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ABSTRACT 
 
This paper describes the architecture of an 8x8 2-D 
DCT/IDCT processor with high throughput, reduced 
hardware, and a parallel-pipeline scheme. This 
architecture allows the processing elements and arithmetic 
units to work in parallel at half the frequency of the data 
input rate. A fully pipelined row-column decomposition 
method based on two 1-D DCTs and a transpose buffer 
based on D-type flip-flops are used. The processor has 
been implemented in a 0.35-µm CMOS process with a 
core area of 3mm2 and 11.7k gates. It meets the 
requirements of IEEE Std. 1180-1990. The data input rate 
frequency is 300MHz with a latency of 172 cycles for 2-D 
DCT and 178 cycles for 2-D IDCT. The proposed design 
is compact and suitable for HDTV applications. 
 
 

1. INTRODUCTION 
 
The Discrete Cosine Transform (DCT) is widely 
considered to provide the best performance for transform 
coding and image compression [1]. Thus, the DCT has 
been applied for most of recent picture international 
standards as JPEG, MPEG, H.261 and H.263, as well as in 
high-definition television (HDTV) systems. The 
computation complexity requirements in many real-time 
applications often lead to the use of efficient dedicated 
hardware (ASIC’s) operating at high speed with an 
acceptable cost in area [3]-[7]. 

This paper describes the architecture of an 8x8 2-D 
DCT/IDCT processor with a high input data rate and a 
cost-effective hardware. The 2D DCT/IDCT is calculated 
using the separability property, so that its architecture is 
made up of two 1-D processors and a transpose buffer as 
intermediate memory. The processor has been designed 
aiming to attain high throughput, reduced hardware, 
parallel and pipeline architecture, and a maximum 
efficiency in all arithmetic elements. This architecture 
allows the processing elements and arithmetic units to 
work in parallel at half the frequency of the data input rate, 
except for the normalisation of the transform which is 

carried out by a multiplier operating at maximum 
frequency. Moreover, it has been verified that the 
precision analysis of the proposed processor meets the 
demands of IEEE Std. 1180-1990 [2] used in video codecs 
ITU-T H.261 and ITU-T H.263, among others. The 
processor has been conceived using a standard cell design 
methodology and manufactured in a 0.35µm CMOS 
process. Fast computing speed as well as low hardware 
costs make the proposed design suitable for HDTV 
applications. 
 

2. TWO DIMENSIONAL 8X8 DCT/IDCT 
 
Let SR8 the 8-point DCT matrix with rows reordered 
according to the sequence (0,4,2,6,1,5,3,7):  
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This matrix can be decomposed in the following way: 
 R8R8R8 JPS =  (3) 
where, 
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These matrices are given by 
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where NI  is the dimension-N unit matrix, D4I  the matrix 
resulting from permuting the 4I  rows according to the 
ordering sequence (3,2,1,0), D2I  ordering according to 
(1,0), T1=C7/C1, T2=C6/C2 and T5=C3/C5. 

Since R8S , R8Q  and R8P  are orthogonal, after Eq. 
(3) and (5) we get: 
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as R4Q , O4DJ  and O4CJ  are also orthogonal. The 8x8 2-
D DCT can be expressed on the basis of the nuclei of the 

R8S  matrix transform as: 

 ( )tt
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where (●) represent the Hadamard product and 8K  is the 
normalization matrix defined as 



























=

1151511121214101

1555551525254505

1555551525254505

1151511121214101

1252521222224202

1252521222224202

1454541424244404

1050501020204000

CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC

4
1

8K
 (11) 

Similarly, the 8x8 IDCT is obtained as: 
 ( ) R8R8R8R8RR8 JXKJSXSx ⋅•⋅=⋅⋅= tt  (12) 
 

3. ARCHITECTURE OF t/ R8R8 JJ  PROCESSOR 
 
Figure 1 shows the architecture of the t/ R8R8 JJ  processor 
designed to implement the matrix decompositions defined 
in Eq. (5) and (9) respectively. It is made up of a double-
input R8Q  processor, and processors {QR4, t/ SE4SE4 JJ } 

and {JO4D,JO4C, t/ O4BO4B JJ } operating in parallel. The 
configuration of forward DCT or IDCT of the architecture 
is performed by multiplexers and the operation of 
processors t/ SE4SE4 JJ  and t/ O4BO4B JJ . 

