
Cryptanalysis of the Quadratic Generator

Domingo Gomez, Jaime Gutierrez, Alvar Ibeas

Faculty of Sciences,
University of Cantabria,

Santander E–39071, Spain
jaime.gutierrez@unican.es

Abstract. Let p be a prime and let a and c be integers modulo p. The
quadratic congruential generator (QCG) is a sequence (vn) of pseudo-
random numbers defined by the relation vn+1 ≡ av

2
n

+c mod p. We show
that if sufficiently many of the most significant bits of several consecu-
tive values vn of the QCG are given, one can recover in polynomial time
the initial value v0 (even in the case where the coefficient c is unknown),
provided that the initial value v0 does not lie in a certain small subset
of exceptional values.

1 Introduction

For a prime p, denote by IFp the field of p elements and always assume that it is
represented by the set {0, 1, . . . , p− 1}. Accordingly, sometimes, where obvious,
we treat elements of IFp as integer numbers in the above range.

For fixed a ∈ IF∗

p, c ∈ IFp, the quadratic generator (vn) of elements of IFp is
given by the recurrence relation

vn+1 ≡ av2
n + c mod p n = 0, 1, . . . , (1)

where v0 is the initial value.
We refer to the coefficients a and c as the multiplier and shift , respectively.

This generator has many interesting applications in cryptography, see [4, 14–17,
9].

In the cryptographic setting, the initial value v0 and the constants a and c
are assumed to be the secret key, and we want to use the output of the generator
as a stream cipher. Of course, if several consecutive values vn are revealed, it is
easy to find v0, a and c. So in this setting, we output only the most significant
bits of each vn in the hope that this makes the resulting output sequence difficult
to predict. The paper [3], shows that not too many bits can be output at each
stage: the quadratic generator is unfortunately polynomial time predictable if
sufficiently many bits of its consecutive elements are revealed, so long as a small
number of secret keys are excluded. However, some of the results in that paper
only hold after excluding a small set of a, see [3, Theorem 3]. If this small
set is not excluded, the algorithm for finding the secret information may fail.
An optimist might hope that by deliberately choosing a to lie in this excluded



set, one can generate cryptographically stronger sequences. This paper aims
to show that this strategy is unlikely to succeed. Namely we introduce some
modifications and additions to the method of [3] which allow us to attack the
generators no matter how the value of a is chosen. In fact, our idea is similar
to the approach in paper [2]. We demonstrate our approach in the special cases
when a and c are public and when c is secret and a is public. This last case was
not considered in the mentioned paper. But we believe that the extra strength
of the result we obtain makes this situation of interest in its own right. We
also believe this approach can be extended to the case when both a and c are
secret [3, Theorem 5].

Assume that the sequence (vn) is not known but, for some n, some approxi-
mations wj are given. We show that if a and c are public or if a is public and c
secret the values vn+j and a can be recovered from this information in polyno-
mial time if the approximations wj are sufficiently good and if a certain small
set of initial values v0 are excluded. (The results in [3] exclude a small set of a
in addition to values of v0, and so in this sense our result here is stronger.)

The remainder of the paper is structured as follows.
We start with a short outline of some basic facts about lattices in Section 2.1

and polynomial in congruences Section 2.2. In Section 3 we consider the cases of
quadratic generator with known multiplier and shift in Subsection 3.1 and with
known multiplier and unknown shift in Subsection 3.2. Finally, Section 4 makes
some final comments and poses several open questions.
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2 Lattices and Polynomials

2.1 Background on Lattices

Here we collect several well-known facts about lattices which form the back-
ground to our algorithms.

We review several related results and definitions on lattices which can be
found in [5]. For more details and more recent references, we also recommend
consulting [1, 6, 7, 11–13].

Let {b1, . . . , bs} be a set of linearly independent vectors in IRr. The set

L = {z : z = c1b1 + . . . + csbs, c1, . . . , cs ∈ ZZ}

is called an s-dimensional lattice with basis {b1, . . . , bs}. If s = r, the lattice L
is of full rank.

To each lattice L one can naturally associate its volume

vol (L) =
(

det (〈bi, bj〉)s
i,j=1

)1/2

,

where 〈a, b〉 denotes the inner product. This definition does not depend on the
choice of the basis {b1, . . . , bs}.



