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ABSTRACT 

Several commercial processors have selected the radix-8 multiplier architecture to increase their speed, thereby reducing 
the number of partial products. Radix-8 encoding reduces the digit number length in a signed digit representation. Its 
performance bottleneck is the generation of the term 3X, also referred to as hard multiple. This term is usually computed 
by an adding and shifting operation, 3X=2X+X, in a high-speed adder. In a 2X+X addition, close full adders share the 
same input signal. This property permits simplified algebraic expressions associated to a 3X operation other than in a 
conventional addition. This paper shows that the 3X operation can be expressed in terms of two signals, Hi and Ki , 
functionally equivalent to two carries. Hi and Ki are computed in parallel using architectures which lead to an area and 
speed efficient implementation. For the purposes of comparison, implementation based on standard-cells of conventional 
adders has been compared with the proposed circuits based on these Hi and Ki signals. As a result, the delay of proposed 
serial scheme is reduced by roughly 67% without additional cost in area, the delay and area of the carry look-ahead 
scheme is reduced by 20% and 17%, and that of the parallel prefix scheme is reduced by 26% and 46%, respectively. 
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1. INTRODUCTION 

The binary number system based on two´s complement representation of numbers is commonly used in arithmetic 
units1,2. However, there are other number systems which are very useful for certain applications. Avizienis3 defined in 
1961 a class of redundant signed-digit number systems with a symmetric digit set of a radix-r positional number system. 
A specific case of this representation used in high speed-arithmetic is the minimum redundancy signed-digit, where the 
digits are of the form dj ∈{ r /2, r -1, 1 , 0, 1,…,r/2 -1, r/2} with r≥2 and r=2p, where r =-r. For example, for radix-2, this 
is the digit set {1 , 0, 1}, for radix-4, it is { 2 , 1 , 0, 1, 2} and for radix-8 it is { 4 , 3 , 2 , 1 , 0, 1, 2, 3, 4}. Thus, an n-bit 
two´s complement number X=(x0, x1, .., xn-1) can be expressed in a radix-r minimum redundancy signed representation 
D=(d0, d1, .., dn’-1) as follows: 
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1n . Table I shows the word length n’ of signed digit representation for different radix and values of n. Note 

that a higher signed digit representation leads to fewer digits. 

Multiplication is perhaps the arithmetic circuit where radix-r minimum redundancy signed representation has been most 
widely used. It involves two basic operations: generation of partial products and their accumulation. One way to speed 
up the multiplication is to reduce the number of partial products by using radix-r encoding. The modified Booth’s 
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algorithm4 is the most popular approach for implementing fast multipliers using parallel encoding. This scheme requires 
the generation of the multiples X, X , 2X, X2 , 3X, X3 , …, where X is the multiplicand. Booth-2 uses a radix-4 

encoding which reduces the number of the partial products to ⎥⎥
⎤
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1n'n . Moreover, the digit set { 2 , 1 , 0, 1, 2} is easily 

obtained by shifting and/or complement operations, and for this reason, many multipliers are based on this scheme. The 

Booth-3 scheme is based on radix-8 encoding to reduce the number of the partial products to ⎥⎥
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1n'n . All digit sets 

{ 4 , 3 , 2 , 1 , 0, 1, 2, 3, 4} are also obtained by simple shifting and complement operations, except the term 3X (referred 
to as hard multiple) which is computed by an adding and shifting operation, 3X=2X+X; X3  can be generated by 
complement 3X. Some commercial processors as Fchip5, Alpha RISC6, IBM S/3907, Alpha RISC8, IA-329 and AMD-
K710 have selected the Booth-3 scheme to reduce the counter tree of partial products and to increase the speed of the 
multiplier. Other circuits as Goldschmidt’s division algorithm with IEEE rounding11 and adaptative FIR filter12 are based 
on Booth-3 to reduce area, power and latency. 

 
 Radix-2 

(p=1) 
Radix-4 

(p=2) 
Radix-8 

(p=3) 
Radix-16 

(p=4) 
Radix-32 

(p=5) 
n=2 2 1 1 1 1 

n=4 4 3 2 1 1 

n=8 8 5 3 3 2 

n=16 16 9 6 5 4 

n=32 32 17 11 9 7 

n=64 64 33 22 17 13 
 

Table 1. Word length (n’) of minimum redundancy signed representation for different radix and values of an n-bit binary 
number. 

