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a b s t r a c t

Motion estimation (ME) is the most critical component of a video coding standard.

H.264/AVC adopts the variable block size motion estimation (VBSME) to obtain

excellent coding efficiency, but the high computational complexity makes design

difficult. This paper presents an effective processor chip for integer motion estimation

(IME) in H264/AVC based on the full-search block-matching algorithm (FSBMA). It uses

architecture with a configurable 2D systolic array to obtain a high data reuse of search

area. This systolic array supports a three-direction scan format in which only one row of

pixels is changed between the two adjacent subblocks, thus reducing the memory

accesses and saving clock cycles. A computing array of 64 PEs calculates the SAD of

basic 4�4 subblocks and a modified Lagrangian cost is used as matching criterion to

find the best 41 variable-size blocks by means of a tree pipeline parallel architecture.

Finally, a mode decision module uses serial data flow to find the best mode by

comparing the total minimum Lagrangian costs. The IME processor chip was designed

in UMC 0.18 mm technology resulting in a circuit with only 32.3 k gates and 6 RAMs

(total 59kBits on-chip memory). In typical working conditions (25 1C, 1.8 V), a clock

frequency of 300 MHz can be estimated with a processing capacity for HDTV

(1920�1088 @ 30 fps) and a search range of 32�32.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

H.264/AVC, developed by the Joint Video Team (JVT), is
nowadays drawing considerable attention because of its
network friendliness and the high video quality achieved
with both low and high bit rates [1]. Compared with
previous video standards, H.264/AVC can provide up to
50% coding efficiency for different bit rates and video
definitions [2]. Fig. 1 presents a simplified block diagram
of the H.264 encoder with the following main blocks:
motion estimation (ME), motion compensation (MC),
intra prediction, forward transform (FT), forward quanti-
zation (FQ), inverse quantization (IQ), inverse transform
ll rights reserved.
(IT), entropy coding and de-blocking filter. Initially, most
of the work done on H.264 was oriented toward its
software implementation [3]. However, in recent years
the contributions to the VLSI hardware implementation of
the H.264 have increased greatly in order to enable the
implementation of fast architectures for real-time video
applications [4–6].

ME based on a block-matching strategy is the most
important part of H.264/AVC in exploiting the temporal
redundancy between successive frames but it is also the
most time consuming part in the coding framework. It
requires large amounts of computation and accounts for
60–90% of encoding time. In H.264, a video frame is first split
using macroblocks (MB) of size 16�16 in a VBSME approach
[1]. This approach provides a better estimation of small and
irregular motion fields and allows a better adaptation of the
motion boundaries to object boundaries; all with the aim of
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Fig. 1. Diagram of the H.264 encoder.
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reducing the number of bits required for coding prediction
errors. In VBSME, each MB may be segmented into subblocks
of different sizes, as illustrated in Fig. 2. ME is carried out in 7
different modes: one 16�16 MB (Mode 1), two 16�8
subblocks (Mode 2), two 8�16 subblocks (Mode 3) and four
8�8 subblocks (Mode 4). In turn, each 8�8 subblock is also
split up into two 8�4 subblocks (Mode 5), two 4�8
subblocks (Mode 6) and four 4�4 subblocks (Mode 7). The
total number of possible partitions is 41. ME refines the best
candidate for each subblock’s hierarchy in two phases:
Integer Motion Estimation (IME) and Fractional Motion
Estimation (FME). IME finds the best integer motion vector
(MV) for all 41 variable-size blocks. FME refines those MVs in
quarter-pixel precision using a 6-tap filter and a MV-bit-rate
estimation. A pipeline architecture is the best solution to
implement IME and FME [4,6,7].

There are many proposed IME algorithms and architec-
tures based on the criteria of search, matching simplification,
bit-width reduction, memory access or area/power, among
others, where the system designer can choose the best trade-
off for a specific application [8,9]. FSBMA in the VBSME
guarantees the best results by performing exhaustive match-
ing of all candidate blocks. Most hardware video encoder
designs adopt FSBMA in IME due to its excellent quality and
data flow regularity, although it requires the maximum
computation complexity and memory bandwidth. Systolic
arrays [10,11] composed of locally connected processing
elements (PEs) has been considered to be the best option
to implement FSBMAs for many reasons: pipelined data flow
via the local connections does not require any control
overhead; reuse of data for each PE by propagating through
the array significantly reduces the memory bandwidth; and
high clock frequencies and high processing speeds are
achieved due to the small load capacities. 1D systolic arrays
are attractive in low-end products because of their low
hardware cost and desirable processing capability, but they
are high in cost in terms of latency and efficiency [12–14];
Ref. [15] presents a 2D architecture based on 1D to attain
low latency and high throughput. Indeed, many VLSI imple-
mentations propose 2D systolic arrays to be more suitable
for high-end real-time usage. References which adopt the
complete FSBMA include the 2D architecture with a simple
regular control in [16], the novel memory-access with
minimum off-chip memory bandwidth in [19], the high-
performance reconfigurable architecture to support a scan
format for a high data reuse within the search area in [20],
the bit serial architecture in [22] and the high throughput
design in [39]. Modifications of the FSBMA to reduce either
hardware or computing time, at the cost of introducing some
video quality loss, can be found in the soft algorithm to
simplify the predicted MV and the early termination of
motion search used in [21], the multi-resolution IME algo-
rithm presented in [23], the adaptive size in the search area
depending on the degree of motion activity in [24,25], the
modified algorithm to reduce hardware based on data
dependency of motion vector prediction, pixel truncation
and subsample proposed in [18], the IP with coarse and fine
searches in [26] and the inter-candidate 4-parallel data reuse
scheme with 16 2D PE-arrays in [27].