For a vector u, let ‖u‖ denote its Euclidean norm. The famous Minkowski
theorem, see Theorem 5.3.6 in Section 5.3 of [5], gives the upper bound

min {‖z‖ : z ∈ L \ {0}} ≤ s1/2 vol (L)1/s (2)

on the shortest nonzero vector in any s-dimensional lattice L in terms of its

volume. In fact, s1/2 can be replaced by the Hermite constant γ
1/2
s , for which

we have
1

2πe
s + o(s) ≤ γs ≤ 1.744

2πe
s + o(s), s → ∞.

The Minkowski bound (2) motivates a natural question: how to find the
shortest vector in a lattice. The celebrated LLL algorithm of Lenstra, Lenstra and
Lovász [10] provides a desirable solution in practice, and the problem is known
to be solvable in deterministic polynomial time (polynomial in the bit-size of the
basis of L), provided that the dimension of L is fixed (see Kannan [8, Section 3],
for example). The lattices in this paper are of fixed dimension. (Note that there
are several indications that the shortest vector problem is NP-complete when
the dimension grows.)

In fact, in this paper we consider only very special lattices. Namely, only
lattices which are consisting of integer solutions x = (x0, . . . , xs−1) ∈ ZZs of the
system of congruences

s−1∑

i=0

aijxi ≡ 0 mod qj , j = 1, . . . , m,

modulo some integers q1, . . . , qm. Typically (although not always) the volume
of such a lattice is the product Q = q1 . . . qm. Moreover, all the aforementioned
algorithms, when applied to such a lattice, become polynomial in log Q.

2.2 Polynomial congruences

Our second basic tool is essentially the theorem of Lagrange which asserts that
a non-zero univariate polynomial of degree N over any field has no more than
N zeros in this field.

The polynomials we consider belong to a certain family of functions parametrised
by small vectors in a certain lattice, thus the size of the family can be kept under
control.

Now we present a technical result for later use. The following lemma is an
adaptation of an argument in the paper [2]:

Lemma 1. Let p > 5 be a prime and let α be a nonzero integer modulo p. Then

the bivariate congruence

αx ≡ y mod p,

with gcd(x, y) = 1, |x| < p1/3 and |y| < p1/3 has at most two integer solutions

(x, y).

Proof. Suppose that (x, y) and (x′, y′) are two solutions. Then xy′ ≡ yx′ mod p
and since both xy′ and yx′ have absolute value at most p2/3 we find that xy′ =
yx′. But since gcd(x, y) = gcd(x′, y′) = 1 we now obtain the thesis.



3 Predicting the Quadratic Generator

Throughout the paper the term polynomial time means polynomial in log p.
Our results involve another parameter ∆ which measures how well the values wj

approximate the terms vn+j . This parameter is assumed to vary independently
of p subject to satisfying the inequality ∆ < p (and is not involved in the
complexity estimates of our algorithms.)

More precisely, we say that w is a ∆-approximation to u if |w − u| ≤ ∆. In
all of our results, the case where ∆ grows like a fixed power pδ where 0 < δ < 1
corresponds to the situation where a positive proportion δ of the least significant
bits of terms of the output sequence remain hidden.

To simplify the notation, we assume that n = 0 from now on.

3.1 Predicting the Quadratic generator with known multiplier and

shift

We can formulate the main result in this subsection.

Theorem 1. Let p be a prime number and let ∆ be an integer such that p > ∆ ≥
1. For any a ∈ IF∗

p and c ∈ IFp, there exists a set U(∆; a, c) ⊆ IFp of cardinality

#U(∆; a, c) = O(∆4) with the following property. There exists an algorithm

which, when given a, c and ∆-approximations w0, w1 to two consecutive values

v0, v1 produced by the quadratic generator (1), where v0 6∈ U(∆; a, c), returns the

value of v0 in deterministic polynomial time.

Proof. The theorem is trivial when ∆4 ≥ p and we assume that ∆4 < p. We fix
a, c ∈ IFp and we assume that v0 ∈ IFp is chosen so as not to lie in a certain subset
U(∆; a, c) of IF∗

p of cardinality O(∆4). As its definition is fairly complicated we
define it gradually.

Let εj := vj − wj , j = 0, 1. From v1 ≡ av2
0 + c mod p, we obtain

w1 + ε1 − a(w0 + ε0)
2 − c ≡ 0 mod p.

