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Abstract: A switch-level fault detection and diag-
nosis environment for MOS digital circuits using
a compression data method based on a spectral
signature is described. The selected fault model
includes an MOS transistor permanently On and
Off, breaks in internal gate lines, and shorts
between two internal nodes of different logic gates,
or between the internal nodes within the same
complex gate. Circuit editing is performed in
modules containing simple switch-level descrip-
tions of the transistors. From the module struc-
ture a fault list is created, which will later be
processed to eliminate all equivalent faults (fault
collapsing). Simulation of the faults contained in
this list, and Walsh or Haar spectral analysis of
the outputs, allow a data file to be created, con-
taining a list of faults detected, a list of diagnosed
fault groups and the spectral signature for each of
these groups. The circuits are tested by comparing
the information contained in this file and the data
provided by a logic analysis system (LAS).

1 Introduction

The aim of testing an integrated circuit is to detect the
permanent physical faults introduced in the different
phases of production. The method most widely used to
show up physical faults, once the circuit has been manu-
factured, involves applying a series of stimuli (test
vectors) to its inputs and testing if the response is correct.
In this respect, fault simulators have proved to be an
important tool in evaluating test sequence efficiency, and
in providing information on the number of faults
detected; CAD VLSI systems, therefore, usually have this
kind of simulator built into their structure. Fault simula-
tors carry out three basic tasks: preprocessing, fault
simulation and output analysis. Preprocessing includes
circuit editing and the generation of a fault list, which is
compatible with the fault model selected (switch, logic
gate or functional level). This fault list is then processed
to remove all the equivalent faults (fault collapsing). In
fault simulation, the circuit is excited with the same test
sequence for each of the fault situations contained in the
list. Subsequent analysis of the circuit response allows the
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compilation of a dictionary of faults, classified into three
categories: detected, nondetected and unstable.

The accuracy of the results obtained with fault simula-
tors is directly related to the fault model selected [1]. The
‘stuck-at’ fault model at logic gate level has been the most
widely used in test vector generation and fault simula-
tion, as it is a simple model, technology-independent and
compatible with the main test vector generation algo-
rithms [2]. This model is inappropriate for MOS circuits
[8, 91, where the principal failure modes result from tran-
sistor degradation, short nodes (short) and open-lines
(break) [3, 4]; indeed, shorts and breaks at the metal-
lisation and diffusion level are the commonest fault types
in this technology [5]. In digital CMOS circuits, these
faults produce error-specific behaviour such as memory
and analogue effects not considered in the classic stuck-at
model [6]. Wadsack [7] broadened the classic stuck-at
model and proposed a new structure at logic gate level
that allowed the behaviour of some of these faults to be
modelled. With this new structure it is possible to use the
generation and simulation algorithms developed for the
stuck-at model. However, it has the drawback of
requiring a considerable increase in circuit logic, and its
application is limited to relatively small circuits.

At the transistor level, the switch model has emerged
as the best alternative to deal with digital MOS circuits
[1, 10, 11]. At this level of abstraction, MOS transistors
are modelled by means of switches controlled by gate
voltage, with the possibility of adding resistances and
capacitances to improve accuracy when necessary. This
enables most failure modes in MOS circuits to be dealt
with directly and fairly accurately, without an undue
increase in computation time. Dealing with shorts and
breaks is rather more complicated, as it is also necessary
to know the distribution of the connection lines and
nodes in the circuit. To deal with these faults, circuit
descriptions at layout level, which are not included in
most current fault simulators, must be used. Therefore,
fault simulation at the transistor level, starting from
circuit descriptions at the layout level, seem to be the
most appropriate for dealing with the commonest types
of faults in MOS circuits directly and efficiently [S]; this
generally requires a moderate increase in computation
time.

Testing techniques for digital circuits based on data
compression allow the circuit response to be analysed
more simply, and require less memory than the conven-
tional bit-by-bit comparison [12]. The spectral fault sig-
nature method uses one or several spectral coefficients of
the circuit response for this purpose. The Walsh spectrum
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has proved to be the most appropriate of these methods
[17]. Using this approach, Hsiao and Seth [13] analysed
the efficiency of the method when using random test
sequences and the highest value coefficient of the spec-
trum as the signature. Susskind [14] showed that the use
of two coefficients guarantees the detection of any stuck-
at faults in unate combinational circuits; for the same
kind of circuit, Miller and Muzio [15] proposed three
general signature methods using n+ 1 coefficients (n
being the number of input variables). Later, the same
authors developed a new strategy to obtain spectral fault
signatures for stuck-at fault detection in combinational
circuits with a single output [16]. Recently, Hurst [18]
studied the use of spectral techniques in a compaction
testing method for combinational circuits with multiple
outputs.