Finally, other fast ME algorithms, which are alterna-
tives to FSBMA, have been developed with the aim of
reducing the computational complexity and establishing a
trade-off between efficiency and image quality [28,29].
However, this reduction is often at the cost of losses in
terms of visual quality and/or irregularities in data flow.
This means that these algorithms lead to irregular
memory access and difficulty in data reuse as well as
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introducing losses in terms of peak signal-to-noise ratio
(PSNR). Often the irregular local search patterns can easily
lead to a minimum local (suboptimal result) as opposed to
a global minimum local by FSBMA. Examples of fast ME
algorithms based on decimation of checking points are
the three-step search [30], hexagon search [31] and
diamond search [32]. FSBMA architectures are typically
implemented with systolic mesh-connected arrays which
are not suitable for the fast ME algorithms because of
their unpredictable data flow and hardly parallelizable
sequential control. Although the fast ME implementations
achieve good efficiency over the FSBMA architectures,
they are too rigid for a broad range of applications [33].

This paper presents a high-performance VLSI processor
chip for IME based on the full-search VBSME algorithm for
H.264/AVC video coding standard. The configurable 2D
systolic array architecture supports a three-direction scan
format for a high data reuse of the search area, an array of
16�4 PEs compute the SAD of basic 4�4 subblocks and a
modified Lagragian cost is used as matching criterion to
find the best 41 variable-size blocks by means of tree
pipeline parallel architecture. The mode decision module
selects the best mode and best MVs by comparing the
total minimum Lagrangian costs. A prototype of the IME
processor chip was designed in UMC 0.18 mm technology
using a standard cell methodology. It achieves enough
processing capacity for HDTV (1920�1088 @ 30 fps) with
a search range of 32�32 in a high-performance circuit
operating at 300 MHz and occupying reduced area. The
remainder of this paper is organized as follows. Section 2
describes the proposed Lagrangian cost to be implemen-
ted in a parallel architecture. Section 3 presents a detailed
description of the IME architecture including its main
modules such as the processing unit, motion estimation,
computation of the Lagrangian cost and motion decision
unit. The results and comparisons of VLSI chip processor
implementation are listed in Section 4. Finally, the con-
clusions are stated in Section 5.

2. Proposed Lagrangian cost in IME

The reference software JM of H.264, which is available
on-line at [3], basically supports two methods to carry out
a mode decision in terms of the cost calculation criteria:
Motion Vector (MV) cost and Rate Distortion Optimiza-
tion (RDO) cost. RDO cost is mainly used for selection
prediction mode and MV cost in ME. RDO involves
forward integer transform, quantization, dequantization
or scaling, inverse integer transform and entropy coding.
As a result, most real-time hardware encoders do not
implement RDO because of its high computational com-
plexity [4–6]. However, in order to approach this problem,
alternative non-optimal coding methods have recently
been proposed [34–36].

ME is optimized using the Lagragian method as the
best approach for bit allocation. This method finds, for
each one of the 41 subblocks belonging to a MB, the MV
that minimizes the matching error within the search area
using the cost function (JM�N) defined as

JM�N ¼ SADM�NþlmotionRð9mv�p9Þ ¼ SADM�N
þlmotion Rð9mvx�px9þ9mvy�py9Þ ð1Þ

where M and NA{4,8,16} are the vertical and horizontal
dimensions of the specific subblock, mv¼(mvx, mvy) is the
MV, p¼(px, py) is the predicted MV, and lmotion is the
Lagrange multiplier. The SADM�N or Sum of Absolute
Distortion is given for mv by

SADM�N ¼
XM
i ¼ 1

XN

j ¼ 1

Yi,j�Xi�mvx ,j�mvy

��� ��� ð2Þ

where Y is the reference video signal and X is the current
video signal. In Eq. (1), lmotion is the Lagrangian multiplier
and R(9mv�p9) represents the bits used to encode the
motion information, both usually obtained from a look-up
table. Here, mv�p is the MV displacement (or the MV
prediction error) between the true MV, mv, found as a
result of the search algorithm and the predicted MV, p,
fixed by the MVs of some previously encoded neighboring
blocks of the current block. To calculate p, the MV of the
neighbor blocks must be available or sufficiently esti-
mated, as they not only depend on neighboring MBs, but
also on previous subblocks within a MB [1].

