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ABSTRACT 

Applications based on Fast Fourier Transform (FFT) such as signal and image processing require high computational 
power, plus the ability to choose the algorithm and architecture to implement it. This paper explains the realization of a 
Split Radix FFT (SRFFT) processor based on a pipeline architecture reported before by the same authors. This 
architecture has as basic building blocks a Complex Butterfly and a Delay Commutator. The main advantages of this 
architecture are: 

• To combine the higher parallelism of the 4r-FFTs and the possibility of processing sequences having length of any 
power of two. 

• The simultaneous operation of multipliers and adder-subtracters implicit in the SRFFT, which leads to faster 
operation at the same degree of pipeline. 

The implementation has been made on a Field Programmable Gate Array (FPGA) as a way of obtaining high 
performance at economical price and a short time of realization. The Delay Commutator has been designed to be 
customized for even and odd SRFFT computation levels. It can be used with segmented arithmetic of any level of 
pipeline in order to speed up the operating frequency. The processor has been simulated up to 350 MHz, with an 
EP2S15F672C3 Altera Stratix II as a target device, for a transform length of 256 complex points. 
 
Keywords: SRFFT, FPGA, Delay Commutator, pipeline architecture. 
 

1. INTRODUCTION 
 

When considering alternate FFT algorithm implementations the criteria to consider are: execution speed, programming 
effort, hardware design effort, system cost, flexibility and precision. Nevertheless, for real time signal processing the 
main concern is execution speed. 

With this objective special purpose architectures have been developed for FFT algorithms based on its respective 
computing structures. In the last three decades several FFT processor architectures have been proposed: single-memory 
architecture1, dual-memory architecture2, cached-memory architecture3, array architecture4, and pipelined architecture. 
The tailored FFT processor architectures for VLSI implementation are formed by computing elements connected in 
cascade or pipeline. The pipeline FFT architectures can be classified in two categories: Multi-path and Single-path. 

Several Multi-path realizations have been proposed: Radix 2 Multi-path Delay Commutator (R2MDC)5, Radix 4 Multi-
path Delay Commutator (R4MDC)6 y 7, Split radix Multi-path Delay Commutator  (SRMDC)8, Mixed radix Multi-path 
Delay Feedback (MRMDF)9.  

Single-path realizations are: Radix 2 Single-path Delay Feedback (R2SDF) 10, Radix 4 Single-path Delay Feedback 
(R4SDF)11, Radix 4 Single-path Delay Commutator (R4SDC)12 y 13, Radix 22 Single-path Delay Feedback (R22 SDF)14, 
Radix 24 Single-path Delay Feedback (R24 SDF)15, Split radix Single-path Delay Feedback (SRSDF)16. 

The Multi-path architecture can simultaneously process M parallel data inputs after being adequately re-ordered; 
providing M-times the processing capability of the Single-path architecture. Nevertheless, the Multi-path architecture has 
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limitations in the number of data-paths, in the FFT size, and in the radix of the FFT algorithm. Also the memory and 
complex multiplier requirements are higher than the ones of the Single-path architecture. 

For applications requiring high processing capacity the Multi-path architecture, results more adequate than the Single-
path architecture. Unfortunately, the classical R2MDC architecture does not provide a high processing capability unless 
its operation frequency is adequately increased5; the R4MDC architecture has the limitation of processing only 
sequences having lengths equal to an integer power of 4, and the SRMDC architecture has a higher hardware cost8. In 
adition it is difficult to implement algorithms with higher radix using the classical Multi-path architecture. In general, a 
higher processing capacity can be obtained by increasing the number of channels of the Multi-path architecture, but at 
the expense of a significant higher cost. 

Programmable logic has progressed from being used as glue logic to today’s FPGAs, where complete systems designs 
can be implemented on a single device. The number of gates and features has increased dramatically to compete with 
capabilities that have traditionally only been offered through ASIC devices. Compared with traditional ASIC design 
flow, design based on FPGA has the advantages of flexibility and time to market objective.  