This paper describes a test environment for the detec-
tion and diagnosis of faults in digital NMOS and CMOS
circuits by means of spectral analysis techniques. First,
the selection of the transistor-level fault model is dis-
cussed, and a form of circuit description is introduced
which uses transistor-level modular structures based on
the matrix model [19]. Next, there is a description of the
complete test environment structure, which includes
pseudographic circuit editing, the creation of fault lists by
means of automatic fault generation and the elimination
of equivalent faults (fault collapsing), simple switch-level
simulation, spectral analysis of the circuit response and
testing of the circuits from the data provided by a logic
analysis system (LAS).

The matrix description of the circuits makes it easier
to develop the simulation algorithms, whose most
important features are low memory requirement and
high-speed processing. The process of spectral fault
evaluation allows efficient results to be obtained for fault
coverage and diagnosis, and determines the most appro-
priate spectral signature for the selected fault list [24];
this phase can be performed using the Rademacher—
Walsh set as the basis [20], or the normalised Haar set
(complete or reduced) [21]. In previous works, some of
the software tools have been used to generate pseudoran-
domly ordered test sequences which give acceptable
results in the detection and diagnosis of stuck-open faults
in CMOS combinational circuits [22]. They have also
been used to obtain more suitable test sequences for the
diagnosis of sequential circuits [23]; as an extension to
this latter treatment, an automatic test sequence gener-
ator has been incorporated which uses a functional
description of the sequential circuit.

2 Fault model and matrix model for NMOS celis

Testing techniques for integrated circuits (ICs) require
fault models that reflect with sufficient accuracy the
behaviour of the circuits in the presence of the com-
monest faults for a given technology. However, when the
selection of any specific model is made, a compromise has
to be reached between accuracy when modelling real fail-
ures, and simplicity in computation. The most frequent
faults in digital MOS circuits mainty affect the signal pro-
pagation times, noise margins and power consumption;
faults with this origin are called parametric, as they
simply degrade the IC parametric performance. Of the
total set of failures, only a small percentage modify the
logic behaviour; to this group, however, belong most of
the failures observable in MOS circuits. The interpreta-
tion of these failures at the circuit and logic levels allows
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five groups of faults to be defined: stuck-at line faults,
stuck-at-on (stuck-on) and stuck-at-open (stuck-open)
transistor faults, line break faults (breaks), bridge faults
(shorts), and diverse faults not included in these cate-
gories. The selection of a fault model to include the first
four types (the fifth is extremely complex) conditions the
characteristics of any fault simulator for two reasons,
namely, that stuck-on/open faults are dealt with more
simply using transistor-level circuit descriptions, and that
shorts and breaks require a knowledge of the circuit
topology.

When these points had been considered, a fault model
was chosen including the following:

(@) MOS permanently open (stuck-open); fault mod-
elled as an open circuit between its drain and source ter-
minals.

(b)) MOS permanently closed (stuck-on); fault mod-
elled as a short between the drain and source terminals.

(c) Breaks in the internal lines of a gate, including the
physical break of connection lines between two internal
nodes of a gate whether it is a metal line, a diffusion line
or a polysilicon line.

(d) Short between two internal nodes of different logic
gates or between the internal nodes within the same
complex gate.

The simple switch model representing the transistors is
appropriate for dealing with the faults included in this
model. This model deals readily with transistor faults,
short-nodes and open-lines, and simplifies the simulation
processes. Choosing the simple switch model means that
the matrix model can be used to represent digital MOS
circuits. In this model, each basic cell consists of a reticu-
lar distribution of transistors and horizontal connection
branches. Fig. 1 represents an NMOS cell.

°1,n—|

Cl2,n

km,1

am,‘l_!