For the sake of clarity, Fig. 3a graphically shows an
example of the definition of the different parameters used
to compute the MV cost (JM�N) of an 8�8 subblock.
Fig. 3b illustrates the definition of p for an 8�8 subblock,
labeled p8�8. In this case, the p8�8 is computed from the
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median of left (mv0), top (mv1) and top-right (mv2); mv0

belongs to a previous 16�16 MB, and mv1 and mv2

belong to the 4�4 subblocks which have just been
processed in the same MB. The prediction p16�16 is
common to every subblock and represents an offset of
16�16 MB defined using the MB boundary’s MVs as is
shown in Fig. 3c. The local vector v represents the motion
of the subblock within the search region. The IME algo-
rithm in the H.264/AVC searches for the value of
mv¼vþp16�16 that minimizes Eq. (1), although the
vector mv�p8�8 will finally be coded.

The computation complexity of H.264/AVC for com-
puting Eq. (1) applied to each 41 subblocks belonging to a
MB leads to a hardware design where two main problems
must be taken into account. First, the data dependency of
mv1

p16×16 = median (mv0,mv1,mv2)

16×16

mv2mv0

Fig. 4. Proposed definition of p16�16 for a MB.
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the predicted MV in the VBSME and Lagrangian cost both
make parallel computation prohibitive. This means that
the p vectors of adjacent subblocks are not available in a
parallel scheme; in the JM software, each subblock is
computed sequentially according to a predefined order.
Second, in order to avoid huge numbers of memory
accesses, architectures with a high degree of parallelism
and reused data must be the aim for the implementation
of fast architectures for real-time video.

The IME is not specified in the H.264 standard. This
gives developers some flexibility in choosing an IME
design. In many low hardware architectures, SAD is used
as the only matching criterion to avoid computing the
Lagragian cost, but it leads to a non-optimum IME
scheme. Indeed, we propose a modification of Lagragian
cost with the aim of making available parallel computa-
tion with a slight penalty in the coding quality. This
modification consists in performing a simplification of
Eq. (1) giving a proposed Lagragian cost for a M�N

subblock defined as

JM�N ¼ SADM�Nþlmotion Rð9vx9þ9vy9Þ ð3Þ

Here, the predicted MVs of subblocks are not neces-
sary; this means p¼p16�16 for all cases meaning that
mv�p¼v. Only a common offset (p16�16) for a MB is
considered which is computed from the top-right, top and
top-left MVs of the upper boundary MBs as is shown in
Fig. 4, instead of the original definition described in Fig. 3c.
This modified MV prediction, similar to that proposed in
[18], enables data to be fetched from the nearest right MB

without finishing the processing of the current MB. As a
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Table 1
Performance comparison of motion estimation approaches.

QP BDPSNR (dB) BDBR (%)

15 20 25 30 35

Foreman
JM

PSNR 45.66 41.60 38.23 34.79 31.82 �0.139 3.04

BR 4333.74 2001.71 950.84 404.44 198.3

Proposed

PSNR 45.65 41.59 38.22 34.78 31.79

BR 4365.77 2025.73 972.39 423.58 212.77

Mobile
JM

PSNR 45.14 40.59 36.40 31.89 27.88 �0.040 0.60

BR 7045.54 4406.98 2614.87 1268.92 543.93

Proposed

PSNR 45.14 40.59 36.40 31.89 27.89

BR 7057.93 4420.34 2629.27 1278.88 553.51

Highway
JM

PSNR 45.53 41.68 39.66 37.24 34.9 �0.040 1.62

BR 6016.18 2162.6 671.91 198.17 87.29

Proposed

PSNR 45.53 41.67 39.66 37.24 34.9

BR 6099.57 2182.27 683.93 202.35 88.62

Tempete
JM

PSNR 45.40 41.09 37.11 32.87 29.21 �0.065 1.12

BR 7173.18 4207.25 2371.46 1082.71 461.52

Proposed

PSNR 45.40 41.08 37.11 32.87 29.21

BR 7202.34 4231.26 2395.78 1098.2 473.75

Average �0.07 1.6
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result, this overlapping in the processing of two adjacent
MB saves clock cycles as it is unnecessary to spend time in
fetching data to the external memories. Therefore, the
vector v used as a parameter in the computation of the
term R(9vx9þ9vy9) in Eq. (3) only depends on local move-
ment of a subblock in the search. This enables the
independent computation of this term in parallel for all
41 different subblocks of the VBSME. After finishing the
IME, the coded vector will be vþp16�16�p8�8 because
the prediction vectors p16�16 and p8�8 are now available
as all the subblocks have been processed.