Writing

A ≡ (w1 − aw2
0 − c) mod p, B1 ≡ −2aw0∆ mod p,

B2 ≡ ∆ mod p, C ≡ −a∆2 mod p,

we obtain
A∆2 + B1∆ε0 + B2∆ε1 + Cε2

0 ≡ 0 mod p. (3)

Therefore the lattice L consisting of integer solutions

x = (x0, x1, x2, x3) ∈ ZZ4

of the system of congruences

Ax0 + B1x1 + B2x2 + Cx3 ≡ 0 mod p,

x0 ≡ 0 mod ∆2,

x1 ≡ x2 ≡ 0 mod ∆,



contains a vector

e =
(
∆2e0, ∆e1, ∆e2, e3

)
=

(
∆2, ∆ε0, ∆ε1, ε

2
0

)
.

We have
e0 = 1, |e1|, |e2| ≤ ∆, |e3| ≤ ∆2,

thus
‖e‖ ≤

(
4∆4

)1/2
= 2∆2.

Let f =
(
∆2f0, ∆f1, ∆f2, f3

)
be a shortest nonzero vector in L. So, ‖f‖ ≤

‖e‖ ≤ 2∆2. We have

|f0| ≤ 2, |f1|, |f2| ≤ 2∆, |f3| ≤ 2∆2.

Note that we may compute f in polynomial time from the information we are
given. The vector d = f0e−e0f = (0, ∆d1, ∆d2, d3) ∈ L and has first component
0. We might hope that e and f are always parallel. If not, we claim that d1 = 0
unless v0 belongs to the set V(∆; a, c) which we define below.

Using the definition of L, we find that

−2aw0d1 + d2 − ad3 ≡ 0 mod p, (4)

where di = eif0 − fi, and thus |di| ≤ 2|ei| + |fi| for i = 1, 2, 3. Hence

|d1|, |d2| ≤ 4∆, |d3| ≤ 4∆2. (5)

Substituting wi = vi − εi, i = 0, 1, into the congruence (4), we find the
following congruence

−2ad1v0 ≡ E mod p,

where
E = a (−2d1ε0 + d3) − d2.

We define U(∆; a, c) as the set a values v0 that satisfy some congruence
of the form (4) with d1 6≡ 0 mod p. The bounds (5) imply that d1 can take
only O(∆) distinct values. Moreover, E can take O(∆3) distinct values (because
2d1ε0 − d3 = O(∆2) and d2 = O(∆)). Since d1 6≡ 0 mod p, this means that
#U(∆; a, c) = O(∆4).

So, we can assume that v0 6∈ U(∆; a, c). The bound (5) on |d1| and this
assumption imply

d1 = 0 and − d2 + ad3 ≡ 0 mod p.

We distinguish two cases: f0 6= 0 and f0 = 0 and analyze them separately.

Predicting the generator when f0 6= 0. Since d1 = 0 we have f0ε0−f1 ≡ 0 mod p.
The bound on |f1| shows that ε0 = f1/f0 and so we may compute the secret
information ε0.



Predicting the generator when f0 = 0. In this case we have d = f = (0, 0, ∆f2, f3)
verifying f2 ≡ af3 mod p. It is easy to see that f3 6≡ 0 mod p. Otherwise would
contradict the fact that f is a nonzero vector. Hence f3a ≡ f2 mod p and so we
may write

sa ≡ r mod p, where r = f2/ gcd(f2, f3) and s = f3/ gcd(f2, f3).

Note that r and s are coprime,

|r| ≤ 2∆, |s| ≤ 2∆2. (6)

Moreover we know explicitly r and s since we have computed f .
From the congruence (3) we derive

rw2
0 − sw1 + sc

︸ ︷︷ ︸
+ 2rw0

︸ ︷︷ ︸
ε0 − sε1 + rε2

0 ≡ 0 mod p

We now consider a new lattice: the lattice L′ consisting of solutions x = (x0, x1, x2) ∈
ZZ3 of the congruences

L′ :







(rw2
0 + sc − sw1)∆

−3x0 + 2rw0∆
−2x1 + x2≡ 0 mod p

x0≡ 0 mod ∆3

x1≡ 0 mod ∆2

(7)

It is easy to check that the lattice (7) contains the vector

e′ =
(
∆3, ∆2ε0, rε

2
0 − sε1)

)
.

Thus the Euclidean norm ‖e′‖ of e′ satisfies the inequality

‖e′‖ ≤
√

∆6 + ∆6 + 16∆6 = 3
√

2∆3.