Km+1, n=1 ' kma1.1

oni]

Fig. 1 The basic NMOS cell matrix model

Each transistor is assigned an identifier @; ;, with
i=1,...,mandj=1,..., n, which defines its logic state;
the pair i, j indicates the placement of the transistor in
the matrix structure. In this structure, the clements of the
parallel branches connect the terminals of continguous
transistors, the lowest horizontal branch is connected to
the ground, and the highest, which represents the output,
should be connected to Vdd by means of a load tran-
sistor. Each horizontal connection element has an identi-
fierk; ;,withi=1,...,m+landj=1,....n— 1, which
represents the presence or absence of an interconnection;
the pair i, j indicates the placement of each span of con-
nection (disconnection) in the reticular structure. With
this matrix model, the basic cell is represented by two
matrices, one of transistors, M, and the other of horizon-
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tal branches, K:

1
al.n: ay,2 g,
M= 3,p) G2,2 az,1
Ao, ry Cm, 2 Qm, 1
1
kl,n—l ' k1.2 ki
K=|ky, 1 ! ki, ky

|
km+1,n—1l km+1,2 km+1,1

where ¢; ;€ {0, 1} and k, ; € {0, 1}. With this notation,
a; ; = 1 represents the transistor when on (in a conduc-
tion state), and a; ; = 0 when off (in a cutoff state). Like-
wise, k;; = 1 indicates the presence of a horizontal branch
and k;; = 0 its absence.

The evaluation of a basic cell involves finding out
whether a conduction path exists between the lowest
horizontal branch, connected to the ground, and the
output node of the cell situated in the highest horizontal
branch. To do this, it is necessary to analyse each of the
a; ; and k; ; clements and to create a path map on which
it is possible to find out whether at least one path exists
in the cell. This procedure can be greatly simplified by
using a mathematical transformation which we shall term
KOR. This converts the original matrix M row by row
into another M* = {a} ;}, on which it is much easier to
determine the presence of possible conduction paths. The
KOR transformation is defined by the relationships:

b, =[a ;N ] ek Na, ok
bi,j+l =[ai,j/\ai,j+1].ki.j/\ai,j+1.ki.j
withj=1,2,...,n—1 (1)
at;=[b, ;Ab, ;i dek, jAb ;0 k;
al iy =[b;, jAb; ;1] 0k jAD; o 0k
withj=n—1n-2,...,1 (2)

where A represents the Boolean function OR and e the
function AND. This is applied downwards from i = m to
i=1. For each row of transistors in a cell, the KOR
transformation process begins with a search from bottom
to top, and from right to left in Fig. 1, to identify the
states of each pair of consecutive transistors and their
associated horizontal connection state (eqn. 1). Each
transistor is given an intermediate identifier b; ;, which
indicates the presence or absence of a connection path
between the current level and the higher one. Then the
same search is performed downwards (eqn. 2), from left to
right in Fig. 1. When this operation ends, each transistor
will have been given an identifier af ;, which can be used
to locate the different conduction paths between one level
and the next. With the matrix produced by the KOR
transformation, M*, the presence of connections between
the output and the ground can easily be determined; in
fact, if there is at least one column j in which af ; = 1 Vi is
verified, there will be at least one conduction path
between the cell output and the reference terminal. To
obtain a better understanding of the usefulness of this
transformation, Fig. 2 shows an example cell where the
transistors have been replaced by boxes in which their
logic state is shown: 1 (on) and 0 (off). With the matrix
notation used so far, the information contained in this
cell can be expressed in terms of M and K. A search for
conduction paths, like the one shown in the cell in the
figure, would be complicated for an analysis of these
matrices. However, the M* matrix produced by the KOR
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transformation shows such a path, as one of its columns
(the middle one) is unitarian.

The characteristics of the cell matrix model are as
follows:

(i) The information about the states of the transistors
and about the basic cell topology can be represented at
the bit level. The M and K matrices of the unitary ele-
ments can be stored using small integer arrays. Thus, this
kind of representation is much simpler than the system of
nodal description of the circuit used by other simulators.
As a result, the search process for conduction paths in the
cell can be implemented fairly simply.

! unitary column
N '
1

z
H*
rope=
—o

Fig. 2

Example of KOR transformation

(ii) The faults included in the selected model can be
dealt with. Stuck-open/on faults produce modifications of
the M matrix, whereas breaks in lines and shorts between
nodes introduce modifications of the M and K matrices.
Thus a stuck-open fault in the transistor a4, ; is equivalent
to considering «; ; = 0, and a stuck-on fault, a; ;= 1.
Similarly, k; ;=0 represents a horizontal break and
k;, ; = 1a horizontal short.