The objective of the present work is twofold: 1) to implement a pipeline Split Radix Multi-path Delay Commutator  
(SRMDC) processor for 256 data points on a FPGA, based upon the architecture presented by the same authors 8; and 2), 
get some insight about the adequacy of implementing a fully pipeline architecture within a today’s FPGA, regarding the 
level of FPGA resource exploitation as well as the resulting computing capacity for the FFT. There have been some 
reports about the implementation of fixed-point FFT processors using FPGA: 19,20,21 and 22. 

This paper is organized as it follows: Section 2 is an introduction to the Split Radix Multi-path Delay Commutator 
(SRMDC) pipeline architecture, proposed in 8. Section 3 describes the structure for each of the architecture elements; the 
FPGA selection; the way it has been done the implementation of each element of the architecture within the FPGA; the 
data and coefficients word-length selection, based on the precision achieved by the transform and the available 
multipliers of the FPGA; and the results of simulations and comparisons with other FPGA implementations. In section 4 
the conclusions are drawn.  

 

2. PIPELINE ARCHITECTURE FOR THE SRFFT ALGORITHM 
 
The algorithm for the fast computation of the Discrete Fourier Transform (DFT) by split radix (SRFFT) developed by 
Duhamel and Hollmann 17,18, for data sequences having a length which is a integer power of 2 (N=2m), is based on the 
application of a radix-2 strategy for computing the even coefficients of the transform and one of radix-4 for computing 
the odd coefficients of the transform. 

Given a sequence xn of length N, integer power of two, the computation of the coefficients Xk using the SRFFT 
algorithm with decimation in frequency is done by observing that the even ones can be expressed by:  
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From the point of view of its hardware implementation, the regularity of the SRFFT algorithm can be improved by using 
the basic butterfly with permuted outputs 18 shown in figure 1. Figure 2 shows the SRFFT computation diagram for 
N=32, using the basic scheme of Figure 1. 

 
 

 
Figure 1. Split Radix butterfly with permuted outputs 

 

 

 
 

Figure 2. SRFFT  computation diagram for N=32. 
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Figure 3. SRFFT pipeline architecture for N=2m.
 

 

Based on the butterfly of Figure 1, in 8 it is described a classic proposal for the pipeline implementation of the SRFFT 
algorithm, as Figure 3 shows. Data have to arrive in four split groups of length N/4, which enter in parallel through the 
four input channels. The correct ordering of the data flows entering the computing elements (CE) is achieved by means 
of Delay Commutator elements (DC) for odd stage and for even stage. This architecture has the peculiarity of having six 
data channels internally, allowing to attain a high data throughput with moderate clock rates. 

As shown in Figure 3, the computational element has two complex multipliers to perform the products by Wk and W3k, 
and a radix 4 add-subtract butterfly. The coefficients Wk and W3k are stored in ROM and are sequentially selected 
independently for each stage by means of the counter. The computing elements have the peculiarity of the parallel 
operation between the radix 4 add/subtract butterflies and the multipliers.  

This architecture can be used with minimal changes to implement direct and inverse transforms for sequences having 
lengths that are integer power of 2. Those changes are the number of stages connected in series, the coefficients of the 
computing elements and the delay lengths and switching speeds of the Delay Commutator elements. 

This algorithm is attractive to be implemented with FPGA as it only has two building blocks (computing elements and 
Delay Commutator elements) and their connections are only between adjacent elements. The implementation of a 256 
data points SRFFT processor requires six computing elements, five Delay Commutator elements, an input stage (that 
includes an add-subtract butterfly of radix 4, as the one in each computing element) and an output stage (that includes 
two add-subtract butterflies of radix 2, operating in parallel).  

