an algorithm
using the following formula:

CW(u) = 3 B3 (w)P.

n
=0
The control point method consists in representing the derivative of a
polynomial B-spline curve as a polynomial B-spline curve of lower order:

n—k
C(k)(u) = Z Bi,p—k(u)Pz‘(k)
i=0

P, k=0
. (k) [3
with P = { _pohil (R(—llfl_l) B Pi(k—l)) k>0
Uitp+1— Uitk
and U® =10,...,0,upp1,. Unp 1, 1,...,1}.
S—— S——

p—k+1 p—k+1

86

The results are displayed as follows:

ac, aC, 9C,. °C, 9*C, 9°C,

(o), Cylu), Colw)], [55, 52, 22, (52, Smp S

where C,(u), Cy(u) and C,(u) represent the three components of the curve
C(u). After each operation the time is displayed.

> computeDerivatives (order,nrPoints,Knots,Weights,Points) ;

Argument: .8458933315

Polynomial derivative BF: [[32.05687097, 17.50040607, 12.54996778],

[-54.43263906, -102.3150315, -37.93511739], [-749.8846345,
-41.0448997, -154.51266041]]

Time : .10e-1

Polynomial derivative CP: [[32.05687097, 17.50040607, 12.54996778],

[-54.43263912, -102.3150317, -37.93511741], [-749.8846338,
-41.0448993, -154.51266011]

Time : .20e-1

Rational derivative BF: [[29.11414329, 13.78607835, 9.128659526],
[-37.30823064, -110.0511479, -37.68651421], [12.73743261,
732.2496156, 21.86782408]]

Time : . 260

Rational derivative CP: [[29.11414329, 13.78607835, 9.128659526],
[-37.30823073, -110.0511479, -37.68651425], [12.73743218,
732.2496156, 21.86782409]1]

Time : .20e-1

A very important operation with B-splines is the knot vector refinement.
To state the problem, let C*(u) = Yiry B; nv(u) P be defined on the knot
vector U = {ug,...,up} and let X = {xg,...,z,} satisfy z; < x;,; and
ug < x; < upy, for all 2. The elements of X are to be inserted in U and the
corresponding new set of control points {Q¥},i = 0,...,n+r+ 1 is to be
computed. New knots x; should be repeated in X with their multiplicities.
The principal ideas of the refinement algorithm are the following ones:

87

e Find indices a and b such that u, < z; < u, for all j.
e Compute the new control points:

— The control points P*, ..., P,” , and B, ..., P}’ do not change.

— The remaining control points are computed using the formula:

wo_ { F)z'w T = 0
CUB ai,rQﬁ‘jr,l +(1- ai,T)Q;'Ufl,rfl ;7 >0
1 1 <k—p+r—1
where Qg =8 st— k—p+r<i<k-—s
s WUidp—r4+1—Uj .
0 1>k—s+1

and s represents the multiplicity of z;.
The applications of the knot refinement operation include:

e Decomposing the B-spline entities into its constituent Bezier compo-
nents.

e Merging two or more knot vectors in order to obtain a set of curves
defined on one common knot vector.

e Obtaining polygonal and polyhedral approximations for the B-spline
curves and surfaces respectively. Refining knot vectors brings the con-
trol polygon (polyhedra) closer to the curve (surface), and in the limit
the polygon (polyhedra) converges to the curve (surface).

Example 10 We will refine now our B-spline curves using the interior knots
[0.4,0.7,0.7,0.7]. After the refinement operation, we will redisplay the curves,
together with the new control polygon.

NewKnots:=[0.4,0.7,0.7,0.7]:
dib:=refine(order,nrPoints,Knots,Weights,Points,NewKnots) :
plots[display] ([op(dibPol) ,op(dib[1])],axes=NORMAL,
orientation=[7,96]) ;

plots[display] ([op(dibRac) ,op(dib[2])],axes=NORMAL,
orientation=[7,96]) ;}

The refined curves are displayed in figure 9a,b. In figure 9a the polyno-
mial B-spline curve is displayed in grey, the initial control polygon in orange
and the final control polygon in red meanwhile in figure 9b the rational

88

27746 8 10 12 14 16 18 20 22 24 26 28 30 32 34 2746 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Figure 9: Refined (a) polynomial and (b) rational B-spline curve

B-spline curve is displayed in blue, the initial control polygon in orange and
the final control polygon in green.

An important application of the knot vector refinement is the problem
of decomposing a rational B-spline curve into its 4-dimensional polynomial
segments. This operation is required for converting rational B-splines into
other spline forms, for instance into an entity type in IGES format, the IGES
spline parametric curve, Entity type 112 ([9]). In order to perform this
conversion, the first step consists in decomposing the curve into its Bezier
components. The control points of the Bezier segments are obtained by
inserting each interior knot until it has multiplicity equal to the order.