(i) The grouping of the information in numerical
arrays, and the fact that the search process is based on
binary logic operations, means that the processing of
these cells is carried out at high computational speed
with a low memory requirement.

3 General description of the test environment

The test environment is a set of aids to test tools for
digital MOS circuits, the block diagram for which is
shown in Fig. 3. This environment has been created with
the aim of making fault detection and diagnosis easier,
and a test strategy has been devised to be carried out in
two phases. In the first, simulation of the faults in the
circuit is performed and the result obtained is a data file
containing the classification of the faults from their spec-
tral signatures. In this phase, the tasks of graphic editing
of the circuit, fault-list generation and elimination of
equivalent faults (fault collapsing), fault simulation and
spectral analysis of the circuit response, are all per-
formed. This phase is applied repeatedly until the per-
centage of detected and diagnosed faults is within the
limits established. In the second phase, the circuits are
tested by evaluating the data provided by the logic
analysis system (LAS) and those previously obtained by
simulation; the LAS is used to apply the test sequence to
the circuit and to store its responses.

4 Graphic editing of the circuit

Graphic editing is carried out on circuits that are divided
modularly into cells, as shown in Fig. 4. Each cell is com-
posed of connection lines and a level module. The con-
nection lines may be internal, that is, lines connected to
the module’s own outputs, or external, that is, the input
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lines of the cell. A level module is represented graphically
in a similar way to that used in the matrix model, but
appropriately modified to include multiple outputs in its
structure. In this module, the topological description of
the circuit at the transistor level is defined from extern-
ally supplied data; in this phases, there are a number of
tools to make circuit editing easier. The level modules
may be of three types: NMOS, CMOS and pass logic.

graphic editing
ot the circuit

topology description of the
circuit at transistor level

automatic fault generation I

|

external data

list of faults

« transistors stuck-open/on
« shorts/breaks

s stuck-at lines

!

fault collapsing identification of topologically
elimination of equivalent faults| €quivalent faults (TEF)

l / unstable faults
fault simulation

— circuit simulation \ inconsistent faults
« global circuit simulation
¢ cell simulation
«level module simulation

(CMOS, NMOS, pass logic)

—fault insertion

l

Walsh & Haar spectral analysis

list of detected taults
list of nonequivalent faults
spectral signature

veritication of CUT

« programming of LAS
» evaluation of CUT

[ |

l'/ pattern generation \:
| i
| |
{ O |
| circuit :
! - - under test
i logic analysis response 1
!\ system (LAS) acquisition 1

’
N 7

Fig. 3  General structure of test environment

NMOS level modules are made up of basic cells of N
transistors whose lowest horizontal branches should be
connected to the reference terminal, and whose upper-
most branches define the output nodes. At each output
node there should be a load element, which is not con-
sidered in the level module since in the simulation
process it is assumed to be fault-free. Fig. 5a shows a
typical example of this type of module. Each pair of char-
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acters Nk represents an N transistor whose gate is con-
trolled by variable k; the state of this variable coincides
with that of an internal or external line of the cell. The
characters ! found in the upper and lower part of each
transistor represent the drain and source terminals,
respectively. Fig. Sa shows an NMOS level module with
two output nodes, the first defined by the drain of tran-
sistor 4 and the second defined by the parallel branch
joining the drains of transistors 1 and 2.

CMOS level modules are composed of two basic sub-
modules: a submodule of P transistors, or submodule-P,
situated in the upper part, and the other of N transistors,
or submodule-N, situated in the lower part. In
submodule-P, the highest horizontal branch should be
connected to the power supply and the output nodes are
defined in the lowest horizontal branch. In submodule-N,
the lowest horizontal branch should be connected to
ground and the output nodes are defined in the upper-
most horizontal branch. The outputs of this level module
are obtained by grouping pairs of output nodes of the
two submodules. Fig. 5b shows two basic CMOS gates
defined in the same level module. In submodule-P, one
transistor can be seen to have been replaced by ! to rep-
resent a short between its drain and source terminals;
with this procedure, vertical connection lines can be
defined, making the topological description of the circuit
easier. This level module has two outputs: the drain of
transistor N4 and an extension of drain P4 define the
first output node, and the other output node takes in the
horizontal branch common to N3 and N1 and the drain
of P3.