 

The “bottleneck” of radix-8 multiplier architecture is the generation of 3X. This term must be computed, generally by an 
adder, before the partial product producing an increase to the latency of multiplier. In pipelined radix-8 multipliers5, 11, 
3X is generated in the first stage in parallel with booth-3 encoding; any interested reader can find a detailed description 
of radix-8 CMOS S/390 pipelined multiplier in 14,15. A solution for non-pipelined multipliers is the hybrid radix-4/radix-8 
architecture presented in 16. In this scheme, radix-4 and radix-8 partial products are performed in parallel, reducing by 
13% the power with a 9% increase in delay, as compared with a radix-4 implementation. Another idea based on partially 
redundant partial products with bias constant has been proposed in 17. It uses a series of small-length adders with no carry 
propagation and one compensation constant must be added. However, a design tradeoff must be resolved. Radix-8 
encoding solution based on redundant logic to eliminate the 3X computing is presented in 18, although parameters as 
speed or area are not given or compared. In other special architectures, as described in the design of filter FIR13, the 3X 
is pre-computed off the critical path resulting in a fast and low power multiplier. 

This paper presents some simplified algebraic expressions of 3X operation, resulting in more efficient circuits in terms of 
area and speed in comparison with those whose implementations are based on conventional adders. To do this, two 
signals, Hi and Ki , functionally equivalent to two carries,  are introduced. These signals are computed in parallel 
reducing the critical path of the circuit and minimizing the hardware implementation. Three architectures based on 
different schemes (serial, carry look-ahead (CLA) and parallel prefix) have been proposed and compared with 
conventional ones using a standard cell CMOS library. The results show a reduction in delay of 67% for serial scheme, 
20% for CLA scheme and 26% for parallel prefix. Important reductions in area are also achieved for both. 
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Fig. 1. Conventional adder to generate 3X as 2X+X. 

 

2. SERIAL ADITTION 

Let X=(x0, x1,...,xn-1) be a binary number of n-bit in two’s complement and S=(S0, S1,...,Sn+1) the result in n+2-bit of 
performing the 3X operation. A trivial way to generate 3X is to add 2X+X as shown in Figure 1. In this circuit, S0=x0, 
Sn=Cn-1 and the sign of S are directly defined by xn-1 (Sn+1=xn-1) and, thus, sign extension is not necessary. The 2X+X 
operation means that the adjoining FA share the same input variable. This characteristic allows the algebraic expressions 
of the adders to be simplified in order to obtain area and speed-efficient circuits. 

In the full adder (FA) of Figure 1, the sum (Si) and carry (Ci) output are defined as Si=xi⊕ xi-1⊕Ci-1 and Ci=xixi-1+(xi+xi-

1)Ci-1, respectively. Developing the expressions of this circuit and then grouping together terms, it is verified that Ci can 
be defined as: 

 

))x x(xx (xx ))x x(xx(xx C
)xx(xx ))x x(xx(xx C

 )x x(xx )x x (xx C
 x x )x x (xx C

x x xx C
x x C

l23456l123456

1 2340123455

123401234

1201233

120 12

011

+++++=
++++=

+++=
++=

+=
=

 (2) 

Thus, Ci can be expressed in terms of two variables, Hi and Ki , defined by means of the following recursive relations: 
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where i=1,2,….,n-1, H0=x0 and K0=0. These signals have the following properties  
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From (1)-(5), Ci can be expressed in terms of Hi and Ki in the following way: 
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Fig. 2. Ripple carry implementation of 3X. 
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Fig. 3. Fast ripple carry implementation of 3X 
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The output sum Si can be directly obtained from Hi and Ki without it being necessary to generate Ci. We get: 
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for i =1,2,…,n-1 and with K-1=H-1=0. Eq. (7) can be also transformed applying (5) in 

 1i1iii KHxS −− ⊕⊕=  (8) 

Figure 2 shows the 3X addition implementation derived from equations (3), (4) and (7) for n=12. Note the propagation of 
Hi y Ki signals are generated in a parallel ripple configuration through the NOR gates with an asymptotic time O(n). A 
more efficient implementation of this circuit can be made taking advantage of the properties of Hi y Ki. Figure 3 shows a 
new implementation for n=12 using the expressions derived from Eq. (7) indicated below:  
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for i=0,2,4,… . This circuit generates simultaneously the Si and Si+1 outputs from Hi-1 and Ki-1 signals and propagates 
these signal in parallel by means of OR-NAND and AND-NOR gates. 