In our case, the inital curves (polynomial anr rational one) are decom-
posed into its Bezier components, which are displayed together with the
corresponding control polygons.

> BezierPol:=BezCompPol (order,nrPoints,Knots,Points):
BezierRac:=BezCompRac (order ,nrPoints,Knots,Weights,Points):

> dib:=displayBezComp(order,BezierPol,BezierRac):
plots[display] ([op(dib[1])],axes=NORMAL) ;
plots[display] ([op(dib[2])],axes=NORMAL) ;

In figure 10a,b are displayed the Bezier components of the B-spline curves
(polynomial anr rational respectively). The control polygons are displayed
in orange and the four Bezier components (in each case) are displayed in a
different color.

89

277476 8 10 12 14 16 18 20 22 24 26 28 30 32 34 A6 610 12 14 16 18 20 22 24 26 28 30 32 34

Figure 10: (a) Polynomial and (b) rational Bezier curve components

Another important operation for the rational B-spline curves is the ap-
proximation with polynomial B-spline curves. This operation is necessary
for two reasons (which apply also for the surface case that will be studied in
the next section):

e [t is frequently necessary to interchange information between different
working systems. These systems accept information in formats such
as IGES or VDA, but IGES (see [9]) incorporates for curves and sur-
faces the rational B-spline representation, meanwhile VDA (see [12])
incorporates the polynomial representation in power basis form.

e During the process of implicitation, which could imply complicated
computations, it is useful to firstly approximate the rational B-spline
entities with polynomial ones, in order to obtain entities easier to im-
plicitate.

The approximation algorithm consists of the following steps [10]:

1. Certain continuity conditions are imposed at the exterior points in order
to determine some control points.

2. The remaining control points are determined by interpolation.

3. The differences between the curves (the initial one and the approximat-
ing one), the tangent vectors and the curvatures are evaluated at some
adecuately choosen points and tested against the error parameters.

4. If the differences are not small enough, new internal knots are added
and a new iteration begins, starting with the computation of the new
control polygon.

90

> read "aprox.txt": dib:=aproxBezComp(order,BezierRac):
plots[displayl] ([op(dib[1]),op(dib[2])],axes=NORMAL,
orientation=[7,96]) ;

The result of the approximation process is presented in figure 11: the
rational B-spline curve is displayed in blue, the initial control polygon in

red and the new control polygon (corresponding to the polynomial B-spline
representation of our curve) in green.

2774768 10 12 14 16 18 20 22 24 26 28 30 32 34

Figure 11: B-spline curve approximation

5. Polynomial and Rational
B-Spline Surface Manipulation

In this section it is shown how Maple can perform, in a very efficient way,
several operations with polynomial and rational B-spline surfaces. We will
present the same operations as in the previous section:

e Numerical generation of polynomial and rational B-spline surfaces.
e Computation of the B-spline surface derivatives, using:

— basis function method

— control point method.
e Knot vector refinement.

e Bezier decomposition.

91

e Approximation of rational B-spline surface with polynomial ones.

Example 11 Taking into acount definition 5, we consider the following pa-
rameters defining a polynomial B-spline surface (the control points are read
from the file ”datos.tzt”) and the weights defining the corresponding rational
B-spline surface:

> read "manipBsplineSur.txt";

> KnotsU:=[0.,0.,0.,0.,0.,0.,0.25,0.25,0.25,0.25,
0.75,0.75,0.75,0.75,1.,1.,1.,1.,1.,1.]:
orderU:=6:nrPointsU:=nops (KnotsU)-orderU:
KnotsV:=[0.,0.,0.,0.,0.,0.,0.3,0.3,0.3,0.3,0.6,
0.6,0.6,0.6,1.,1.,1.,1.,1.,1.]1: orderV:=6:
nrPointsV:=nops (KnotsV)-orderV;

> fis:=fopen(‘datos.txt‘, READ): PointsX:=[]: PointsY:=[]:
PointsZ:=[]:
for i from 1 to nrPointsV do
ListaX:=[]; ListaY:=[]; ListaZ:=[];
for j from 1 to nrPointsU do
ListaX:=[op(ListaX), fscanf(fis, \%f)[11];
ListaY:=[op(ListaY), fscanf(fis, \%f)[11];
ListaZ:=[op(ListaZ), fscanf(fis, \%f)[1]1];
od:
PointsX:=[op(PointsX), ListaX];
PointsY:=[op(PointsY), ListaY];
PointsZ:=[op(PointsZ), ListaZl;
od:
fclose(fis): Points:=[PointsX, PointsY,PointsZ]:

> Weights:=[]: for i from 1 to nrPointsV do
Lista:=[];
for j from 1 to nrPointsU do
Lista:=[op(Lista), evalf(rand()/10%x12)] od:
Weights:=[op(Weights), Listal od:

Five steps are required to compute a point on a polynomial B-spline
surface at fixed (u,v) parameter values:

1. Find the knot span in which u lies, say u € [u;, ©;y1).

92

2. Compute the non-zero basis functions B;_, ,(u), ..., B;,(u).
3. Find the knot span in which v lies, say v € [v;, vj11).
4. Compute the non-zero basis functions B;_,,(v), ..., B;4(v).

5. Multiply the values of the non-zero basis functions with the correspond-
ing control points.

In the rational case the algorithm is similar. Applying several times these
algorithms and using afterwards the predefined Maple interpolation function
plottools[curve], we generate the border curves of the B-spline surfaces
(polynomial and rational one) which correspond to the anterior data and
display them together with the control polyhedra using our Maple procedures
displaySurPol and displaySurRac. In figure 12a the control polyhedra
appears in red and the border curves of the polynomial B-spline surface in
green, meanwhile in figure 12b the control polyhedra appears in magenta
and the border curves of the rational B-spline surface in blue.

> dibPol:=displaySurPol (orderU,orderV,nrPointsU,nrPointsV,
KnotsU,KnotsV,Points,0.,1.,0.,1.,’red’, ’green’):
dibRac:=displaySurRac (orderU,orderV,nrPointsU,nrPointsV,
KnotsU,KnotsV,Weights,Points,0.,1.,0.,1.,’blue’, 'magenta’):
plots[display] ([op(dibPol)], axes=NORMAL);

plots[display] ([op(dibRac)], axes=NORMAL);

1064.4 1064.4
1064.2 1064.2
1064 1064
1063.8 1063.8
1063.6 1063.6
1063.4 1063.4
1063.2 1063.2
1063 1063
1062.8 1062.8
1062.6 1062.6
1062.4 1062.4
1062.2 1062.2
1062 1062
1061.8 1061.8
1061.6 1061.6
1061.4 1061.4
1061.2 1061.2
1061 1061
1060.8 2360 1060.8 2360
1060.6 8 1060.6 8

R G T e

Figure 12: (a) Polynomial and (b) rational B-spline surfaces presented in
example 11

93

Let denote by Sg ¢ our polynomial B-spline surface and by Rg¢ our ratio-
nal B-spline surface. Now we will compute the derivatives of total order at
most 2:

856’6(’&,7)) 856,6(“7”) 8256,6(“7”) 8256,6(’“7”) 8256,6(’“7”)
: ou ov ou? ' Oudv ov? 7

where Sgg is one of our B-spline surfaces (polynomial or rational), in five
points randomly generated, using two methods: the basis function method
(used in the Maple procedures DerivPolSurBF and DerivRacSurBF) and the
control point method (used in the Maple procedures DerivPolSurCP and
DerivRacSurCP) (for details about these methods see section 3). In the case
of the basis function method, the results are displayed as follows:

[S 856,6 (U, U) 856,6 (U, U) 6256,6 (U, U) 6256,6 (U, U) 6256,6 (U, U)]
6,65 3 3

ou ov ou? " Oudv Ov?

meanwhile in the case of the basis function method, the results are displayed
in this order:
856,6 (U, U) 856,6 (U, 1)) 8256,6 (u, 1)) 8256,6 (u, 1)) 8256,6 (u, 1))

ov 7 o ou " Qudv Ou? '

[56,67

Part of the output has been deleted.

> Digits:=16: for i from 1 to 5 do argU:=evalf(rand()/10%x12);
argV:=evalf (rand () /10%*12); timp3:=time();
derPolFB:=DerivPolSurFB(argU,argV,orderU,nrPpointsU,
orderV,nrPointsV,KnotsU,KnotsV,Points) ;
timp3:=time () -timp3;timp4:=time() ;
derPolPC:=DerivPolSurPC(argU,argV,orderU,nrPpointsU,
orderV,nrPointsV,KnotsU,KnotsV,Points,2);
timp4:=time()-timp4;timpl:=time();

> derRacFB:=DerivRacSurFB(argU,argV,orderU,nrPpointsU,
orderV,nrPointsV,KnotsU,KnotsV,Weights,Points) ;
timpl:=time (O -timpl; timp2:=time();
derRacPC:=DerivRacSurPC(argU,argV,orderU,nrPpointsU,
orderV,nrPointsV,KnotsU,KnotsV,Weights,Points,2);
timp2:=time () -timp2; lprint(‘Argumets:‘,argl,argV);