With the level modules described above, it is not pos-
sible to deal with circuits with pass transistors, but the
concepts established will be of great use when the
problem is approached. It is important to decide whether
its construction should be based on N and P submodules
or whether it is advisable to combine the two submodules
into one by using as the basic element the simple switch
for the pass transistor. Although the second choice means
losing part of the information about the real distribution
of the different transistors in the integrated circuit, the
use of submodules N and P does not represent an appre-
ciable advantage over the use of only one submodule; on
the other hand, this may mean a reduction in computa-
tion time. For these reasons, the level module chosen for
pass logic has the structure of a basic cell in which each
transistor is replaced by a pair of P and N transistors in
parallel. Fig. 5¢ shows the level module corresponding to
a multiplexor where pass logic has been used; the label
kTt indicates that the corresponding pass key is com-
posed of a P transistor controlled by variable k and an N
transistor controlled by variable ¢. Unlike the others, this
level module has input nodes defined in the lowest hori-
zontal branches, and output nodes defined in the upper-
most horizontal branches. To describe NMOS pass logic
with this structure, only the N transistors need be used.

5 Generation of reduced fault lists

The fault list contains the set of faults used in the circuit
simulation process. This list consists of transistor faults,
shorts between nodes and breaks in internal lines to the
level module, and may also contain cell input and output
line faults. This last type of fault, which can be considered
within the classic stuck-at model, is easily dealt with by
the simulator, giving greater flexibility to the application
of the tools.
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The fault list may be introduced externally or may be
created by an automatic process which, starting from the
cell and level module structure, generates the possible
faults in the circuit. The search of the circuit topology
makes it possible to identify all the selected faults that
must be included in the list. The faults short and break
are more difficult to deal with because of the great divers-
ity that may exist in the level module. To optimise their
generation, a process has been devised to eliminate topo-
logically equivalent faults, and thus reduce the number to
be dealt with. To illustrate this process we have chosen
the CMOS circuit shown in Fig. 6, whose layout is given
in Fig. 7. When, for example, the faults ‘node-short’ and
‘line-open’ between adjacent metal lines (as shown in Fig.
7) are considered, it is necessary to adapt the level

modules to the circuit layout, which is not a requirement,
for instance, with cell input and output line faults and
transistor faults. The level module shown in Fig. 8 rep-
resents a possible solution for dealing with the shorts and
breaks mentioned; this figure explicitly shows the shorts
and breaks in the horizontal and vertical connection lines
representing the fauits previously indicated in the layout.
Fault collapsing is a technique that means the number
of faults processed in the fault simulation can be reduced
using the identification of equivalent faults as a basis. In
our case, and given the fault model selected, the applica-
tion of this technique makes it necessary to define the
concept of topologically equivalent faults (TEF) in the
level module. Two faults, F1 and F2, are TEFs if the
logic functions associated with the level module under

input test patterns
L

primary lines primary lines
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level-module
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internal lines
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+
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Fig. 4  General structure of multilevel modules
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these two fault conditions are identical. The identification
of TEFs is carried out by analysing the level module
topology, using the following operations:

(i) TEF in transistors stuck-open. Let F1 and F2 be
two stuck-open faults; F1 and F2 are then TEFs if both
transistors are in series. In Fig. 6, the stuck-open faults
P2 and P1 are TEFs.

(ii) TEF in transistors stuck-on. Let F1 and F2 be two
stuck-on faults; F1 and F2 are then TEFs if both tran-
sistors are in parallel. In Fig. 6, the stuck-on faults N3
and N4 are TEFs.