The JM reference software’s C code [3] has been rewritten
to analyze the effect of the proposed Lagrangian cost based
on Eq. (3) in the video quality. These modifications have been
tested on several very popular video sequences in video
standardization (Foreman, Mobile, Highway, Tempete, avail-
able from http://trace.eas.asu.edu/yuv/index.html) with dif-
ferent texture characteristics. This analysis has been
performed with RDO disabled, baseline mode, group of
pictures (GOP) IPPP with an intra period of 20, search range
716 with a full-search IME scheme, Hadamard transform off
and rate control disabled. Fig. 5 shows the rate-distortion
curves of these sequences for three IME schemes: Original
(JM), only SAD and the proposed Lagrangian cost. SAD
obtains the worst results as both RDO and MV cost are
disabled. This means that the IME implementation based on
SAD when it is used as the only cost calculation criteria
provides non-optimum results. On the contrary, in the
proposed simplification of Lagragian cost, not only does the
parallel computation in an MB become feasible, but the
quality is also maintained with slight differences with respect
to JM. For the sake of clarify, Table 1 shows the numerical
results comparing the JM and the proposed method. The
average loss in video quality can be estimated to cause a
reduction of 0.01–0.02 dB for the PSNR and an increase of
roughly 1–2% for the BR. For a further numerical comparison,
these results are contrasted in terms of the Bjontegaard delta
PSNR (BDPSNR) and the Bjontegaard delta bit rate (BDBR)
[40], which give the average bit rate and PSNR metric over
several QP values of two RD curves. As a result, the degrada-
tion of its coding efficiency is very negligible: it is only
�0.07 dB and 1.6%, respectively. This means that the pro-
posed method is very efficient to reduce the computational
complexity without any meaningful degradation.

3. Hardware architecture of the IME

Most FSBMA algorithms exploit the large amounts of
overlapped data among the adjacent blocks. The proposed
architecture for inter-prediction uses a 2-D systolic array
to compute the SAD of 4�4 blocks. To optimize that
overlapped data, the search area adopts a scan format
scheme that supports three scan directions, unlike other
traditional 2-D systolic array with one scan direction.
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This reused data saves roughly 30% of the memory access
cycles achieving high throughput rate, low memory
bandwidth and high hardware utilization.

In the proposed search scheme, the candidate 16�16 MB
in the reference frame covers the search range [7p, 7q] in
the current frame as shown in Fig. 6a. This search range is
equivalent to a search area of (2pþ16)� (2qþ16) pixels,
which is processed according to the scan order scheme
shown in Fig. 6b. In a more detailed description of Fig. 6c,
the odd row is scanned from left to right and the following
even row from right to left. At the end of these rows, the
search direction is changed and a down operation of one row
is performed. As a result, this 2-D reconfigurable architecture
enables the greatest reuse of overlapping data by supporting
a three direction scan scheme in order to reduce the number
of memory accesses to a minimum.

Based on this search scheme, Fig. 7 shows the proposed
architecture for computing the IME of H.264. This architec-
ture makes a trade-off between the processing time and the
hardware utilization to achieve sufficient capacity to encode
the high-resolution real-time video stream for HDTV at a
low area cost. Two external memories contain data in an
8-bit format corresponding to the reference frame and the
current frame. Initially, external data are read through a
4-pixel input data port and stored in two local memories:
RAM1, which is made up of four double-port memories of
400�32 bits, stores the search area, and RAM2 with a size
of 64�32 bits stores the current MB. Since the 4�4 is the
smallest block in the MB partitions, the processing unit
computes 16 SADs in parallel of 4�4 subblocks belonging
to the MB by means of two 2D registers – REGS of 16�20
pixels and REGC 16�16 pixels – and 64 processing ele-
ments (PE). The search range is configurable to 8�8,
16�16, 32�32 and 64�64 pixels and fixes the number
of clock cycles of that process; other geometries in the
search area are also easily available. These SADs are input
into the motion estimation module to obtain the 41 MVs
and their corresponding Lagragian cost from those that
minimize Eq. (3). Here, the SADs of larger subblocks are
merged in a hierarchical pattern by adding up subblocks of
lower sizes. Finally, the mode decision module selects the
best mode and best MVs which are stored in RAM3 with a
size of 180�32 bits for use in the MV prediction to
compute the prediction vector p16�16 according to scheme
described in Section 2. These vectors are used in the
addressing module to generate the memory addressing to
fetch all data in the external memories for the next MB.

3.1. Processing unit

The processing unit is based on a 2D systolic array
combined with 64 PEs to compute in parallel 16 SADs of
4�4 subblocks by means of a data-reuse scheme in order to
achieve high throughput rate, low memory bandwidth and
efficient hardware utilization at high operating frequency.
The 2-D systolic array scheme is popular in many ME
implementations due to its regular and simple structure
because it can reuse data from regular flow to decrease
memory access by parallel processing and pipelining. In the
proposed processing unit, the systolic array is made up of
two registers: REGS of 16�20 pixels and REGC of 16�16
pixels. REGS stores the search area and REGC the current
MB. REGS contains a MB to be processed along with the one
stored in REGC; in REGS an extra 16�4 column is added to
adopt a three-scan format allowing both to save extra clock
cycles in loading data and to reduce memory accesses.

