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ABSTRACT 

 
The Integer Cosine Transform (ICT) has been shown to 
be an alternative to the DCT for image processing. This 
paper presents a parallel-pipelined architecture of an 8x8 
ICT(10, 9, 6, 2, 3, 1) processor for image compression. 
The main characteristics of this architecture are: high 
throughput, low latency, reduced internal storage and  
100% efficiency in all computational elements. The 
processor has been designed in 0.35-µm CMOS 
technology with an operational frequency of 300MHz. 
 
Index Terms– integer cosine transform, multiplication 
free DCT, discrete cosine transform, image compression, 
parallel pipelined architectures, VLSI. 
 
 

1. INTRODUCTION 
 
Since the introduction of the Discrete Cosine Transform 
(DCT) several contributions have been made regarding 
fast algorithms and architectures for different applications. 
Of particular relevance are those describing 2D-DCT 
processors for image compression [1-5] and  
approximations to the DCT that are multiplication-free in 
order to reduce implementation complexity [6-7]. 

Although the DCT is the most widely used transform 
for image processing, other transforms have appeared 
over the last two decades which have both a smaller 
compression capacity and lower implementation costs [8-
12]. Among these, the Integer Cosine Transform ( ICT) 
[9-12] has been  shown to be a promising alternative to 
the DCT [9] due to its implementation simplicity [13-14], 
similar performance and compatibility with the DCT. The 
ICT(10,9,6,2,3,1) has the advantage of not needing 
multipliers, as its kernel is a matrix on integers [13]. 

This paper describes a parallel-pipelined architecture 
of an 8x8 ICT(10, 9, 6, 2, 3,1) processor aimed at image 
compression. Based on a numerical strength reduction 
ICT algorithm, the architecture has been tailored to attain 
high throughput, having a low latency data flow that 

minimizes internal storage needs and keeps all 
computational elements at 100% efficiency. From this 
architecture, an 8x8 ICT processor, which meets the 
numerical characteristic requirements of the IEEE std. 
1180-1990, has been designed using a 0.35-µm CMOS 
standard cell library. The circuit, with an area of 9.3 mm2, 
has an operational frequency of 300MHz. 
 

2. THE INTEGER COSINE TRANSFORM 
 
The Integer Cosine Transform (ICT) was derived from the 
DCT through the concept of dyadic symmetry. The order-
8 ICT kernel is 
  T = K J  (1) 
 
where K is the normalization diagonal matrix and J an 
orthogonal matrix defined as 
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g g g g g g g g
a b c d −d −c −b −a
e f −f −e −e −f f e
b −d −a −c c a d −b
g −g −g g g −g −g g
c −a d b −b −d a −c
f −e e −f −f e −e f
d −c b −a a −b c −d
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whose elements are all integers and satisfy 
 
  a b = a c + b d + c d  (3) 
  a ≥ b ≥ c ≥ d and e ≥ f  (4) 
 

There are many possible J matrices, and the 
corresponding ICTs are denoted as ICT(a, b, c, d, e, f); g 
is always 1.  
 

3. DECOMPOSITION OF THE 1-D ICT 
 
The 1-D ICT for a real input sequence x(n) is defined as 
 
   X = T x = K J x = K Y  (5) 
 
where X and x are dimension-8 column matrices. 
Reordering the input sequence and the transform 
coefficients according to the rules 
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′ x n( ) = x n( )
′ x 7 − n( ) = x n + 4( ), n ∈ 0, 3[ ]

 
 
 

  (6) 

 

 
  

′ X m( ) = X Br8 m[ ]( )
′ X m+ 4( )= X 2m + 1( ), m ∈ 0,3[ ]

 
 
 

  (7) 
 
where Br8[m] represents a bit-reverse operation of length 
8, then the 1-D ICT can be expressed as 
 
     ′ X = TR ′ x = K R J R ′ x = K R ′ Y  (8) 
 

The reordered integer ICT kernel is 
 

 
    
J R = J 4e 0

0 J 4o

 
  

 
  

I 4 I 4
I 4 -I4

 
  

 
   (9) 

 
I4 being the dimension-4 identity matrix, and 
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Applying the decomposition rules defined in 

equations (6) and (7) to the J4e matrix gives 
 

 
    
J 4e = J 2e 0

0 J 2o

 
  

 
  

I2 I2
I2 -I2

 
  