(iii) TEF between a transistor stuck-open and a break-
line. Let F1 be a stuck-open fault and F2 be a break; F1
and F2 are TEFs if F2 leaves an open drain or the source
of the transistor affected by F1. Several examples appear

Vdd ||||||| LT GURGIN [ |||“||||||l|l||||||||| WitEnn U DO (O
P P2 2 pe Jl sz Besd
Pé

PS5
||| Bmml I |||.'B 1.nnmm i
QUT2 wpr: ity muul : !
% NN e ol oUT 1
1 ol il
G oot oo s oo Qo v s e s o
1 2 3 & 5
Fig. 7  Stick layout of Fig. 6
S Polysilicon
Ham Metal

x Contact
“EE. P-N diffusion
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in Fig. 8; stuck-open faults P2 and B3, stuck-open faults
P6 and B2, stuck-open faults N3 and B4. However, BS is
not a TEF with stuck-open faults N5 and N6, because
two transistor terminals intervene.

é B e bt e e e bt + %—Vdd

¥
! ! ! ! !
P1 P4 P51
1 ! I ' Y
+ + + + + + +
t ! ! ! !
a ! P2 P3 ! !
]
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£ + ) + +
H 1 ! ' ! t
NI N2 §86 N3  Né !
\ 1 & ! I !
L fmm e mm e — e m e o tL Gnd

Fig. 8  Level module for the previous stick layout

(iv) TEF between a transistor stuck-on and a short-
line. Let F1 be a stuck-on fault and F2 be a short; if F2
short-circuits the drain and source terminals of the tran-
sistor affected by F1, then F1 and F2 are TEFs. In Fig. 8,
stuck-on faults N2 and S6, stuck-on faults PS5 and S2,
and stuck-on faults N4 and §7 are TEFs.

TEF identification has the property of transitiveness;
that is, if F1 and F2 are TEFs and F2 and F3 are also
TEFs, then F1 and F3 are TEFs. Examples of various
fault types which are TEFs can be seen in Fig. 8. Thus P1
stuck-open, P2 stuck-open and B3 are TEFs; P4 stuck-
open, P3 stuck-open and Bl; PS5 stuck-open, P6 stuck-
open and B2; N1 stuck-on, N2 stuck-on and S6. In this
way, the fault collapsing effected on the original fault list
means a reduction of between 15% and 35% in the
number of faults that intervene in the simulation process.

6 Fault simulation

The description of the circuits in cells means that serial
fault simulation is the most appropriate method of fault
simulation. This choice was motivated mainly because
the modular fragmentation into cells, which may contain
several complex gates and a large number of transistors,
conditions the use of other fault-simulation methods. In
serial fault simultion, the fault-free circuit and the faulty
circuit are simulated separately with the same test
sequence. This method is simple, but the simulation of
one circuit at a time may slow up the process; neverthe-
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less, the simulation algorithms developed are fast enough
for it to be viable.

For simulation purposes, a cell consists of a level
module and its input lines. Input lines may in turn
consist of primary lines (circuit input lines), secondary
lines (lines connected to the outputs of other cells) and
internal lines (lines connected to the outputs of the cell
itself). The same output node of the cell may act on a
secondary line and/or an internal line and/or an output
of the circuit. The simulation process begins with the
classification of the cells in terms of the type of input
lines they have; since they are difficult to evaluate, cells
may be:

(i) Primary cells, which only have primary lines;

(i) Secondary cells, which have secondary lines and
may also have primary lines;

(iii) Mixed cells, which have internal lines and may
also have primary lines;

(iv) Complete cells, which have secondary and internal
lines and may also have primary lines.

One of the fundamental tasks of the simulator is to
extract information about the connections between cells,
the object of which is to optimise the exploration pro-
cesses of the circuit. To achieve this, each cell output is
assigned a data structure consisting of two lists of cells, 4
and B, created from the secondary lines of the circuit.
List B contains the cells connected to this output and list
A is made up of those B-list cells whose secondary lines
do not imply a feedback path to the cell being dealt with.
The simulation of a circuit is performed according to a
hierarchical scheme, shown in Fig. 9, which has three

mixed complete

<

global
simuiation

. level module
on simulation

sequential

cell
simulati
combinational ‘ pass logic

primary secondary

Fig. 9  Hierarchy of the circuit simulation process

operational levels: global simulation, cell simulation and
level module simulation. Relaxation algorithms are used
to simulate only those cells whose logic state has
changed, thereby reducing reducing computation time
considerably; these algorithms process the information
contained in lists 4 and B and optimisc the search
process of the circuit.