 

3. CARRY LOOK-AHEAD ADDITION 

Adders based on the carry look-ahead principle remain dominant, since the carry delay can be improved by calculating 
the carries to each stage in parallel. The expressions of Hi and Ki defined in Eq. (3) and (4) are of a similar form to those 
used in conventional carry look-ahead circuits. For example, H8 and K8 are defined as 

 
))) xx(x x(xx(xxK

)) xx(xx(xx(xxxH

123456788

0123456788
+++=

++++=
 (10) 

The propagate and generate signals of conventional adders are replaced in Eq. (10) by the input variables themselves. Hi 
“propagates” input variable x0 and Ki “propagates” x1. Thus, the most commonly used schemes for accelerating carry 
based on domino carry look-ahead, multi-level carry look-ahead and carry-skip circuits can be used directly to compute 
the signals Hi and Ki.  
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Fig. 4. Two-level carry look-ahead structure of 3X for n=68. 
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Fig.5. Carry look-ahead generator of a) H signals (CLA-I) and b) K signals (CLA-III). 
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However, the critical path of the carry look-ahead scheme can be significantly reduced by introducing new generate and 
propagate signals associated to Hi and Ki. Let ghj be the generate signal and phj is the propagate signal of Hi. These 
signals are defined for a group of 4 inputs by 

 4/)2n(j0for  xxxgh 4j14j2j4j −<≤+= ++  (11) 

 4/)2n(j1ifxxph 1-4j14jj −<≤= +  (12) 

Then the following equation of recurrence is established 

 4/)2n(j1for  HphghH 21)-4(jjj2j4 −<≤+= ++  (13) 

with H2=gh0. The number of these signals is reduced to roughly n/4 in comparison with n in a conventional adder. For 
example, for j=4 we get: 

 )))ghphgh(phgh(phgh(phghH 01122334418 ++++=  (14) 

In a similar way, let gkj be the generate signal and pkj  the propagate signal of K4j+2. These signals are defined by 
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The following equation of recurrence is established 

 4/)2n(j1for  )Kpk(gkK 21)-4(jjj2j4 −<≤+= ++  (17) 

with K2=gk0. For example, for j=4 we get: 

 ))))gkpk(gkpk(gkpk(gkpk(gkK 01122334418 ++++=  (18) 

Note that the definition of ghj, phj, gkj and pkj only allow one H4j+2 and one K4j+2 signal to be obtained for every four 
input signals, but it has the advantage of reducing the number of levels in a look-ahead scheme. Figure 4 shows the 
structure of a 3X implementation for n=68 using two-level of 4-bit CLA modules. H4j+2 and K4j+2 are computing in 
parallel through CLA-I/II and CLA-III/IV modules, respectively. CLA-I implements the following expressions:  
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Figure 5.a shows the schema of a CLA-I module where complementary gates are used to reduce the propagation time. In 
this circuit, 2)4j(4PH ++  and 2)4j(4GH ++  are the 4-bit group propagate and generate variables, and 2)3j(4H ++ , 
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2)2j(4H ++  and 2)1j(4H ++  are computed when the input signal 2j4H +  is known. CLA-II generates H18, H34, H50 and H66 
defined as: 

 

))))HHP(GHPH(GHPH(GHPH(GHH

)))HHP(GHPH(GHPH(GHH

))HHP(GHPH(GHH

)HHP(GHH

2181834345050666666

218183434505050

21818343434

2181818

++++=

+++=

++=

+=

 (20) 

In a similar way as for K signals, CLA-III constitutes the first level of computation defined by the following expression: 
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Figure 5.b shows the schema of CLA-III. The CLA-IV implements these switching functions: 
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The final addition module computes the output S in 4-bit modules according to the following expressions  
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Fig. 6. 4-b adder module. 
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for 4/)6n(j0 −<≤ . This equation is implemented in the circuit of Figure 6. S4j+3 and S4j+4 are computed from H4j+2 and 

K4j+2, and S4j+5 and S4(j+1)+2 from H4j+4 and 4j4K + , which are generated in two OR-NAND gates. Note that the 
complexity of this circuit is lower than a conventional 4-b adder. In the final addition, the first 3 bits of S are defined as 
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and the last 3 bits are 
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4. PARALLEL PREFIX ADDITION 

The associative property of the well-known concatenation operator “○” introduced by Brent and Kung19,20 for prefix 
adders allows the ripple configuration to be transformed into a parallel binary tree structure to make high-speed addition. 
As a result, these adders have a structure, which is very adequate for VLSI. The similitude between the expressions for 
conventional adders and the expressions of H4j+2 and K4j+2 described in Eq. (11)-(17) allow this operator to be applied to 
these signals. The operator ○ associated to H4j+2 can be defined as 