Functionally, REGS and REGC are divided into elemen-
tary 4�4 subblocks where each subblock inside shifts
data from up to down. REGS is a configurable register with
four modes: right-to-left shift, left-to-right shift, rotation
and down. These modes are easily implemented through
multiplexers at the input of each subblock. The right-to-
left shift (Fig. 8a) performs a shifting operation in the
horizontal direction by inputting data, which are fetched
from RAM1, from left to right. On the contrary, the right-
to-left shift (Fig. 8b) does the same operation but in the
opposite direction from left to right. Rotation (Fig. 8c)
means a cyclic shifting operation in the same subblock.
Finally, the down operation moves a horizontal line of
pixels up from the subblock below into the one above
when the MB moves into the row below. On the contrary,
REGC only performs rotation operations synchronized
with REGS using a ‘‘clock gating’’ strategy to reduce
hardware and save power.

In order to support the three-scan directions of the
search process in an area of (2pþ16)� (2qþ16) pixels,
the processing unit follows a data flow scheme shown in
Fig. 9. After initializing the registers which takes 16 clock
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cycles, the cyclic process starts with a right-to-left shift-
ing for 2qþ1–4 clock cycles. Once the down (1 clock
cycle) and the rotation (4 clock cycles) operation are
finished, the left-to-right shifting takes another 2qþ1–4
clock cycles repeating the whole process after another
down and rotation operation. The processing of a row
takes 2qþ2 clock cycles and the processing of the whole
search area takes (2qþ2)� (2pþ1)þ16 clock cycles.

For the sake of clarity, Fig. 10 shows the timing diagram
corresponding to the first 4�4 subblock as a simple
example of the different operations carried out in the
processing unit. Each subblock relies on 4 processing
elements (PE) connected to this subblock and to the nearest
subblock to the right. PE0 processes all the pixels of REGS
belonging to the first row, PE1 processes pixels of the
second row where 3 pixels correspond to the subblock
and 1 pixel to the right subblock, PE2 processes 2 pixels of
the third row and 2 pixels to the right subblock, and finally
PE3 processes 1 pixel of the fourth row and 3 pixels to the
right subblock. This use of the one right shifting position in
the connection of each PE enables the emulation of one
moving pixel in the current MB of the search area. In this
timing diagram, the process starts by initializing the REGS.
After 16 clock cycles and following the data flow specified in
Fig. 9, the four PEs sequentially compute the SAD each 4
clock cycles with 1 delayed clock cycle among them. Only
the down operation has an idle clock cycle where no SAD is
computed. In REGS, there are 4 PEs for each 16 left sub-
blocks – which total 64 PEs – generating in parallel 16 SADS
to be processed in the motion estimation unit.

Each PE, whose architecture is shown in Fig. 11, com-
putes the SAD of a 4�4 subblock by processing 4 input
pixels from the REGS and REGC. A PE is composed of an
absolute difference module, an adder tree and a final adder-
accumulator. The absolute difference module implements
the absolute difference operation [6,37] expressed as

X3

j ¼ 0

9Yi,j�Xi,j9¼
X3

j ¼ 0

Yi,jþXi,j if Yi,jrXi,j

Yi,jþXi,jþ1 if Yi,j4Xi,j

8<
: ð4Þ

where Yi,j represents a reference pixel stored in REGS and Xi,j

denotes a current pixel stored in REGC. To implement
Eq. (4), a first level of adders computes Yi,jþX i,j and the
most significant bits of the output {S3, S2, S1, S0} are used to
decide whether to invert the output through a bit-XOR or
not. However, 1 must be added when Yi,j4Xi,j, which is
equivalent to having the corresponding output Sj at 1. In
order to reduce hardware, the addition of {S3, S2, S1, S0} is
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Fig. 8. Operation modes of REGS: (a) right-to-left shift, (b) left-to-right shift, (c) rotation and (d) down.
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Fig. 9. Flow diagram of the processing unit.
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split up among the four adders of the circuit acting as a
carry input. The adder tree scheme calculates partial SADs
by summing all absolute differences. Here, a pipeline stage
has been inserted to reduce the critical path. The final adder
accumulator circuit obtains the final SAD for a subblock
after 4 clock cycles and the register is initialized to 0 to
compute the next SAD. Fig. 11 also shows all bus widths to
prevent overflow. The maximum value of SAD, which in the
worst case of all absolute differences is 255, is 255�
16¼4080, which can be represented by 12 bits in an
unsigned number.

3.2. Motion estimation

The motion estimation module selects the best 41 MVs
and their Lagragian cost from those 16 SADs generated in
the computing unit that minimize the matching error of
Eq. (3). In this equation, the Lagrangian cost only depends
on local MVs as the subblock’s prediction vectors are
considered to be null. This makes the implementation of
the motion estimation module easier because all SADs,
which are generated in the same clock cycle, have the
same associated MV as they are computed in parallel. As a
result, the Lagrangian cost term lmotionR(9vx9þ9vy9) is
common to every subblock and the corresponding SADs
for subblocks of other sizes can be computed in a
hierarchical tree from the 16 4�4 input SADs.