 
 

3. FPGA IMPLEMENTATION OF THE SRFFT PROCESSOR 
 

For the FPGA implementation of the SRFFT processor, the hardware needs for the pipeline architecture proposed in 8 
are: 2(log2N)-4 complex multipliers, 6(log2N)-8 complex adders-subtracters, and 1.5N-2 registers (complex words). The 
device to be selected should have enough memory and registers to allow the implementation of the Delay Commutators 
and the computing elements and, above all, enough multipliers to attain high speed in the real bottleneck of the 
architecture: multiplications. The device to be selected within the Altera Stratix II family should have the adequate 
balance between memory, logic elements and multipliers. The device EP2S15 (the one with the lowest hardware 
resources within the family) was the most adequate to our needs; with this device, a 256 complex data points SRFFT 
processor, having a fixed word-length of 16-bit for data and coefficients, could be implemented using the 100% of the 
available multipliers, 53% of the available logic elements and only 4% of the available memory. Nevertheless, with this 
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device a 512 complex data points SRFFT processor can be implemented at the expense of a significant speed reduction, 
as the two additional complex multipliers needed have to be implemented using logic elements. The unbalance between 
memory, logic elements and multipliers for the needs of our implementation is even higher for the more capable devices 
within the Stratix II family, rendering them unsuitable for our purposes.  

 

3.1 Input and output stage structures 
 
The input stage internal structure 8 is shown in Figure 4.a); it has a radix 4 add-subtract butterfly to achieve the first 
computing level and a 2:4 Delay Commutator. The input stage Delay Commutator has been described in Verilog to be 
customized to any desired transform length N and data word-length. The add-subtract radix 4 butterfly has been 
implemented with megafunctions (Altera name). In that figure, “∆” is the basic stage delay and f=1/(2•∆•Tclock) the 
switch commutation frequency, with Tclock being the sampling period. 

The output stage 8, shown in Figure 4.b), has a 2:2 Delay Commutator and two radix 2 add-subtract butterflies in parallel 
to achieve the last computing level. Here as well, the Delay Commutator has been described in Verilog, and the add-
subtract radix 2 butterflies have been implemented with megafunctions. As the radix 2 butterflies introduce a 3 clock 
cycle latency in order to increase its operational speed, an equivalent 3 clock cycle delay has been introduced to the two 
lines that go across the output stage without processing.  

 

3.2 The structure of the Delay Commutator elements 
 

The structure of the Delay Commutator elements 8 is shown in Figure 5. The Figure 5.a) shows the structure of the even 
stages, having two Commutator switches 1 : 2 (B), two 1 : 4 (A and C), an input block with three shift registers (two 
having length ∆ and one with length 2•∆), and an output block with four shift registers (two having length ∆ and two 
with length 2•∆). The structure of the odd stages is similar to the even ones except that the input block has two shift 
registers (one having length ∆ and one with length 3•∆) placed as the Figure 5.b) shows. The register length ∆ depends 
on the stage índex “i” (0<i< log2N), where ∆=N/2(i+2) is the stage basic delay.  
 

 
 a) b) 
 

Figure 4. Input and output stage structures: a) Input stage,  b) Output stage 
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 a) b) 
 

Figure 5. Structure of the Delay Commutator: a) Even stage Delay Commutator, b) Odd stage input shift registers block. 

 

 

 The Commutator switches commute, increasing sequentially and beginning at different initial positions: a) even stages: 
A → 0, B → 1, C → 2; b) odd stages: A → 3, B → 0, C → 1. The commutation frequency is f=1/(2•∆•Tclock), where ∆ is 
the basic stage delay and Tclock the sampling period. This Delay Commutator element has been also described in Verilog 
for even and odd stages and it can be adapted to any stage of the architecture and data word-length as well. 

 

3.3 The structure of the computing elements 
 
As data goes through the cascaded computing elements of the processor the add/subtract and multiply operations would 
imply to successively increase the word-length in order not to lose any precision and this would led to increase the size 
of the circuits implementing the arithmetic operations. To solve this issue it has been applied a ½ scaling for each stage, 
except for the output, where it is not needed as it has radix 2 add-subtract units. Rounding has been also applied in order 
to reduce the scaling errors.  