One important characteristic is that the input data IE 
and IO are processed in parallel and thus the output data 
OE and OO are also generated in parallel. In this way, the 
operation frequency of the t/ R8R8 JJ  processor is halved 
from the input data sampling frequency (fs). 

Figure 2 shows the architecture of each of the basic 
processors specified in Figure 1 which are derived from 
(6)-(8). All of them operate with 4 input data in series and 
produce 4 output data also in series, these outputs being 
compatible with the next processor. They are synchronized 
by the internal clock Clk2 at fs/2. They are made up of 
shift registers (S-R), multiplexers (MUX), carry 
incrementer adders/substracters and hardwired multipliers. 
These processors have been designed aiming at an 
efficiency of 100% in the arithmetic elements in most 
cases. 

The carry incrementer adder scheme has been chosen 
because it has an asymptotic performance with O(n) area 
and O( n ) time, and provides a compromise between a 
ripple-carry adder and a carry look-ahead adder. The 
concept of hardwired multiplication and binary signed 
digit representation for fixed coefficients has been adopted 
to simplify the hardware complexity for realizing 
multiplication through a carry-saver adder scheme. The 
multiplication by fixed-coefficients is computed in three 
types of configurable multipliers which perform the 
following arithmetic operations: P=di{T1 or T5}+dj, 
P=di{1 or T2}+dj and P=diC4, where di and dj are input 
data. These multipliers are made up of a carry save adder 
tree based on 4:2 and 5:3 compressors and configured 
according to the type of coefficient, and a final carry 
incrementer adder with rounding correction. In order to 
shorten the critical path, one pipeline stage is inserted 
within the multipliers. 

 
4. 8x8 2-D DCT/IDCT 

 
The 2-D 8x8 DCT/IDCT architecture is implemented by 
the row-column decomposition technique according to 
Eqs. (10) and (12). Figure 3 shows the block diagram of 
the proposed architecture made up by two 1-D processors 
( t/ R8R8 JJ ), a transpose buffer (TB) for storing the 
intermediate data, one down-sampling (D-S) unit and 
another up-sampling (U-S) unit, and a multiplier for 
performing the normalization of the transform according 
to matrix K8 defined in (11). These processors operate at 
fs/2 and the normalization at fs. The normalization is 

Fig. 1. Architecture of t/ R8R8 JJ  processor. 
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performed by a single K8 multiplier operating at the output 
for the forward DCT and at the input for the IDCT.  

The 8x8 intermediate data generated by the first 1-D 
DCT processor has to be stored and transposed in the TB 
before the second 1-D DCT is performed. This TB allows 
simultaneous read and write operations between the two 
processors and performance the equivalent to a matrix 
transposition. To achieve this, the data are read out of the 
memory column-wise if the previous intermediate data 
were written into the memory row-wise, and vice versa. 
This TB is made up by D-type flip-flops and multiplexers. 
 
4.1. Pipeline scheme 
 
As the arithmetic circuits limit the speed of the processor, 
the DCT/IDCT processor uses pipelining to shorten the 
cycle time and perform real-time processing for 
applications with high pixel rates. The pipeline registers 
are inserted in the critical path to improve the operation 
speed with minimal overhead and to provide balanced 
paths. 

Figure 4 shows the data cycle timing for calculating 
the two 1-D DCT/IDCT and TB transposing operations for 
the different 8x8 blocks. The input data are fed in row-
wise order at 1 pixel/clock and the output data are 

produced in column-wise order. The total latency for 2-D 
DCT is 172 cycles and for 2-D IDCT is 178 cycles. This 
small difference in the number of cycles is forced by the 
necessary synchronization between the different basic 
processors shown in Fig. 2. 

