

Efficient hardware implementation of 3X for radix-8 encoding

G.A. Ruiz1 and Mercedes Granda
Dpto. de Electrónica y Computadores. Facultad de Ciencias

Universidad de Cantabria. Avda. de Los Castros s/n. 39005 Santander (SPAIN)

ABSTRACT

Several commercial processors have selected the radix-8 multiplier architecture to increase their speed, thereby reducing
the number of partial products. Radix-8 encoding reduces the digit number length in a signed digit representation. Its
performance bottleneck is the generation of the term 3X, also referred to as hard multiple. This term is usually computed
by an adding and shifting operation, 3X=2X+X, in a high-speed adder. In a 2X+X addition, close full adders share the
same input signal. This property permits simplified algebraic expressions associated to a 3X operation other than in a
conventional addition. This paper shows that the 3X operation can be expressed in terms of two signals, Hi and Ki ,
functionally equivalent to two carries. Hi and Ki are computed in parallel using architectures which lead to an area and
speed efficient implementation. For the purposes of comparison, implementation based on standard-cells of conventional
adders has been compared with the proposed circuits based on these Hi and Ki signals. As a result, the delay of proposed
serial scheme is reduced by roughly 67% without additional cost in area, the delay and area of the carry look-ahead
scheme is reduced by 20% and 17%, and that of the parallel prefix scheme is reduced by 26% and 46%, respectively.

Keywords: High-Speed Arithmetic, Arithmetic and Logic Structures, VLSI

1. INTRODUCTION

The binary number system based on two´s complement representation of numbers is commonly used in arithmetic
units1,2. However, there are other number systems which are very useful for certain applications. Avizienis3 defined in
1961 a class of redundant signed-digit number systems with a symmetric digit set of a radix-r positional number system.
A specific case of this representation used in high speed-arithmetic is the minimum redundancy signed-digit, where the
digits are of the form dj ∈{ r /2, r -1, 1 , 0, 1,…,r/2 -1, r/2} with r≥2 and r=2p, where r =-r. For example, for radix-2, this
is the digit set {1 , 0, 1}, for radix-4, it is { 2 , 1 , 0, 1, 2} and for radix-8 it is { 4 , 3 , 2 , 1 , 0, 1, 2, 3, 4}. Thus, an n-bit
two´s complement number X=(x0, x1, .., xn-1) can be expressed in a radix-r minimum redundancy signed representation
D=(d0, d1, .., dn’-1) as follows:

 ∑∑
−

=

−

=
−

− =+−=
1'n

0j

j
j

2n

0i

i
i1n

1n rd2xx2X (1)

where n’= ⎥
⎥

⎤
⎢
⎢

⎡ +
p

1n . Table I shows the word length n’ of signed digit representation for different radix and values of n. Note

that a higher signed digit representation leads to fewer digits.

Multiplication is perhaps the arithmetic circuit where radix-r minimum redundancy signed representation has been most
widely used. It involves two basic operations: generation of partial products and their accumulation. One way to speed
up the multiplication is to reduce the number of partial products by using radix-r encoding. The modified Booth’s

1 ruizrg@unican.es; phone +34 942 20155; fax +34 942 201402

VLSI Circuits and Systems III, edited by Valentín de Armas Sosa, Kamran Eshraghian, Felix B. Tobajas,
Proc. of SPIE Vol. 6590, 65901I, (2007) · 0277-786X/07/$18 · doi: 10.1117/12.721489

Proc. of SPIE Vol. 6590 65901I-1

-

algorithm4 is the most popular approach for implementing fast multipliers using parallel encoding. This scheme requires
the generation of the multiples X, X , 2X, X2 , 3X, X3 , …, where X is the multiplicand. Booth-2 uses a radix-4

encoding which reduces the number of the partial products to ⎥⎥
⎤

⎢⎢
⎡ +

=
2

1n'n . Moreover, the digit set { 2 , 1 , 0, 1, 2} is easily

obtained by shifting and/or complement operations, and for this reason, many multipliers are based on this scheme. The

Booth-3 scheme is based on radix-8 encoding to reduce the number of the partial products to ⎥⎥
⎤

⎢⎢
⎡ +

=
3

1n'n . All digit sets

{ 4 , 3 , 2 , 1 , 0, 1, 2, 3, 4} are also obtained by simple shifting and complement operations, except the term 3X (referred
to as hard multiple) which is computed by an adding and shifting operation, 3X=2X+X; X3 can be generated by
complement 3X. Some commercial processors as Fchip5, Alpha RISC6, IBM S/3907, Alpha RISC8, IA-329 and AMD-
K710 have selected the Booth-3 scheme to reduce the counter tree of partial products and to increase the speed of the
multiplier. Other circuits as Goldschmidt’s division algorithm with IEEE rounding11 and adaptative FIR filter12 are based
on Booth-3 to reduce area, power and latency.