Because of the structure of the permuted output split radix butterfly of Figure 1, it can be inferred that to avoid output 
overflow the input dynamic range has to be limited within the values +0.5 and -0.5 and to perform a ½ scaling on the 
first level of adder’s output so that the maximum growing factor is kept at 1. To implement the add-subtract complex 
radix 4 butterfly the structure shown in Figure 6 has been developed. This structure has 16-bit adder-subtracters with a 
two clock cycles latency in the first level and one clock cycle in the second level in order to increase its operation speed. 
With the same objective, the scale and rounding operations after the first add/subtract level include a two clock cycle or 
one clock cycle latency, depending on the data trajectory, so that all data trajectories have in total the same latency of six 
clock cycles. 
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Figure 6. Complex radix 4 add-subtract butterfly 

 
 
The structure of the complex multiplier is shown in Figure 7, it has a first level with four real 16-bit multipliers with 
implicit rounding, a second level with two 16-bit adder-subtracters with implicit rounding as well, and a third level with 
½ scaling and rounding. The scaling is needed to balance the scaling performed by the radix 4 butterflies (in parallel with 
the complex multipliers) so that all data trajectories undergo the same scaling in each computing stage of the 
architecture. As figure 7 shows there are registers at the input and output of the multipliers and also at the outputs of the 
adder-subtracters, the rounding unit itself has a latency of one clock cycle and there are two registers before and after the 
rounding unit. Consequently, the total latency within the complex multiplier is six clock cycles, which equals the latency 
across the radix 4 butterflies (in parallel with the complex multipliers). 

DSP blocks (Altera name) have been used to implement the complex multipliers. DSP blocks can implement up to either 
eight full-precision 9 x 9-bit multipliers, four full-precision 18 x 18-bit multipliers, or one full-precision 36 x 36-bit 
multiplier with add or subtract features. DSP block multipliers can optionally feed an adder-subtracter or accumulator in 
the block depending on the configuration. This makes routing to logic array blocks (LABs) easier, saves LAB routing 
resources, and increases performance, because all connections and blocks are in the DSP block. The DSP blocks have 
hardware support to perform optional rounding after each 18 x 18 multiplier for Q1.15 input formats.  Designs must use 
18 x 18 multipliers for the rounding because the Q1.15 input format requires 16-bit input widths. When performing 
multiplication, even though the Q1.15 input format only uses 16 of the 18 multiplier inputs, the entire 18-bit input bus is 
transmitted to the multiplier. This is like a 1.17 input, where the two least significant bits (LSBs) are always 0. 

Taking into account those characteristics of the DSP blocks, the word-length chosen for data points and coefficients has 
been 16-bit, doing so the rounding and speed offered by the DSP blocks has been fully exploited, this make imperative 
the use of Q1.15 format for data and coefficients. To implement the complex multiplier a megafunction was built having 
two 16-bit multipliers (operating internally with 18-bit) with rounding, an adder-subtracter with rounding and the 
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registers at the input and output of each multiplier and at the output of the adder-subtracter. This megafunction takes up 
four DSP block 9-bit elements and it is indicated by the surrounding square boxes in Figure 7. 

As each computing element has a 6 clock cycle latency, they increase the latency for the 256 data points pipeline 
architecture (63 clock cycles for ideal –no latency- computing elements) in 36 clock cycles (6 cycles x 6 computing 
elements), the add-subtract radix 4 butterfly at the input stage add 6 clock cycles and 3 clock cycles are added by the 
add-subtract radix 2 butterfly at the output stage. Consequently the total latency for the 256 data points pipeline 
architecture is of 108 clock cycles.  

 

3.4 Precision 
 
The processor implemented according to the described architecture should operate correctly for a wide range of input 
signal magnitudes. In order to verify its numerical precision, the results it provided were compared with the results 
obtained computing the FFT with floating point arithmetic (very high precision). For that purpose, it was used a random 
noise input signal with integer format in the interval [-0.5, +0.5], having a fixed word-length of 16-bit for data and word-
lengths of 16, 12 y 10-bit for the coefficients. 

The figure 8 shows that the FFT computed with coefficients having 16-bit word-length has a similar precision to the one  
with 12-bit coefficients for all scaling factors and slightly better than the 10-bit one if the scaling factor is 1/8 or less. For 
all cases the signal-to-noise-ratio (SNR) decreases for decreasing values of input data, this is because the quantization 
error of the multiply-accumulate operations (MAC) is relatively constant when the input signal magnitude decreases.  