Again, we now show that all short vectors in L′ are parallel to e′ unless v0

belongs to the set V ′(∆; a, b) which we define below.
Assume, for a contradiction, that there is another vector

f ′ = (∆3f ′

0, ∆
2f ′

1, f
′

2) ∈ L′

with ‖f ′‖ ≤ ‖e′‖ ≤ 3
√

2∆3 which is not parallel to e′. The vector d′ ∈ L′

defined by

d′ = f ′ − f ′

0e
′ = (0, ∆2d′1, d

′

2).

verifies:
|d′1| ≤ 9∆, |d′2| ≤ 21∆3. (8)

Using the first congruence in (7), we find that

2rw0d
′

1 + d′2 ≡ 0 mod p. (9)

If d′1 ≡ 0 mod p, then using bounds (8) we obtain d′1 = d′2 = 0. This implies
that vectors e′ and f ′ are parallel which it is a contradiction.



Substituting w0 = v0 − ε0 in the congruence (9)

2rv0d
′

1 ≡ E′ mod p, (10)

where E′ ≡ 2rε0d
′

1−d′2 mod p. We define V ′(∆; a, c) the set of values v0 that
satisfy some congruence of the form (10) with d′1 6≡ 0 mod p. Since d′1 6≡ 0 mod p,
the congruence (10) can be satisfied for at most 1 values of v0 once r, d′1 and
E′ have been chosen. By bounds (6) we can apply Lemma 1 then there are
at most 2 choices for r. There are O(∆3) choices for E′ since |E′| ≤ 42∆3.
Hence there are only O(∆4) values of v0 that satisfy some congruence of the
form (10) where the d′i and E′ satisfy the appropriate bounds. This means that
#V ′(∆; a, c) = O(∆4). So all short vectors in L′ are parallel to e′ whenever
v0 6∈ V ′(∆; a, b).

Finally, we apply a deterministic polynomial time algorithm for the shortest
vector problem in a finite dimensional lattice to find a shortest nonzero vector
f ′ in L′, and this vector must be parallel to e′. We recover e′ by using the fact
that e′ = f ′/f ′

0. This gives us ε0 which is used to calculate v0.

Defining

U(∆; a, b) = V(∆; a, b) ∪ V ′(∆; a, b)

which concludes the proof.

As we said in the introduction section [3, Theorem 3] excludes a small set of
values of a.

3.2 Predicting the Quadratic generator with known multiplier and

unknown shift

In this subsection we consider the problem of breaking the quadratic generator
given a and approximations to three consecutive values. We prove the following
result:

Theorem 2. Let p be a prime number and let ∆ be an integer such that p >
∆ ≥ 1. For any a ∈ IF∗

p and c ∈ IFp, there exists a set U(∆; a, c) ⊆ IFp of

cardinality #U(∆; a, c) = O(∆5) with the following property: there exists an

algorithm which, when given a and ∆-approximations wi, i = 0, 1, 2 to three

consecutive values v0, v1, v2 produced by the quadratic generator (1), where v0 6∈
U(∆; a, c), recovers v0 and c in deterministic polynomial time.

Proof. We can assume that ∆5 < p and that v0 ∈ IFp is chosen so as not to lie in
a certain subset U(∆; a, c) of IF∗

p of cardinality O(∆5). As its definition is fairly
complicated we define it gradually. By hypothesis, we have:

vi = wi + εi, |εi| ≤ ∆, i = 0, 1, 2 , and av2
i + c ≡ vi+1 mod p, i = 0, 1.



So, we obtain the following equation that involves the known parameters a, wi

and with the desired information εi:

(aw2
0−w1−aw2

1+w2)+2aw0 ε0
︸︷︷︸

−(1+2aw1) ε1
︸︷︷︸

+ ε2
︸︷︷︸

+a (ε2
0 − ε2

1)
︸ ︷︷ ︸

≡ 0 mod p

(11)
Then, the vector (1, ε0, ε1, ε2, ε

2
0 − ε2

1) satisfies the congruence (11) with known
coefficients. In order to handle a vector with norm-balanced components, we
write:

(aw2
0 − w1 − aw2

1 + w2) ∆2

︸︷︷︸
+2aw0∆ ∆ε0

︸︷︷︸
−(1 + 2aw1)∆ ∆ε1

︸︷︷︸
+

+∆ ∆ε2
︸︷︷︸

+a∆2 (ε2
0 − ε2

1)
︸ ︷︷ ︸

≡ 0 mod p.