 Radix-2

(p=1)
Radix-4

(p=2)
Radix-8

(p=3)
Radix-16

(p=4)
Radix-32

(p=5)
n=2 2 1 1 1 1

n=4 4 3 2 1 1

n=8 8 5 3 3 2

n=16 16 9 6 5 4

n=32 32 17 11 9 7

n=64 64 33 22 17 13

Table 1. Word length (n’) of minimum redundancy signed representation for different radix and values of an n-bit binary
number.

The “bottleneck” of radix-8 multiplier architecture is the generation of 3X. This term must be computed, generally by an
adder, before the partial product producing an increase to the latency of multiplier. In pipelined radix-8 multipliers5, 11,
3X is generated in the first stage in parallel with booth-3 encoding; any interested reader can find a detailed description
of radix-8 CMOS S/390 pipelined multiplier in 14,15. A solution for non-pipelined multipliers is the hybrid radix-4/radix-8
architecture presented in 16. In this scheme, radix-4 and radix-8 partial products are performed in parallel, reducing by
13% the power with a 9% increase in delay, as compared with a radix-4 implementation. Another idea based on partially
redundant partial products with bias constant has been proposed in 17. It uses a series of small-length adders with no carry
propagation and one compensation constant must be added. However, a design tradeoff must be resolved. Radix-8
encoding solution based on redundant logic to eliminate the 3X computing is presented in 18, although parameters as
speed or area are not given or compared. In other special architectures, as described in the design of filter FIR13, the 3X
is pre-computed off the critical path resulting in a fast and low power multiplier.

This paper presents some simplified algebraic expressions of 3X operation, resulting in more efficient circuits in terms of
area and speed in comparison with those whose implementations are based on conventional adders. To do this, two
signals, Hi and Ki , functionally equivalent to two carries, are introduced. These signals are computed in parallel
reducing the critical path of the circuit and minimizing the hardware implementation. Three architectures based on
different schemes (serial, carry look-ahead (CLA) and parallel prefix) have been proposed and compared with
conventional ones using a standard cell CMOS library. The results show a reduction in delay of 67% for serial scheme,
20% for CLA scheme and 26% for parallel prefix. Important reductions in area are also achieved for both.

Proc. of SPIE Vol. 6590 65901I-2

-

HA

x0 x1

S1

C1 FA

S2

C2 FA

S3

C3 FA

Sn-1

Cn-1 Cn-2

S0

x2 x3 xn-2 xn-1

Sn Sn+1

…

…

Fig. 1. Conventional adder to generate 3X as 2X+X.

2. SERIAL ADITTION

Let X=(x0, x1,...,xn-1) be a binary number of n-bit in two’s complement and S=(S0, S1,...,Sn+1) the result in n+2-bit of
performing the 3X operation. A trivial way to generate 3X is to add 2X+X as shown in Figure 1. In this circuit, S0=x0,
Sn=Cn-1 and the sign of S are directly defined by xn-1 (Sn+1=xn-1) and, thus, sign extension is not necessary. The 2X+X
operation means that the adjoining FA share the same input variable. This characteristic allows the algebraic expressions
of the adders to be simplified in order to obtain area and speed-efficient circuits.

In the full adder (FA) of Figure 1, the sum (Si) and carry (Ci) output are defined as Si=xi⊕ xi-1⊕Ci-1 and Ci=xixi-1+(xi+xi-

1)Ci-1, respectively. Developing the expressions of this circuit and then grouping together terms, it is verified that Ci can
be defined as:

))x x(xx (xx))x x(xx(xx C
)xx(xx))x x(xx(xx C

)x x(xx)x x (xx C
 x x)x x (xx C

x x xx C
x x C

l23456l123456

1 2340123455

123401234

1201233

120 12

011

+++++=
++++=

+++=
++=

+=
=

 (2)

Thus, Ci can be expressed in terms of two variables, Hi and Ki , defined by means of the following recursive relations:

⎩
⎨
⎧

+
=

−

−

eveniforHx
oddiforHx

H
1ii

1ii
i (3)

⎩
⎨
⎧ +

=
−

−

eveniforKx
oddiforKx

K
1ii

1ii
i (4)

where i=1,2,….,n-1, H0=x0 and K0=0. These signals have the following properties

⎪⎩

⎪
⎨
⎧

=+==⇒⊂
=+==⇒⊂

eveniforHKHandKKH,0KHHK
oddifor,KKHandHKH,0KHKH

iiiiiiiiii

iiiiiiiiii (5)

From (1)-(5), Ci can be expressed in terms of Hi and Ki in the following way:

Proc. of SPIE Vol. 6590 65901I-3

-

x1

x0

x2

S0 S1 S2

K1

x3

x
x

2

2

2

2

S3

K

H

x4

x
x

3

3

3

3

S4

K

H
x5

x
x

4

4

4

4

S5

K

H
x6

x
x

5

5

5

5

S6

K

H
x7

x
x

6

6

6

6

S7

K

H
x8

x
x

7

7

7

7

S8

K

H

x9

x
x

8

8

8

8

S9

K

H

x10

x
x

9

9

9

9

S10

K

H
x

x
x

11

11

11x
x

10

10

10

10

SS11
S12 13

K

H

Fig. 2. Ripple carry implementation of 3X.

x4

S4

x4
0 1

S5

x5

x5

x1 x2

3x

x6
x7x3

2x

4x
5x

6x

7x

S6

x6
0 1

S7

x7

x8

x9

8x
9x

S8

x8
01

S9

x9

S10

x10
0 1

S11

x11

x0

S0 S1

x11 11x

S12

10x

x11

S13S2

x2
0 1

S3

x3

K5
K9

H7H3

H11

3K 7K

5H 1H 9H

K1

Fig. 3. Fast ripple carry implementation of 3X

⎩
⎨
⎧

=+=+=+
=+=+=+

=
−−−−−−

−−−−−−

eveniforKH)Hx(KKxHKH
oddiforKH)Kx(HKHxKH

C
1ii1ii1i1ii1ii1i

i1i1ii1i1i1ii1ii
i (6)

The output sum Si can be directly obtained from Hi and Ki without it being necessary to generate Ci. We get:

 () ()
() ()⎪⎩

⎪
⎨
⎧

⊕=+⊕
⊕=+⊕

=⊕⊕=
−−−−−−

−−−−−−
−− eveniforKHxKxHxx

oddiforKHxKxHxxCxxS
1i1ii2i1i2i1ii

1i1ii2i1i2i1ii
1i1iii (7)

for i =1,2,…,n-1 and with K-1=H-1=0. Eq. (7) can be also transformed applying (5) in

 1i1iii KHxS −− ⊕⊕= (8)

Figure 2 shows the 3X addition implementation derived from equations (3), (4) and (7) for n=12. Note the propagation of
Hi y Ki signals are generated in a parallel ripple configuration through the NOR gates with an asymptotic time O(n). A
more efficient implementation of this circuit can be made taking advantage of the properties of Hi y Ki. Figure 3 shows a
new implementation for n=12 using the expressions derived from Eq. (7) indicated below:

Proc. of SPIE Vol. 6590 65901I-4

-

 ()
()⎩

⎨
⎧

+⊕=
⊕=

−−−−++

−−

1i1i1i1i1i1i

1i1iii
KxHxxS

KHxS (9)

for i=0,2,4,… . This circuit generates simultaneously the Si and Si+1 outputs from Hi-1 and Ki-1 signals and propagates
these signal in parallel by means of OR-NAND and AND-NOR gates.

3. CARRY LOOK-AHEAD ADDITION

Adders based on the carry look-ahead principle remain dominant, since the carry delay can be improved by calculating
the carries to each stage in parallel. The expressions of Hi and Ki defined in Eq. (3) and (4) are of a similar form to those
used in conventional carry look-ahead circuits. For example, H8 and K8 are defined as

))) xx(x x(xx(xxK

)) xx(xx(xx(xxxH

123456788

0123456788
+++=

++++=
 (10)

The propagate and generate signals of conventional adders are replaced in Eq. (10) by the input variables themselves. Hi
“propagates” input variable x0 and Ki “propagates” x1. Thus, the most commonly used schemes for accelerating carry
based on domino carry look-ahead, multi-level carry look-ahead and carry-skip circuits can be used directly to compute
the signals Hi and Ki.