 
  R4  (12) 

 
where R4 is the reordering matrix of length 4, I2 is the 
dimension-2 identity matrix, and 
 

 
    
J 2e = g g

g -g
 
  

 
   (13) 

 
    
J 2o = e f

f -e
 
  

 
   (14) 

 

Figure 1 shows the signal flow graph obtained by 
applying the decomposition process to J(10,9,6,2,3,1). In 
this case, the J4o matrix can be readily decomposed as 
 

 

J 4o =
10 9 6 2

9 −2 −10 −6
6 −10 2 9
2 −6 9 −10
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(15) 

 
in order to use only adding and shifting operations. The 
resulting signal flow graph for the J4o transformation is 
shown in Figure 2. 
 

4. DECOMPOSITION OF THE 2-D ICT 
 
The 2-D ICT for a real input sequence x is defined as 
 
   X = T x Tt = K J x J t K = K Y K  (16) 
 
where X and x are 8x8 matrices. Reordering the input 
data and the transform coefficients applying the rules 
defined in (6) and (7) to both dimensions, the 2-D ICT 
can be expressed as 
 
   ′ X = TR ′ x TR

t = K R ′ Y KR  (17) 
where 

 
  

′ Y = J4e 0
0 J4o

 
  

 
  

I 4 I 4
I 4 -I4

 
  

 
  ′ x I4 I 4

I4 -I 4

 
  

 
  

J4e
t 0
0 J4o

 
  

 
  

(18) 
 

Figure 3 shows the signal flow graph obtained by 
applying the decomposition process to 2-D ICT(10, 9, 6, 
2, 3, 1). 
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Figure 1. J transform signal flow graph. 
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Figure 2. J4o signal flow graph. 



 

5. PARALLEL PIPELINED ARCHITECTURE 
WITH A THROUGHPUT RATE OF 1 

 
The architecture shown in Figure 4 is based on a 
computing scheme that first obtains the 2-D J transform 
and then performs the normalization. This 2-D J 
transform is implemented using two 1-D J(10, 9, 6, 2, 3, 
1) processors, sharing a register file for the storing of 
intermediate data. The input processor operates on each 
row of the input data block and stores the output 
coefficients on the register file. The second processor has 
as input the data stored on the register file -read in 
column (row) if they were written in row (column)- and 
produces the transform coefficients without 
normalization. A highly pipelined output multiplier 
performs the final normalization. 

The 1-D J processor architecture has been conceived 
to implement efficiently the computation diagram of 
Figure 1 and to reduce the operating frequency to fs/2, fs 
which is the frequency of the input data. It has an input 
processor which performs the addition/subtraction of the 
input data pairs and two processors in parallel that carry 
out the transformations labeled J4e (eq. 10) and J4o (eq. 
11). The output mixer circuit produces the un-normalized 
output coefficient sequence at a rate equal to the sampling 
frequency. 

The input processor has a shift register of length 11 to 
store the input data, two multiplexers and an arithmetic 
unit having an adder and a subtractor in parallel. The 
arithmetic unit produces the input data for the J4e and J4o 
processors. 

Figure 5 shows the J4e processor, which has been 
derived from eq. (12). This processor contains an input 
data register, three intermediate data registers, two 
multiplexers, an arithmetic unit having an adder and a 
subtractor in parallel, and an output data multiplexer to 
order the coefficients. The multiplication by 3, 
implemented by shifting/adding, is pipelined with the 
subtraction. 

The J4o processor architecture has been conceived 
from the decomposition defined in eq. 15, avoiding the 
need for multipliers. As can be seen in Figure 6, this 
processor has an input data register, four intermediate data 
registers, eight multiplexers, four adders and one 
subtractor operating in parallel. 

The computing efficiency of all processors is 100%. 
Based on this architecture, an 8x8 ICT processor, 

meeting the numerical characteristic requirements of the 
IEEE std. 1180-1990, has been designed in 0.35-µm 
CMOS AMS technology using standard cell methodology. 
This circuit occupies an area of 9.3 mm2 and has its 
operational frequency at 300MHz. The output multiplier 
has been implemented with fine grain pipeline architecture 
to make possible this high rate. 
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Figure 3. 8x8 ICT signal flow graph. 
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Figure 4. Architecture of 8x8 2-D ICT processor. 
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Figure 5. Architecture of J4e processor. 
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Figure 6. Architecture of J4o processor. 
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