So, the e := (∆2, ∆ε0, ∆ε1, ∆ε2, ε
2
0 − ε2

1) lies in the lattice L consisting of
(x0, x1, x2, x3, x4) ∈ ZZ5 verifying:

L :







(aw2
0 − w1 − aw2

1 + w2)x0 + 2aw0∆x1 − (1 + 2aw1)∆x2+
+∆x3 + a∆2x4 ≡ 0 mod p,

x0 ≡ 0 mod ∆2,
x1, x2, x3 ≡ 0 mod ∆.

Also, we have ‖e‖ < 3∆2. We can compute on polynomial time a shortest vector
f in the lattice L:

f =: (∆2f0, ∆f1, ∆f2, ∆f3, f4), ‖f‖ < 3∆2,

|f0| < 3, |f1|, |f2|, |f3| < 3∆, |f4| < 3∆2.
(12)

We hope that e and f are always parallel, that this

d := f0e − f = (0, ∆d1, ∆d2, ∆d3, d4) ∈ L

is the null vector. If not, we claim that d1 = d2 = 0 unless v0 belongs to the set
V(∆; a, c) which we define below. Substituting in (11) we derive

2aw0d1 − (1 + 2aw1)d2 + d3 + ad4 ≡ 0 mod p,

and using the bounds in (12)

|d1|, |d2|, |d3| < 6∆, |d4| < 9∆2 (13)

Now, plugin wi = vi − εi, i = 0, 1 in the above congruence, we get

2a(v0 − ε0)d1 − (1 + 2a(v1 − ε1))d2 + d3 + ad4 ≡ 0 mod p.

Substituting v1 ≡ av2
0 + c mod p in the above congruence we obtain:

2ad1v0 − 2ad1ε0 − d2 − 2ad2(av2
0 + c) + 2ad2ε1 + d3 + ad4 ≡ 0 mod p.



Then, P (v0) ≡ 0 mod p with

P (T ) = −2a2d2T
2 + 2ad1T − 2ad1ε0 − d2 − 2ad2c + 2ad2ε1 + d3 + ad4.

Let’s define the first piece of the exceptional set V(∆; a, c) as the set of
elements v0 ∈ IFp such that there exist integers d1, d2, d3, d4, ε0, ε1 satifying:

d1d2 6≡ 0 mod p and P (v0) ≡ 0 mod p.

The bounds in (13) imply that the number of elements in V(∆; a, c) is O(∆5),
because in the equation:

−2a2d2v
2
0 + 2ad1v0 + 2ad2c + d2 − d3 ≡ a(2d2ε1 − 2d1ε0 + d4) mod p,

there may exist less than O(∆2) possibilities for the right term. On the other
hand, in the left term, there may appear O(∆3) different (always nonconstant)
polynomials.

Whenever v0 6∈ V(∆; a, c), it must be d1 = d2 = 0, because of the bounds for
these integers, see again (13).

Once under this assumption, we look at the first coefficient of the vector f .
If f0 6= 0, we can easily recover:

ε0 = f1(f0)
−1, ε1 = f2(f0)

−1, (as identities in ZZ).

We concentrate the study when f0 = 0. Then, d = (0, 0, ∆d2, ∆d3, d4) with

d3 + ad4 = f3 + af4 ≡ 0 mod p

It is easy to see that f4 6≡ 0 mod p, otherwise f is the null vector. We compute
integers r, s, with gcd(r, s) = 1, and |r| < 3∆, |s| < 3∆, such that:

a ≡ rs−1 mod p

By Lemma 1, the possibilities for these integers do not vary as we consider
different aproximations, but remain fixed for the parameters a, p, ∆. Now, we
change equation (11):

(rw2
0 − sw1 − rw2

1 + sw2) + 2rw0ε0 − (s + 2rw1)ε1 + sε2 + r(ε2
0 − ε2

1) ≡ 0 mod p.

(rw2
0−sw1−rw2

1+sw2)+2w0r ε0
︸︷︷︸

−2w1r ε1
︸︷︷︸

+ s(ε2 − ε1) + r(ε2
0 − ε2

1)
︸ ︷︷ ︸

≡ 0 mod p.

(14)
Finally,

(rw2
0 − sw1 − rw2

1 + sw2) ∆3

︸︷︷︸
+ 2w0r∆∆2ε0

︸ ︷︷ ︸
−2w1r∆∆2ε1

︸ ︷︷ ︸
+

+∆3 s(ε2 − ε1) + r(ε2
0 − ε2

1)
︸ ︷︷ ︸

≡ 0 mod p.