 

 

 
 

Figure 7. Complex multiplier. 
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As precision is quite similar for coefficients having word-lengths of 16-bit or 12-bit, we could have used multipliers of 
16 x 12-bit; but this would have render useless the built-in rounding unit in multipliers and adder-subtracters of the DSP 
blocks, as it only works when using for data and coefficients the Q1.15 format. Additionally it has been simulated the 
operation of the SRFFT architecture for 1024 data points from a random noise signal having fixed 16-bit word-length for 
both data and coefficients and obtaining a SNR 6dB lower than the SNR obtained for 256 data points (see figure 8). With 
word-lengths shorter than 16-bit the SNR for 1024 data points FFT would not yield acceptable results. From the results 
obtained with simulations the conclusion drawn is that the minimum requirements for the FPGA implementation of the 
256 data points SRFFT are: 16-bit for the data-path and 16-bit for the coefficients word-length. 

 
 
3.5 Simulation and comparison 
 

For the processor implementation the compiler has allocated the following resources: 5 / 780 (4%) RAM blocks of 4K-
bit, to implement the Delay Commutators shift registers and the coefficient ROM (the RAM block can emulate a ROM 
function using a dual-port RAM block); 6702 / 12480 (53%) ALUTs , to implement the add-subtract butterflies, the 
registers associated  to the butterflies and some other registers used in the processor (6498); 96 / 96 (100%) DSP block 9-
bit elements to implement the 48 16 x 16-bit multipliers of processor. As there are four complex input data channels (16-
bit real and 16-bit imag), six complex output data channels (transform coefficients) and two single line inputs (reset & 
clk); the number of pins used for the processor are: (4x32)+(6x32)+2=322 pins from a total of 367 (87 % ). The results of 
the timing analysis using the simulator Quartus II Version 5.0 Web Edition, indicate a maximum operating frequency of 
350 MHz, this provides a processing power of a 256 complex data points transform in 123 ns. 

Table 1 shows some of the characteristics and the results of the simulation of our SRFFT processor and those of some 
other fixed point FFT processor previously reported: a single dual-port memory radix 4 processor 20, a dual memory 
radix 2/4 processor with serial input/output 21, and a pipeline radix 2 processor with serial input/output 22. The SRFFT 
processor presented here exhibits the highest processing power of all the FFT implemented with FPGA of Table 1. 

 
 
 

 
 

Figure 8. SNR vs. Scaling Factor for a 256-point FFT. 
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Processor [20] Altera FFT Core [21] Xilinx FFT Core [22] Our Design-Altera
Number of points 1024 256 256 256 
Datapath width (bit) 16 16 16 16 

Combinational ALUTs ------ 2144 2027 6702 
Logic registers ------ 3758 ------ 6498 
18 x 18 multipliers ------ 12 30 48 
Memory ------ 19 (9 K) 3 (36 K) 5 (4 K) 
Execution time(µs) 10.1 0.69 0.59 0.123 
Frequency (MHz) 127 370 432 350 
FPGA family Virtex II Pro 30 Stratix III Virtex 5 Stratix II 
Device XCV2P30 EP3SL70F484C2 5VSX35T EP2S15F672C3 

 
Table 1. Performance comparison with other fixed-point FFT processors. 

 
 

4. CONCLUSIONS 
 
This paper describes the design and FPGA implementation of a 256 complex data points pipeline SRFFT processor. The 
processor inputs are four parallel data channels (16-bit real & 16-imag, fixed-point within the range: –0.5, +0.5), and 
with a latency of 108 clock cycles, transform coefficients are output over six parallel data channels. The computing 
elements have an add-subtract butterfly operating in parallel with two multipliers, which have been implemented with 
the multipliers available within the FPGA in order to attain the highest possible operational speed; while the add-subtract 
butterflies have been implemented with the slower logic elements (LABs), but through segmentation (latency of 6 clock 
cycles) they have been adapted to operate at the same rate as the multipliers. The simulation of the processor predicts a 
capacity of performing a 256 data points SRFFT transform in 123 ns. for a (moderate) clock rate of 350 MHz.  
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