 
4.2. Accuracy specifications 
 
The computation accuracy of the processor is affected by 
quantization error of coefficients and by finite internal 
wordlength. The IEEE-std. 1180-1990 has established 
some strident specification to evaluate the errors caused by 
the computing of the IDCT [2]. The fulfillment of the 
specifications ensures the compatibility between different 
implementations of the IDCT. This standard has been used 
to define the accuracy of the data-path and wordlength of 
the coefficients of the processor. The IDCT architecture 
must be exercised with 10,000 8x8 blocks of random 
numbers in the ranges [-5, 5], [-256, 255] and [-300, 300]. 
The simulations carried out with MATLAB lead to the 
following minimum architectural requirements: 20-b for 
data-path, 12-b for coefficients wordlength and 13-b for 
normalization coefficients of K8. Table I summarizes the 
simulation results with these wordlength specifications. 

   
 a) b) c) 

 Clk2

Clk2

D3D2D1D0d3d2d1d0 S-R

+

  
d) e) 

Fig. 2. Architecture of basic processors: a) R8Q , b) t/ SE4SE4 JJ , c) JO4D, d) QR4 and JO4C,  and e) t/ O4BO4B JJ . 
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5. IMPLEMENTATION AND COMPARISONS  
 
A prototype of an 8x8 2-D DCT processor has been 
designed using standard cells in a semi-custom 
methodology. It uses 9-b input data and 12-b output data 
for DCT and 12-b and 9-b for IDCT. The processor was 
implemented with a 0.35µm CMOS 3M/2P 3.3V 
technology. The processor has an area of 2.5x2.5≈6.25 
mm2 (the core is 3mm2). It contains a total of 11.7k gates, 
5.8k gates of which are flip-flops and 826 gates are full 
adder/half adder. The hardware costs in terms of number 
of gates for the different blocks are: QR8 processor needs 
549 gates, QR4 318, QR4, J04C 320, t/ O4BO4B JJ  600, 

t/ SE4SE4 JJ  372, JO4D 502, TB 2563, K8 multiplier 1528 
and others 2300. The maximum operating frequency of 
about 300 MHz has been established and the computing 
time of a block is close to 580ns. 

Table II lists features of the proposed processor and 
other DCT implementations selected from among those 
which fulfill the specifications of the standard [2]. The 
parallel-pipeline architecture and arithmetic units 
operating at half the frequency gives an input data rate of 
300MHz, far higher than that of the fastest processor listed 
in this table [3][7]. This speed does not imply any 
additional cost in terms of the number of gates since it 
offers an efficient hardware implementation. 

One advantage of the proposed architecture is that the 
K8 normalization can be incorporated into the decoding 
process in an adaptive transform coding system. 
Therefore, the quantization process at the receiver or at the 
transmitter can include this normalization. Then, the K8 
multiplier can be completely removed in the 2D DCT 
processor, reducing area by 13% and latency by 10%. 

6. CONCLUSIONS 
 
This paper describes the architecture of an 8x8 2-D 

DCT/IDCT processor with high throughput, reduced 
hardware, parallel and pipeline architectyre. This good 
performance in the computing speed as well as hardware 
cost, indicate that the proposed design is suitable for 
HDTV applications.  
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Reference [3] [4] [5] [6] [7] Ours 
Year 1996 1999 2002 2003 2004 2004 
Function DCT/IDCT IDCT DCT/IDCT IDCT DCT/IDCT DCT/IDCT 
Tech. CMOS 0.3 µm (FC) 0.6 µm (SC) 0.18 µm (SC) 0.6 µm (SC) 0.25 µm (SC) 0.35 µm (SC) 
Area (mm2) 4 12.3 (core)  21 (core) 1.5 (core) 3 (core) 
Gates 
Transistors 

 
120K Tr 

10k gates 
78k Tr 

28k gates 7.5 gates + 
RAM 

52k gates 11.7k gates 

Frecuency 
Latency 

150MHz@0.9 V 
112 cycles 

100MHz@3.3V
86 cycles 

33.6MHz@1.6V
227 cycles 

100MHz 150MHz 
64 cycles 

300MHz@3.3V 
178 cycles  

Table II. Comparison with dedicated hardware designs (FC denotes full-custom and SC semi-custom) 

MSE denotes overall mean square error, ME denotes overall mean error, 
PMSE denotes peak mean square error and PME denotes peak mean error 
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