The pipeline architecture of the motion estimation mod-
ule is illustrated in Fig. 12a. The input data are introduced
each clock cycle and processed in a pipeline scheme from the
lowest subblock size 4�4 (Mode 7) to the biggest size
16�16 (Mode 1) according to a hierarchical tree of 5 levels
based on the partitions shown in Fig. 2. Each of these 41
different subblocks has registers to store the minimum cost
and MVs. In the first level, the circuit shown in Fig. 12b is
used. It is made up of 3 registers, an adder, a comparator and



Fig. 10. Timing diagram of the processing unit.

Fig. 11. Architecture of PE.
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two multiplexers. RegA stores the minimum cost and it is
initially set to a maximum value, RegB stores the MVs and
RegC stores the SAD to be used in the following level. In this
circuit, the addition SADiþlmotionR(9vx9þ9vy9) is compared
with the minimum cost stored in the RegA, then RegA and
RegB will be updated depending on the result of that
comparison. The rest of levels use the circuit in Fig. 12c.
Here, an additional adder computes the SAD of the current
subblock from the SAD’s small input subblocks before adding
lmotionR(9vx9þ9vy9). RegC is used to store the new SAD to be
passed on to the next level and to reduce the critical path of
the arithmetic to an addition and a comparator. As a result,
the minimum cost and MVs for all 41 cases are concurrently
generated in a regular pipeline workflow with a latency of 6
clock cycles.
3.3. Computing of lmotionR(9vx9þ9vy9)

In the term lmotionR(9vx9þ9vy9), lmotion is the Lagran-
gian multiplier imposed by a suitable rate constraint and
it is calculated from the following empirical formula

lmotion ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:85� 2ðQP�12Þ=3

p
ð5Þ

where QP is the quantization parameter. It takes an
integer value (from 0 to 51) and determines the level of
coarseness of the quantization process. The relationship
between QP and lmotion in Eq. (5) is extracted through
experiments similar to the one described in [38] for



Fig. 12. Motion estimation module: (a) architecture, (b) structure of Mode 7 subblocks and (c) structure of the other modes.
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Fig. 13. Computing of lmotionR(9vx9þ9vy9).

Table 2

Relationship between lmotion and QP.

QP lmotion QP lmotion QP lmotion QP lmotion

0 1 13 1 26 5 39 23

1 1 14 1 27 6 40 25

2 1 15 1 28 6 41 29

3 1 16 2 29 7 42 32

4 1 17 2 30 8 43 36

5 1 18 2 31 9 44 40

6 1 19 2 32 10 45 45

7 1 20 3 33 11 46 51

8 1 21 3 34 13 47 57

9 1 22 3 35 14 48 64

10 1 23 4 36 16 49 72

11 1 24 4 37 18 50 81

12 1 25 4 38 20 51 91
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Fig. 14. Motion decision module.

G.A. Ruiz, J.A. Michell / Signal Processing: Image Communication 26 (2011) 289–303 299
H.263. Table 2 shows the values of lmotion derived from
the QP parameter used in the JM to minimize the
Lagragian Cost.

R(9vx9þ9vy9) represents an estimation of the bits used
to encode the motion information and they are usually
obtained from a look-up table. In JM, this function R is
defined as

Rð9vx9þ9vy9Þ ¼mvbits½9vx9�þmvbits½9vy9� ð6Þ

where mvbits can be expressed as

mvbits½9vx9� ¼ 29vx9þ1

mvbits½9vy9� ¼ 29vy9þ1 ð7Þ

Indeed, lmotionR(9vx9þ9vy9) is equivalent to

lmotion Rð9vx9þ9vy9Þ ¼ 2lmotionð9vx9þ9vy9þ1Þ

¼ ðlmotionð9vx9þ9vy9þ1ÞÞoo1 ð8Þ

Fig. 13 shows the implementation of Eq. (8) where the
modulus is computed as follows:

9vx9¼
vx if vxZ0

vxþ1 if vxo0
and 9vy9¼

vy if vyZ0

vyþ1 if vyo0

((

ð9Þ

In this circuit, first vx and vy (or their complements
depending on the sign) are added. The term ‘‘þ1’’ in
Eqs. (8) and (9) are added up in a single adder. In this case,
the operation sign(vx)þsign(vy)þ1 gives the result 1, 2 or 3,
and this number is then added in a second adder to obtain
the final value of 9vx9þ9vy9þ1 which is stored in a register.
In parallel, lmotion is generated by a look-up table from the
QP parameter to implement the relationship shown in
Table 2. Finally, the multiplication and the subsequent
shifter operation compute the lmotionR(9vx9þ9vy9).

3.4. Motion decision

In the inter motion estimation of the H.264/AVC, a
16�16 MB is split up into subblock partitions of varying
size according to a two-level hierarchy. The first level
includes modes of 16�16, 16�8, 8�16, while in the
second level every four 8�8 subblocks include modes of
8�8, 8�4, 4�8, and 4�4 (see Fig. 2). The mode decision
module selects the best mode by comparing the total
minimum Lagrangian cost of all subblocks belonging to a
mode once all 41 subblocks have been processed in the
motion estimation module. Fig. 14 shows the proposed
architecture of this module. As it is active for a short-time
period to perform a specific operation, a serial architecture
was chosen as the best option to save the area. Although it
takes more clock cycles in comparison with a parallel
architecture, this is not significant in the whole latency of
the IME processing. In this circuit, the adder accumulator
computes the minimum cost of all subblocks belonging to
a mode, the registers RegB0 to RegB3 temporally store the
best mode and minimum cost, and the comparator updates
the new best mode and minimum cost in RegB3 by making
a comparison between the current best mode stored in
RegB3 and the candidate from RegA.