> lprint(‘Polynomial Derivatives BF:‘); for j from 1
tonops (derPolFB) do lprint(derPolFB[jl) od;
lprint (‘Time‘,timp3) ;1lprint (‘Polynomial Derivatives CP:‘); for j

94

from 1 to nops(derPolPC) do lprint(derPolPC[jl) od;

lprint (‘Time‘,timp4) ;lprint (‘Rational Derivatives BF: ‘); for j

from 1 to nops(derRacFB) do lprint(derRacFB[j]) od;

lprint (‘Time‘,timpl) ;lprint (‘Rational Derivatives CP: ‘); for j

from 1 to nops(derRacPC) do lprint(derRacPC[j])od;

lprint (‘Time‘,timp2); od: Digits:=10:
Arguments: .2343384383590000 .4638661136260000
Polynomial Derivatives BF:
[2359.518940493465, 487.0311374040819, 1061.277007256592]
[-1.6944287778418, -.87185075402776, 2.7732192030585]
[-10.7077915869695, 14.11671900866031, -1.9524893749358]
[-18.621023679972, -9.5753667293827, 30.463574828936]
[.601405722411, .201018274149, -.807455668135]
[6.569414433638, -9.286303630796, 1.756269732548]
Time: .110
Polynomial Derivatives CP:
[[2359.518940493467, 487.0311374040819, 1061.277007256593],
[-10.70779158696980, 14.11671900866196, -1.952489374935699],
[6.569414433575617, -9.286303630814925, 1.756269732523466]]
[[-1.694428777840756, -.8718507540276519, 2.773219203059553],
[.6014057224017089, .2010182741482566, -.8074556681440215]]

[[-18.62102368007849, -9.575366729395748, 30.46357482892405]]
Time: .520

Now we will refine the knot vectors, using the following interior knot:
[0.1,0.5,0.9] in the u direction and [0.2,0.5,0.8] in the v direction. The
refinement algorithm consisits basically in :

e Applying a U knot refinement (by applying the refinement algorithm
used in the curve case to all the columns of control points).

e Applying a V' knot refinement, by applying the refinement algorithm
used in the curve case to all the lines of control points. The algorithm
is organized so that redundant operations are eliminated.

Finally we display the obtained "new” surfaces, together with the new
control polyhedras. In figure 13a the border curves of the polynomial B-spline
surface are displayed in blue and the control polyhedra in red meanwhile in
figure 13b the border curves of the rational B-spline surface are displayed in
red and the control polyhedra in blue.

> NewKnotsU:=[0.1,0.5,0.9]: NewKnotsV:=[0.2,0.5,0.8]:
refinePol (orderU,orderV,nrPointsU,nrPointsV,KnotsU,
KnotsV,Points,NewKnotsU, NewKnotsV) ;
refineRac(orderU,orderV,nrPointsU,nrPointsV,KnotsU,
KnotsV,Weights,Points,NewKnotsU,NewKnotsV) ;

95

1064.4
1064.2
1064
1063.8
1063.6
1063.4
1063.2
1063
1062.8
1062.6
1062.4
1062.2
1062
1061.8
1061.6
1061.4
1061.2
1061

1064.4
1064.2
1064
1063.8
1063.6
1063.4
1063.2
1063
1062.8
1062.6
1062.4
1062.2
1062
1061.8
1061.6
1061.4
1061.2
1061

1060.8
1060.6

1060.8
1060.6

Figure 13: Refined (a) polynomial and (b) rational B-spline surface

We decompose now the B-spline surfaces into their Bezier components
(segments). The algorithm [11] we have implemented computes a Bezier
strip (i.e. a B-spline surface which is Bezier in one direction and B-spline in
the other). The procedure has to be called twice, once in the u direction to
get the Bezier strips and then the strips must be fed into the procedure in
the v direction to get the Bezier patches. Finally we display the inital sur-
faces (polynomial and rational one) together with the corresponding control
polyhedras.

> BezierPol:=PatchesBezPol (orderU,orderV,nrPointsU,
nrPointsV,KnotsU,KnotsV,Points) :

dib:=CompBez (orderU,orderV,BezierPol) :

plots[display] (dib,axes=NORMAL,orientation=[-24,99]);
BezierRac:=PatchesBezPol (orderU,orderV,nrPointsU,
nrPointsV,KnotsU,KnotsV,Weights,Points):

dib:=CompBez (orderU,orderV,BezierRac) :

plots[display] (dib,axes=NORMAL,orientation=[-24,99]);

In figure 14a,b are displayed the Bezier components of the B-spline sur-
faces (polynomial and rational respectively). The control polygons are dis-
played in red and magenta respectively and the nine Bezier components (in
each case) are displayed in a different color.