G
H

18

H
18

H
34

H
50

H
66

K
66

H2

H
6,

10
,1

4

H
22

,2
6,

30

H
38

,4
2,

46

H
54

,5
8,

62

x2:0 x18:3

x67:0

x34:19 x50:35 x66:51

G
H

34

G
H

50

PH
18

PH
34

PH
50

G
H

66
G

K
66

PH
66

PK
66

CLA-I

Final addition

CLA-II

CLA-I CLA-I CLA-I

G
K

18

K
18

K
34

K
50K2

K
6,

10
,1

4

K
22

,2
6,

30

K
38

,4
2,

46

K
54

,5
8,

62

x2:0 x18:3 x34:19 x50:35 x66:51

S69:0

G
K

34

G
K

50

PK
18

PK
34

PK
50

CLA-III

CLA-IV

CLA-III CLA-III CLA-III

Fig. 4. Two-level carry look-ahead structure of 3X for n=68.

Proc. of SPIE Vol. 6590 65901I-5

-

x4j+3

x4(j+1)+3

x4(j+2)+3

x4(j+3)+3

H4j+2

H4(j+1)+2

H4(j+2)+2

H4(j+3)+2

x4j+5 phj

phj+1

phj+2

phj+3

ghj+3 GH4(j+4)+2

PH4(j+4)+2

ghj+2

ghj+1

ghj

x4(j+1)+5

x4(j+2)+5

x4(j+3)+5

x4j+4

x4(j+1)+4

x4(j+2)+4

x4(j+3)+4

x4(j+1)+2

x4(j+2)+2

x4(j+3)+2

x4(j+4)+2

a)

x4j+3

x4(j+1)+3

x4(j+2)+3

x4(j+3)+3

K4j+2

K4(j+1)+2

K4(j+2)+2

K4(j+3)+2

x4j+5 pkj

pkj+1

pkj+2

pkj+3

gkj+3 GK4(j+4)+2

PK4(j+4)+2

gkj+2

gkj+1

gkj

x4(j+1)+5

x4(j+2)+5

x4(j+3)+5

x4j+4

x4(j+1)+4

x4(j+2)+4

x4(j+3)+4

x4(j+1)+2

x4(j+2)+2

x4(j+3)+2

x4(j+4)+2

b)

Fig.5. Carry look-ahead generator of a) H signals (CLA-I) and b) K signals (CLA-III).

Proc. of SPIE Vol. 6590 65901I-6

-

However, the critical path of the carry look-ahead scheme can be significantly reduced by introducing new generate and
propagate signals associated to Hi and Ki. Let ghj be the generate signal and phj is the propagate signal of Hi. These
signals are defined for a group of 4 inputs by

 4/)2n(j0for xxxgh 4j14j2j4j −<≤+= ++ (11)

 4/)2n(j1ifxxph 1-4j14jj −<≤= + (12)

Then the following equation of recurrence is established

 4/)2n(j1for HphghH 21)-4(jjj2j4 −<≤+= ++ (13)

with H2=gh0. The number of these signals is reduced to roughly n/4 in comparison with n in a conventional adder. For
example, for j=4 we get:

)))ghphgh(phgh(phgh(phghH 01122334418 ++++= (14)

In a similar way, let gkj be the generate signal and pkj the propagate signal of K4j+2. These signals are defined by

⎩
⎨
⎧

−<≤+
=

=
++ 4/)2n(j1)xx(x

0jifxx
gk

4j14j2j4

12
j (15)

 4/)2n(j1forxxpk 1-4j14jj −<≤+= + (16)

The following equation of recurrence is established

 4/)2n(j1for)Kpk(gkK 21)-4(jjj2j4 −<≤+= ++ (17)

with K2=gk0. For example, for j=4 we get:

))))gkpk(gkpk(gkpk(gkpk(gkK 01122334418 ++++= (18)

Note that the definition of ghj, phj, gkj and pkj only allow one H4j+2 and one K4j+2 signal to be obtained for every four
input signals, but it has the advantage of reducing the number of levels in a look-ahead scheme. Figure 4 shows the
structure of a 3X implementation for n=68 using two-level of 4-bit CLA modules. H4j+2 and K4j+2 are computing in
parallel through CLA-I/II and CLA-III/IV modules, respectively. CLA-I implements the following expressions:

))ghphgh(phgh(phghGH

phphphphPH

))Hphgh(phgh(phghH

)Hphgh(phghH

HphghH

j1j1j2j2j3j3j2)3j(4

j1j2j3j2)4j(4

24jjj1j1j2j2j2)3j(4

24jjj1j1j2)2j(4

24jjj2)1j(4

++++++++

+++++

+++++++

+++++

+++

+++=

=

+++=

++=

+=

 (19)

Figure 5.a shows the schema of a CLA-I module where complementary gates are used to reduce the propagation time. In
this circuit, 2)4j(4PH ++ and 2)4j(4GH ++ are the 4-bit group propagate and generate variables, and 2)3j(4H ++ ,

Proc. of SPIE Vol. 6590 65901I-7

-

2)2j(4H ++ and 2)1j(4H ++ are computed when the input signal 2j4H + is known. CLA-II generates H18, H34, H50 and H66
defined as:

))))HHP(GHPH(GHPH(GHPH(GHH

)))HHP(GHPH(GHPH(GHH

))HHP(GHPH(GHH

)HHP(GHH

2181834345050666666

218183434505050

21818343434

2181818

++++=

+++=

++=

+=

 (20)

In a similar way as for K signals, CLA-III constitutes the first level of computation defined by the following expression:

)))gkpk(gkpk(gkpk(gkGK

pkpkpkpkPK

)))Kpk(gkpk(gkpk(gkK

))Kpk(gkpk(gkK

)Kpk(gkK

j1j1j2j2j3j3j2)3j(4

j1j2j3j2)4j(4

24jjj1j1j2j2j2)3j(4

24jjj1j1j2)2j(4

24jjj2)1j(4

+++=

+++=

+++=

++=

+=

++++++++

+++++

+++++++

+++++

+++

 (21)

Figure 5.b shows the schema of CLA-III. The CLA-IV implements these switching functions:

))))KKPGK(PKGK(PKGK(PKGKK

)))KKPGK(PKGK(PKGKK

))KKPGK(PKGKK

)KKPGKK

2181834345050666666

218183434505050

21818343434

2181818

+++++=

+++=

++=

+=

 (22)

The final addition module computes the output S in 4-bit modules according to the following expressions

x

x

S4j+3

x

x

4j+3

4j+3

4j+3

1 0

S4j+4

x

x

4j+4 4j+5

4j+4
4j+4

S4j+5

x
0 1

S4(j+1)+2

4(j+1)+2

x

K4j+2

4j+2H

4j+4

4j+4

K

H

Fig. 6. 4-b adder module.

Proc. of SPIE Vol. 6590 65901I-8

H

JO

Jt

IA
flI

T
Ifl

flA

IA
Ii

rr

2

K

E!L JGI E!L idB!TJ1L?

-

)KxHx(xS

)KH(xS

)KxHx(xS

)KH(xS

4j45j44j45j42)1j(42)1j(4

4j44j45j45j4

2j43j42j43j44j44j4

2j42j43j43j4

++++++++

++++

++++++

++++

+⊕=

⊕=

+⊕=

⊕=

 (23)

for 4/)6n(j0 −<≤ . This equation is implemented in the circuit of Figure 6. S4j+3 and S4j+4 are computed from H4j+2 and

K4j+2, and S4j+5 and S4(j+1)+2 from H4j+4 and 4j4K + , which are generated in two OR-NAND gates. Note that the
complexity of this circuit is lower than a conventional 4-b adder. In the final addition, the first 3 bits of S are defined as

)xx(xS

xxS
xS

0122

011

00

⊕=

⊕=
=

 (24)

and the last 3 bits are

1n1n

2n1n2nn

2n2n1n1n

xS
KxHS

)KH(xS

−+

−−−

−−−−

=
+=

⊕=
 (25)

4. PARALLEL PREFIX ADDITION

The associative property of the well-known concatenation operator “○” introduced by Brent and Kung19,20 for prefix
adders allows the ripple configuration to be transformed into a parallel binary tree structure to make high-speed addition.
As a result, these adders have a structure, which is very adequate for VLSI. The similitude between the expressions for
conventional adders and the expressions of H4j+2 and K4j+2 described in Eq. (11)-(17) allow this operator to be applied to
these signals. The operator ○ associated to H4j+2 can be defined as

 (gh, ph)○(gh’, ph’)=(gh+ph gh’, ph ph’) (26)

Fig.7. Parallel prefix scheme for n=18.