G.A. Ruiz, J.A. Michell / Signal Processing: Image Communication 26 (2011) 289–303300
The Lagrangian cost JM�N is serially input from the
lowest subblocks to the highest ones and, after 65 clock
cycles, the best mode for the MB is obtained. Initially,
RegA is set to null and RegB0 to RegB3 are set to a
maximum value. On computing a mode, the signal init
resets RegA to null and a new mode is processed. The
mode decision module consists of the following steps
according to the level of hierarchy:
�
 Second level. Processing of the modes 4�4, 4�8,
8�4 and 8�8 which is repeated for every four 8�8(i)
subblocks (i¼0, 1, 2 and 3) belonging to a MB. After-
wards RegB0 stores the best mode and minimum cost
for 8�8(0), RegB1 for 8�8(1), RegB2 for 8�8(2) and
RegB3 for 8�8(3). The scheduling of this level is:

Step 1: The four 4�4 subblocks belonging to an
8�8(i) are serially input and accumulated in
RegA. After 4 clock cycles, RegB3 is initialized to
the result J4�4(0)þ J4�4(1)þ J4�4(3)þ J4�4(4).
Step 2: Two 4�8 subblocks belonging to 8�8(i)
are serially input. After 2 clock cycles, the data in
the RegA, J4�8(0)þ J4�8(1), is compared with
that stored in RegB3 and the minimum value is
considered as the best mode and the minimum
cost is put into RegB3.
Step 3: Two 8�4 subblocks belonging to 8�8(i)
are serially input. After 2 clock cycles, the data in
RegA, J8�4(0)þ J8�4(1), is compared with that
stored in RegB3 and the minimum is considered
as the best mode and put into RegB3.
Step 4: The J8�8 is directly passed to RegA and
compared with that stored in the RegB3 to select
the final best mode of this 8�8(i) subblock.
On finishing Step 4, a shifter operation is performed
which passes the data from RegB3 to RegB2 to release
RegB3 for processing the next 8�8 subblock. This
level takes 52 clock cycles and, as a result, RegB0 to
RegB3 store the best mode and minimum cost for each
four 8�8 subblocks.

�
 First level. Processing of modes 8�8, 8�16, 16�8

and 16�16.
Step 5: Initially, the minimum costs in the
registers RegB0 to RegB3 are added and stored
in RegB3. It takes 4 clock cycles for computing
the operation RegB0þRegB1þRegB2þRegB3.
Step 6: Two 8�16 subblocks are added and the
minimum cost is compared with that in RegB3,
either updating or not this register. It takes 2
clock cycles.
Step 7: Two 16�8 subblocks are added and the
minimum cost is compared with that in RegB3,
and this register is updated or not. It takes 2
clock cycles.
Step 8: The minimum cost of the 16�16 sub-
block is compared with that in RegB3 to make
the decision on which is the best mode in the
MB. It takes 1 clock cycle.
Fig. 15. Layout of the IME processor chip.
As a result, the mode decision module generates the
best mode and its MVs which are stored in RAM3. These
MVs will be used in the MV prediction to generate the
prediction vector p16�16 corresponding to the next MB to
be processed.

4. ASIC implementation and comparisons

A prototype of the IME processor chip based on the
architecture in Fig. 7 has been designed using standard
cells in a semicustom methodology. Initially, the processor
was described in Verilog. The test bench was made by
simulating the design with NC-VHDL from Cadences and
comparing the results obtained with those provided by the
rewritten JM reference software to simulate the proposed
Lagragian cost for different input samples and values of QP.
This processor was synthesized with Synopsyss design
compiler in Faraday Technology Corporation UMC 0.18 mm.
The layout shown in Fig. 15 was generated using the
Cadence Encounter P&R tool resulting in a circuit with a
total 32.3 k gates and 6 RAMs (4 double port of 400�32, 1
single port of 64�32 and 1 single port of 180�32). The
total size is 4.5 mm2 (core 3.5 mm2) and it has 116 I/O Pads
(36 inputs, 46 outputs and 34 power supply pads). In
typical working conditions (1.8 V, 25 1C), the maximum
estimated operating frequency is about 300 MHz and the
power consumption is 115 mW (SRAM included).

In H.264, the inter-prediction module is one of the most
significant parts that affect overall computing performance.
In real-time HDTV applications (1920�1088@30 fps)
the work of processing all 41 subblocks belonging to
a 16�16 MB should take 1225 clock cycles at a clock
frequency of 300 MHz, which is available for most of
current technologies; this should take 2770 clock cycles
for 1280�720@30 fps and 7400 clock cycles for 720
�480@30 fps. The proposed IME processor enables the
search range to be selected from among the following
options 8�8, 16�16, 32�32 and 64�64 pixels, although
other geometries are available. Table 3 depicts the number
of clock cycles needed to process different search ranges.
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Table 3
Number of clock cycles for processing a MB with different search ranges.