The rational B-spline surfaces are approximated with polynomial B-spline
ones. The approximation algorithm [1] is similar to the curve approximation
algorithm, described in the previous section:

1. The border curves are approximated (using the curve approximating
algorithm) and the outermost control points are generated.

96

1064.4
1064.2

1064
1063.8
1063.6
1063.4
1063.2

1063

1064.4
1064.2
1064
1063.8
1063.6
1063.4
1063.2
1063
1062.8
1062.6
1062.4
1062.2
1062
1061.8
1061.6
1061.4
1061.2
1061

1062.8
1062.6
1062.4
1062.2
1062
1061.8
1061.6
1061.4
1061.2
1061

1060.8
1060.6

1060.8
1060.6

Figure 14: (a) Polynomial and (b) rational Bezier surface components

2. The remaining control points are determined by interpolation.

3. The differences between the surfaces (the initial one and the approx-
imating one), the normal vectors and the curvatures are evaluated at
some adecuately choosen points and tested against the error parame-
ters.

4. If the differences are not small enough, new internal knots are added
and a new iteration begins, starting with the computation of the new
control polygon.

Three steps of the algorithm are implemented in Maple (steps 1,3 and 4)
and step 2 is implemented in Matlab, because it requires the resolution of
linear equation systems of big size ([Golu89]).

The C-shell presented immediately after realize the following operations:

e Reading IGES file (Maple)

e Approximating the rational B-spline surfaces with polynomial B-spline
ones (Maple and Matlab)

e Generating output IGES file (Maple)

maple < varia20
cp nuevo.txt end.txt
while (-z end.txt)
cp nuevo.txt finish.txt
maple < varia2I

97

while (-z finish.txt)
cp nuevo.txt final.txt
maple < varia21ll
matlab < varia2Mat
maple < varia221
while (-z final.txt)
maple < varia231
matlab < varia2Mat
maple < varia241
end
end
maple < varia2F
end
cat Info.txt Out.txt > ficheroIGESOut.txt
maple < dibujarSup.txt
ghostview dibujos.ps&

After the execution of this C-shell, we obtain the results presented in fig-
ure 15, where there are displayed all the rational B-spline surfaces contained
in the considered IGES file, together with the corresponding polynomial B-
spline surfaces, which aproximate them.

Figure 15: Surface approximation

98

References

1]

[10]

[11]

[12]

L. Bardis, N. Patrikalakis; Approximate conversion of rational B-
spline patches, Computer Aided Geometric Design, 6, 189-204 (1989).

C. de Boor; On calculating with B-splines, J. Approx. Theory, 6, 50-62
(1972).

C. de Boor; A Practical Guide to Splines, Springer, New York (1978).

G. Golub, C. van Loan; Matrix Computations, Johns Hopkins Uni-
versity Press, London (1996).

Laureano Gonzalez Vega, M’hammed El Kahoui; An Improved
Upper Complexity Bound for the Topology Computation of a Real Al-
gebraic Plane Curve , Journal of Complexity, 12, 527-544 (1996).

Laureano Gonzalez Vega, Ioana Necula; Approximate Implicita-
tion of Rational Surfaces , 1998 IMACS Conference on Applications of
Computer Algebra, Praga (1998).

Laureano Gonzalez Vega, loana Necula; Computing the Topology
of Implicit Algebraic Plane Curves. Applications to CAGD , Preprint.

J. Hoschek, F.J. Schneider; Aproximate Conversion for Integral and
Rational Bezier and B-spline surfaces, R. E. Barnhill (ed.), Geometry
Processing for Design and Manufacturing, STAM, p.45-86.

IGES/PDES Organization; The Initial Graphics Exchange Specifi-
cation (IGES) Version 5.1. , National Computer Graphics Association,
Virginia-USA (1991).

N. Patrikalakis; Approximate conversion of rational splines, Computer
Aided Geometric Design, 6, 155-165 (1989).

L. Piegl, W. Tiller; The NURBS book, Springer-Verlag, Berlin (1997).

VDA Working Group ’"CAD/CAM?’; VDA Surface, Data Interface
(VDAFS) Version 2.0. Verband der Automibilindustrie e.v. (VDA) |
Frankfurt (1987).

Departamento de Matematicas, Estadistica y Computacién
Universidad de Cantabria, Spain
{gvega,ioana,sevillad}@matesco.unican.es

99