Proc. of SPIE Vol. 6590 65901I-9

-

and the operator ● associated to K4j+2 as

 (gk, pk) ● (gk’, pk’)=(gk (pk+gk’), pk+pk’) (27)

Figure 7 shows the circuit to compute S=3X for n=18 based on a parallel prefix scheme. This circuit is made up of two
binary parallel structures to generate the 2j4H + and 2j4K + signals (j=0,1, 2, 3) and final addition to obtain S similar to
those described in eq. (23)-(25). Each binary structure has a first level to compute the ghj, phj, gkj and pkj signals and a
binary tree to get 2j4H + and 2j4K + ; complementary gates are used to reduce the propagation time.

5. SIMULATION AND COMPARISONS

For the purposes of comparison, 3X implementations based on conventional adders have been compared with the
proposed circuits. The designs have been made in a standard-cell methodology using a 0.35µm CMOS 3M technology.
The CADENCE Silicon Ensemble Place&Route tool has been used to include wire delays since these are important in
this technology. Table I lists the number of cells, area and maximum delay of the following 3X implementations for
different values of n: ripple carry adder (RCA) based on full-adder (FA) and half-adder (HA) cells, CLA adder and
Kogge-Stone20 parallel prefix adder (PPA) with log2n levels, and the proposed circuits in Figure 3 (RCAHK), Figure 4
(CLAHK) and Figure 7 (PPAHK).

The results in Table II highlight the advantages of the circuits proposed in terms of speed and area. The RCAHK reduces
by roughly 67% the delay with respect to the RCA without any additional area cost. This result is important for some
adders such as the carry-select adder and the conditional-sum adder, which are based on ripple carry adders. The
CLAHK reduces the area by 17% and the delay by 20% with respect to conventional CLA. The Kogge-Stone PPA is one
of the fastest adders, which can be built with standard cells. The PPAHK improves its speed by 26% and its area by 46%.
As a result, Table II demonstrates that the expressions developed to implement 3X addition lead to circuits whose area
and speed are significantly improved in comparison with implementations based on classical adders.

 8-bit 16-bit 32-bit 64-bit
Delay 3.73 ns 7.82 ns 16.29 ns 33.9 ns
Cells 8 16 32 64 RCA
Area 2493 µm2 5405 µm2 11229 µm2 23131 µm2
Delay 1.37 ns 2.72 ns 5.34 ns 11.1 ns
Cells 28 60 124 256 RCAHK
Area 2439 µm2 5252 µm2 10738 µm2 21286 µm2
Delay 1.84 ns 2.49 ns 3.23 ns 4.07 ns
Cells 53 106 239 502 CLA
Area 3956 µm2 8244 µm2 18346 µm2 38384 µm2
Delay 1.14 ns 1.63 ns 2.49 ns 3.27 ns
Cells 31 81 189 411 CLAHK
Area 2857 µm2 6607 µm2 14815 µm2 31741 µm2
Delay 1.67 ns 2.26 ns 3.12 ns 3.84 ns
Cells 51 137 343 821 PFA
Area 4168 µm2 11011 µm2 26081 µm2 64610 µm2
Delay 1.14 ns 1.63 ns 2.20 ns 2.86 ns
Cells 31 81 194 450 PFAHK
Area 2857 µm2 6607 µm2 14961 µm2 35072 µm2

Table II. Comparisons for different implementations of 3X.

Proc. of SPIE Vol. 6590 65901I-10

-

CONCLUSIONS

The generation of the term 3X used in radix-8 encoding can be efficiently implemented using two signals, Hi and Ki ,
functionally equivalent to two carries. Hi and Ki are computed in parallel using architectures which are efficient in terms
of delay and area when compared with implementations based on conventional adders. Simulations made in circuits
implemented using a standard-cell have demonstrated that the expressions developed to implement 3X reduce the delay
of serial scheme by 67%, the carry look-ahead scheme by 20% and the parallel prefix scheme by 26%. Important
reductions in area are also achieved for both. Other schemes used for accelerating carry based on transistor structures
such as domino carry look-ahead, multi-level carry look-ahead and carry-skip circuits can be directly used to compute
the signals Hi and Ki. These circuits allow high-speed computation and they can even lead to a reduction in the latency of
the multiplier.

ACKNOWLEDMENTS

This research has been supported by funds of the Spanish Ministry of Science and Technology (TIC2006-12438).