 (gh, ph)○(gh’, ph’)=(gh+ph gh’, ph ph’) (26) 

 

Fig.7. Parallel prefix scheme for n=18. 
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and the operator ● associated to K4j+2 as 

 (gk, pk) ● (gk’, pk’)=(gk (pk+gk’), pk+pk’) (27) 

Figure 7 shows the circuit to compute S=3X for n=18 based on a parallel prefix scheme. This circuit is made up of two 
binary parallel structures to generate the 2j4H +  and 2j4K +  signals (j=0,1, 2, 3) and final addition to obtain S similar to 
those described in eq. (23)-(25). Each binary structure has a first level to compute the ghj, phj, gkj and pkj signals and a 
binary tree to get 2j4H +  and 2j4K + ; complementary gates are used to reduce the propagation time. 

 

5. SIMULATION AND COMPARISONS 

For the purposes of comparison, 3X implementations based on conventional adders have been compared with the 
proposed circuits. The designs have been made in a standard-cell methodology using a 0.35µm CMOS 3M technology. 
The CADENCE Silicon Ensemble Place&Route tool has been used to include wire delays since these are important in 
this technology. Table I lists the number of cells, area and maximum delay of the following 3X implementations for 
different values of n: ripple carry adder (RCA) based on full-adder (FA) and half-adder (HA) cells, CLA adder and 
Kogge-Stone20 parallel prefix adder (PPA) with log2n levels, and the proposed circuits in Figure 3 (RCAHK), Figure 4 
(CLAHK) and Figure 7 (PPAHK). 

The results in Table II highlight the advantages of the circuits proposed in terms of speed and area. The RCAHK reduces 
by roughly 67% the delay with respect to the RCA without any additional area cost. This result is important for some 
adders such as the carry-select adder and the conditional-sum adder, which are based on ripple carry adders. The 
CLAHK reduces the area by 17% and the delay by 20% with respect to conventional CLA. The Kogge-Stone PPA is one 
of the fastest adders, which can be built with standard cells. The PPAHK improves its speed by 26% and its area by 46%. 
As a result, Table II demonstrates that the expressions developed to implement 3X addition lead to circuits whose area 
and speed are significantly improved in comparison with implementations based on classical adders. 

 8-bit 16-bit 32-bit 64-bit 
Delay 3.73 ns 7.82 ns 16.29 ns 33.9 ns 
Cells 8 16 32 64 RCA 
Area 2493 µm2 5405 µm2 11229 µm2 23131 µm2 
Delay 1.37 ns 2.72 ns 5.34 ns 11.1 ns 
Cells 28 60 124 256 RCAHK 
Area 2439 µm2 5252 µm2 10738 µm2 21286 µm2 
Delay 1.84 ns 2.49 ns 3.23 ns 4.07 ns 
Cells 53 106 239 502 CLA 
Area 3956 µm2 8244 µm2 18346 µm2 38384 µm2 
Delay 1.14 ns 1.63 ns 2.49 ns 3.27 ns 
Cells 31 81 189 411 CLAHK 
Area 2857 µm2 6607 µm2 14815 µm2 31741 µm2 
Delay 1.67 ns 2.26 ns 3.12 ns 3.84 ns 
Cells 51 137 343 821 PFA 
Area 4168 µm2 11011 µm2 26081 µm2 64610 µm2 
Delay 1.14 ns 1.63 ns 2.20 ns 2.86 ns 
Cells 31 81 194 450 PFAHK 
Area 2857 µm2 6607 µm2 14961 µm2 35072 µm2 

 

Table II. Comparisons for different implementations of 3X. 
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CONCLUSIONS 

The generation of the term 3X used in radix-8 encoding can be efficiently implemented using two signals, Hi and Ki , 
functionally equivalent to two carries. Hi and Ki are computed in parallel using architectures which are efficient in terms 
of delay and area when compared with implementations based on conventional adders. Simulations made in circuits 
implemented using a standard-cell have demonstrated that the expressions developed to implement 3X reduce the delay 
of serial scheme by 67%, the carry look-ahead scheme by 20% and the parallel prefix scheme by 26%. Important 
reductions in area are also achieved for both. Other schemes used for accelerating carry based on transistor structures 
such as domino carry look-ahead, multi-level carry look-ahead and carry-skip circuits can be directly used to compute 
the signals Hi and Ki. These circuits allow high-speed computation and they can even lead to a reduction in the latency of 
the multiplier. 
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