Search range Clock cycles

64�64 4375

32�32 1207

16�16 391

8�8 165
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According to these results, this processor is able to process
one MB in a search range of up to 32�32 for HDTV video
and any range for lower standard resolutions. However, the
motion estimation module takes most of the clock cycles
defined as (2pþ2)� (2pþ1)þ16, where p is the dimension
of the search range 2p�2p (�p, p). However, to achieve
300 MHz as an operating frequency, the critical circuit paths
have been carefully analyzed and balanced at the synthesis
stage by means of pipeline levels without introducing an
excessive latency. The critical path has been limited to only
2 adders and this has been used as a reference during the
synthesis process. Moreover, a combination of a ‘‘clock
gating’’ strategy and a balanced clock tree distribution has
been fundamental to minimize the clock skew and to ensure
the clock specifications.

Table 4 shows the characteristics and the performance
of previously published ASIC processors for comparison
purposes only, which are based on the full-search algo-
rithm and implemented in a similar technology. The 1-D
architecture presented in [13] is able to process the
41 MV subblocks in the same number of clock cycles. In
[14], the block-matching is carried out by 16 cascading 1-
D systolic arrays with local RAM to attain low latency, low
power and high throughput. Another 1D architecture with
simple control logic, regular workflow, a reduced number
of PEs and one single-port SRAM for storing the search
area data is presented in [15]. A simple and regular 2D
datapath with 256 PEs is proposed in [16,17]. Ref. [18]
presents an analysis of various dataflows and their impact
in hardware architectures. As a result, a design based on a
modified algorithm is proposed for Lagragian mode deci-
sion making and hardware cost reduction by pixel trunca-
tion capable of processing 1280�720@30 fps. The IME
processor architecture in [19] is based on a 2-D systolic
processor array and minimizes the off-chip memory
bandwidth using local memories to achieve the highest
level of on-chip data reuse. In order to also obtain high
data reuse, the architecture presented in [20] makes a
three scan direction search through a reconfigurable 2D
computing array and 16 local SRAMs. The design pro-
posed in [21] uses a simplified prediction motion vector
combined with an early termination motion estimation to
reduce the computation complexity of the IME. This
design includes SAD and Lagrangian cost in a 2D systolic
array configuration resulting in a chip with a gate count of
191 k including memory modules. The bit-serial architec-
ture in [22] uses a pipeline design, a reduced number of
PEs and a pixel truncation technique to obtain a high
clock frequency and low area cost but with a latency of
26 624 clock cycles. In [27], different memory-efficient,
parallel 2-D architectures based on 16�16�16 PEs are
analyzed. In Table 4, the proposed design (b) is depicted,
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with which a very low latency is obtained with a high
area cost. Architecture with throughput of 72.52 M sam-
ples per second that can process 34 1080HD frames
per second is presented in [39]. The processor chip
proposed in this paper uses a configurable 2D systolic
array, modified Lagrangian MV cost and a motion decision
module to compute the best mode and best MVs of a MB
having a processing capacity for HDTV with a search
range of 32�32. This processor has a quite reduced area
of only 32 k gates and 59 kB on-chip RAM memory, less
than other proposed designs operating at a frequency of
300 MHz, which is achieved by introducing balanced
pipeline stages and carrying out a careful synthesis
process. This speed is the fastest in comparison with the
designs shown in Table 4, except for implementation [22]
where a bit-serial architecture is used.

5. Conclusions

In this paper, we propose a high-performance VLSI
processor chip for IME in H.264/AVC based on the full-
search block matching algorithm (FSBMA) with enough
processing capacity for 1080HD real-time video streaming
with a search range of 32�32. The proposed design
benefits greatly from a configurable 2D systolic array to
obtain a high data reuse of the search area. It supports a
three-direction scan format, a computing array of 64 PEs
and a modified Lagrangian cost as matching criterion to
find the best 41 variable-size blocks. It uses a tree pipeline
parallel architecture, and a serial data flow mode-decision
module to find the best mode and best MVs. This
processor was designed with only 32.3 k gates and
4.4kBytes of RAM in standard UMC 0.18 mm technology
at an operating frequency of 300 MHz. Compared with
previous works, it presents a high speed and low area cost
architecture suitable for H.264 encoders over a wide
range of video applications.
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Appendix A

List of acronyms used throughout the paper
BR or Bit-Rate
FSBMA or Full-Search Block Matching Algorithm
FME or Fractional Motion Estimation
FPS or Frames per Second
IME or Integer Motion Estimation
ME or Motion Estimation
MV or Motion Vector
MB or 16�16 Macroblock
PE or Processing Element
RDO or Rate-Distortion Optimization
PSNR or Peak-Signal-to-Noise-Ratio
VBSME or Variable Block-Size Motion Estimation
VLSI or Very Large Scale Integration
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