So, the vector e′ := (∆3, ∆2ε0, ∆
2ε1, s(ε2 − ε1) + r(ε2

0 − ε2
1)) lies in the lattice:

L′ :







(rw2
0 − sw1 − rw2

1 + sw2)x0 + 2rw0∆x1 − 2rw1∆x2 + ∆3x3 ≡ 0 mod p
x0 ≡ 0 mod ∆2

x1, x2 ≡ 0 mod ∆2



Again, we now show that all short vectors in L′ are parallel to e′ unless v0

belongs to the set V ′(∆; a, b) which we define below.

Assume, for a contradiction, that there is another vector. We compute on
polynomial time a vector f ′ with minimum norm in L′.

f ′ = (∆3f ′

0, ∆
2f ′

1, ∆
2f ′

2, f
′

3), ‖f ′‖ < 13∆3

|f ′

0| < 13, |f ′

1|, |f ′

2| < 13∆, |f ′

3| < 13∆3 (15)

The vector d′ := f ′

0e
′−f ′ =: (0, ∆2d′1, ∆

2d′2, d
′

3) is also in the lattice L′. We can
bound its coefficients by (15):

|d′1|, |d′2| < 26∆, |d′3| < 169∆3. (16)

Now, by (14), we find that

2w0rd
′

1 − 2w1rd
′

2 + d′3 ≡ 0 mod p (17)

Substituting w0 = vi − εi in the congruence (17) we derive

2(v0 − ε0)rd
′

1 − 2(av2
0 + c − ε1)rd

′

2 + d′3 ≡ 0 mod p. (18)

Then, P ′(v0) ≡ 0 mod p with

P ′(T ) := −2ard′2T
2 + 2rd′1T − 2rd′1ε0 − 2rd′2c + 2rd′2ε1 + d′3.

We define V ′(∆; a, c) the set of elements v0 ∈ IFp such that there exist integers
d′1, d

′

2, d
′

3, ε0, ε1, r, s with the appropriate bounds verifying:

d′1d
′

2 6≡ 0 mod p and P ′(v0) ≡ 0 mod p.

By the bounds in the integers d′1, d
′

2, d
′

3, ε0, ε1, r, s, we have that #V ′(∆; a, c) =
O(∆5), because in the equation:

−2ard′2v
2
0 + 2rd′1v0 + 2rd′2c ≡ 2rd′1ε0 − 2rd′2ε1 − d′3 mod p,

there are O(∆3) options for the right side, and O(∆2) different (and nonconstant)
polynomials in v0 for the left one.

Now, if v0 6∈ V ′(∆; a, c), it must be d′1 ≡ d′2 ≡ 0 mod p, then using bounds
(16) we obtain d′1 = d′2 = d′3 = 0. This implies that vectors e′ and f ′ are parallel
which it is a contradiction. So, e′ and f ′ are parallel vectors.

Once again, if we have f ′

0 6≡ 0 mod p, we recover easily the approximation
errors and the orginal values. Now, if f ′

0 ≡ 0 ⇒ f ′

0 = 0, we would have f ′ =
(0, 0, 0, 0′) which it is a contradiction.

We just must define U(∆; a, c) := V(∆; a, c)∪V ′(∆; a, c) to comple the proof.



4 Remarks and Open Questions

Obviously our Theorem 1 is nontrivial only for ∆ = O(p1/4) and Theorem 2 only
for ∆ = O(p1/5). Thus increasing the size of the admissible values of ∆ (even at
the cost of considering more consecutive approximations) is interesting.

One can presumably obtain a very similar result in the dual case, where c is
given but the multiplier a is unknown.

As we have mentioned several other results about predictability of nonlin-
ear generators have recently been obtained in [3]. However, they are somewhat
weaker than the present result because each of them excludes a certain small
exceptional set of pairs of parameters (a, c). In particular the Theorem 5 of
[3] when both multiplier and shift are secret. We believe that the approach of
this work may help to eliminate this drawback. Certainly this question deserves
further study.

We do not know how to predict the quadratic (and other generators consid-
ered in [3]) in the case when the modulus p is secret as well. We remark that in
the case of the linear congruential generator a heuristic approach to this problem
has been proposed in [6]. However it is not clear how to extend this (even just
heuristically) to the case of nonlinear generators.
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