REFERENCES

1. B. Parhami, ‘Computer arithmetic, algorithms and hardware’ (Oxford University Press (New York, Oxford, 2000).

2. M.D. Ercegovac, T. Lang, ‘Digital arithmetic’ (Morgan Kaufmann Publishers, 2004).

3. Avizienis, A., “Signed-digit Number representation for fast parallel Arithmetic,” IRE Trans. Electronic Computers,
10, 389-400 (1961)

4. O.L. MacSorley, “High-speed arithmetic in Binary computers”, Proc. of the IRE, (49) 1, 67-71 (Jan 1961)

5. B.J. Benschneider et al, “A pipelined 50MHz CMOS 64-bit floating-point arithmetic processor,” IEEE J. of Solid-
State Circuits, (24) 5, 1317-1323, (October 1989)

6. D.W. Dobberpuhl et al, “A 200-MHz 64-b Dual-Issue CMOS microprocessor,” IEEE J. of Solid-State Circuits, vol.
(27) 11, 1555-1567 (November 1992)

7. C.F. Webb et al, “A 400-MHz s/390 microprocessor,” IEEE J. of Solid-State Circuits, (32) 11, 1665-1675
(November 1997)

8. J. Clouser, M. Matson, R. Badeau, R. Dupcak, S. Samudrala, R. Allmon and N. FairBanks, “A 600-MHz superscalar
floating-point processor,” IEEE J. of Solid-State Circuits, (34) 7, 1026-1029 (July 1999)

9. R. Senthinathan, S. Fischer, H. Rangchi and H. Yazdanmehr, “A 650-MHz, IA-32 Microprocessor with Enhanced
data Streaming for Graphics and Video,” IEEE J. of Solid-State Circuits, (34) 11, 1454-1465 (November 1999)

10. A. Scherer, M. Golden, N. Juffa, S. Meier, S. Oberman, H. Partovi, F. Weber, “An out-of-order tree-way superscalar
multimedia floating point unit,” 1999 IEEE Int. Solid-State Circuits Conf., 94-95 (1999)

11. G. Even and P.M. Seidel, “Pipelined multiplicative division with IEEE rounding,” Proc. 21st Int. Conf. On
Computer Design, 240-245 (2003)

12. S. Haijun, S. Zhibiao, Z. Gang and Z. Ning, “The research on optimization techniques of 32-bit floating-point RISC
microprocessor,” Proc. 2005 IEEE Int.Workshop on VLSI Design and Video Techn., 63-66 (May 2005)

13. K. Muhammad, R. B. Staszewski and P.T. Basala, “Speed, power, area and latency tradeoffs in adaptive FIR
filtering for PRML read channel,” IEEE Trans. on VLSI Systems, (9) 1, 42-51 (Feb 2001)

14. E.M. Schwarz, B. Averill and L. Sigal, “A radix-8 CMOS S/390 multiplier,” Thirteenth Symp. On Compuer
Arithmetic, Asilomar, CA, 2-9 (July 1997)

Proc. of SPIE Vol. 6590 65901I-11

-

15. E.M. Schwarz, B. Sigal and T.J. McPherson, “CMOS floating-point unit for the S/390 parallel enterprise server G4,”
IBM J. Res. Develop., (41) 4/5, 475-488 (July/Sept. 1997)

16. B.S. Cherkauer and E.G. Friedman, “A hybrid radix-4/radix-8 low power signed multiplier architecture,” IEEE
Trans. On Circuits and Systems-II: Analog and Digital Signal Processing, (44) 8, 656-659 (August 1997)

17. M.J. Flynn and S.F. Oberman, Avanced Computer Arithmtic Design, John Wiley & Sons, Inc, 2001.

18. N. Besli and R.G. Deshmukh, “A 54x54-bit multiplier with a new redundant binary booth’s encoding,” Proc. of the
2002 IEEE Canadian Conference on Electrical&Computing Engineering, 597-602 (2002)

19. R.P. Brent and H.T. Kung, “A regular layout for parallel adders,” IEEE Transactions on Computers, (C-31) 3, 260-
264 (March 1982)

20. P.M. Kogge and H.S. Stone, “A parallel algorithm for the efficient solution of a general class of recurrence
equations,” IEEE Transactions on Computers, (C-22) 8, 783-791 (August 1973).

Proc. of SPIE Vol. 6590 65901I-12

	SPIE Proceedings
	MAIN MENU
	Conferences
	Search
	Close