6.1 Global circuit simulation

In this process, the inclusion and order of evaluation of
the different cells in the circuit is controlled using the 4
and B interconnection lists; in this way, it is possible to
perform successive searches in all the cells until a stable
state is found. The first task is to identify the circuit, in
terms of the connections ascribed to each of the cells that
composite it, as a combinational or sequential circuit.
Thus a circuit is identified as combinational when the
entry lists for all cells are circuit input lines (primary
lines) or secondary lines connected to preceding cell
outputs; otherwise the circuit is identified as sequential.
To simulate combinational circuits it is not necessary to
create lists 4 and B, as their cells can only be primary or
secondary; the absence of feedback lines between cells,
therefore, means that the simulation process is converted
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into a simple simulation of all the cells in the circuit. The
simulation process for sequential circuits is more
complex, as it will usually be necessary to evaluate some
cells more than once.

For a fixed state in their input lines, the simulation of
sequential circuits is carried out in three different phases
or approaches. The aim of these approaches is to find a
stable state; this occurs when no output has changed its
state compared with that obtained in the previous
approach. This process is performed using the procedure
CircuitGlobalSimulation, given in List 1 below. In the first
approach, the state of all cells is set up according to the
new values at the circuit inputs; this operation is per-
formed by evaluating the cells, and those with feedback
lines will, therefore, not be set up correctly. The second
approach begins when the first has not found a stable
state. First, the cells that have changed the logic state of
their outputs during the previous approach are identified;
then, from the A lists of these cells, a new list 4* of ali the
selected cells is created, and each of these cells is evalu-
ated individually. When a stable situation is not reached
in the first two stages, a recursive procedure constituting
the third phase begins. The procedure followed is similar
to that described in the second phase. First, the output
nodes of the cells that have changed their logic state in
the previous approach are identified. Next, from the B
lists of these nodes, a new list B* is created, which
includes the cells to be evaluated. After each selected cell
has been evaluated individually, the nodes that have
undergone a change are identified, creating a new list
from the B lists of these nodes so that the selected cells
may be evaluated again. This process is repeated until
either a stable state is found or the number of iterations
exceeds a set value (the iteration parameter). If the
number of iterations is exceeded, the circuit will be identi-
fied as unstable and the simulation process will end.

List 1

procedure CircuitGlobalSimulation () {
/* FIRST APPROACH */
forall (cell j) {
CellSimulation (j); /* simulation of the cell j */

if (circuit state = STABLE) {
return; /* stable state of the circuit is found */

}

List2
procedure CellSimulation (J) {

/* SECOND APPROACH */
forall (cell j) {
if (Joutput € cell j) has changed) {
forall (cell i € list 4 of this output) {
to add cell i to the list 4*;
}
}
}

forall (cell i € list A4*) { /* simulation of list A* cells */
CellSimulation (i);

if (circuit state = STABLE) {
} return; /* stable state of the circuit is found */
/* THIRD APPROACH */
while (k < iteration) { /* iterative process */
forall (cell j) {
if (Qoutput € cell j) has changed) {
forall (cell i € list B of this output) {
to add cell i to the list B*;

}
}
3
forall (cell i € list B¥) { /* simulation of list B* cells */
CellSimulation (i);

if (circuit state = STABLE)
return; /* stable state of the circuit is found */
else
k=k+1;
}
/* output of the previous loop indicates unstable state */
UNSTABLE CIRCUIT. END OF SIMULATION;

}

6.2 Cell simulation

Cell simulation is an iterative process of simulations of
level modules whose object is to find a stable state; the
process is performed by the procedure CellSimulation,
summarised in List 2. A different evaluation method is
applied according to cell type: primary, secondary, mixed
or complete. Thus primary and secondary cells only
require simulation of the level module; mixed and com-
plete cells, however, require more complex treatment
owing to the existence of internal lines. The search for a
stable state in the cells belongs to the latter group is per-
formed using an iterative process, whose limit is fixed by
the number of internal lines of the cell; once this limit is
passed, it will be identified as unstable.

if (cell J € {Primary, Secondary}) {
switch (type of level module of cell J) {

case “NMOS”:

LevelModuleSimulation () for NMOS level module;

case “CMOS”:

LevelModuleSimulation () for CMOS level module;

case “pass logic”:

LevelModuleSimulation () for pass logic level module;

return;
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/* end of procedure */
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if (cell J € {mixed, complete}) {

while (k < internal lines of cell J) { /* iterative process */
switch (type of level module of the cell J) {

case “NMOS”:

LevelModuleSimulation () for NMOS level module;

case “CMOS™:

LevelModuleSimulation () for CMOS level module;

case “pass logic™:

LevelModuleSimulation () for pass logic level module;

if (circuit state = STABLE) {

return;

}
k=k+1;
}

/* end of procedure */

/* output of the previous loop indicates unstable state */
UNSTABLE CIRCUIT. END OF SIMULATION;

}

6.3 Level module simulation

Simulation of the level module constitutes the lowest
level in the circuit simulation hierarchy, and its aim is to
explore the cell topology. This process involves the
search for conduction paths through the level modules by
means of algorithms based on the KOR transformation.
In CMOS and pass transistor levels modules, conflicting
situations may arise at their outputs. In the former,
memory states occur when there are no conduction paths
in the two submodules, and conduction states occur
when conduction paths exist in both submodules at the
same time. In pass-transistor level modules, the conflict
arises when an output node is connected to two or more
input nodes with different logic states; such a situation
gives rise to logic indetermination (inconsistent fault) not
considered in the simulator.

A description will now be given of the simulation algo-
rithm for a NMOS level module. This algorithm will
later be extended so that CMOS and pass-transistor
modules can be dealt with, and the modifications needed
to solve the conflicting situations arising in each case will
be introduced.

6.3.1 Simulation of NMOS level modules

One or several complex NMOS gates can be dealt with
by means of the level module whose general plan is
shown in Fig. 10; this graphic representation is similar to
that used in the basic cell matrix model. The lowest hori-
zontal branch is connected to the reference terminal and,
in the uppermost horizontal branch, the output nodes,
each of which should be connected to a load element, are
defined. Two vector sets are defined in this structure: the
GL set, which represents the conduction states for tran-
sistors, and the LL set, which represents the horizontal
connection topology between transistors. The i element
of GL, GL[i], defines the state of the transistors in row i.
The j bit of GL[i], GL[i];; represents the logic state of
the transistor i, j; the pair i, j indicates its relative place-
ment within the matrix structure. GL[i]; = 1 indicates
that transistor i, j is in a conduction state (on), and
GL[i]; = 0 indicates a cutoff state (off). Horizontal con-
nections are dealt with in the same way. The i vector of
LL, LL[i], represents the state of the horizontal connec-
tion branches existing in row i. The j bit of i, LL[{];,
indicates the presence (LL[i];=1) or the absence
(LL[i]; = 0) of horizontal branches situated in position i,
Jj. Vertical connections are made using virtual transistors
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which are set permanently in a conduction state (on) or a
cutoff state (off). Thus the nonexistence of the transistor i,
j in the level module structure is equivalent to consider-
ing GL[i]; = 0 permanently; on the other hand, a tran-
sistor in a permanent conduction state (vertical
connection branch) implies considering GL{i]; =1 to
model a short-circuit between its drain and its source.

Lo,r-1 LL(O)
GO.r oLO
ol LL()
Gl,r 612 61,1 61,0 | 6LO

e w2 fuos Lo |

GL(s)

LL{s+1)

Fig. 10

Structure of an NMOS level module

Horizontal connections in each level module can be
dealt with in a simplified way using the concepts of inde-
pendent terminal and equipotential terminal:

(@) A terminal of a transistor is said to be independent
(IT) if it has no horizontal connections ascribed to it.
That is, the transistor drain i, j is defined as an independ-
ent terminal, and is represented by IT {i, j} if LL[i];-, =
LL[i];=0.

(b) A set of transistor terminals connected by contig-
uous horizontal connections is called an equipotential ter-
minal (ET). That is, the transistor terminals i, j, (i, j + 1),
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..., (i, j + k) constitute an equipotential terminal and are
represented by ET{i,j — k} if LL[i]; = LL[{}j1 = - =
LL[i]j+k—1 =1

Output nodes are obtained by identifying the ITs and
ETs defined by the horizontal connection branches in
row zero; output nodes are built in an orderly way from
right to left along the zero row transistor drains.

The level module exploration process involves search-
ing for conduction paths between the reference terminal
and the output node or nodes. The algorithm imple-
mented in based on the previously described KOR trans-
formation. In this search process, an auxiliary variable
termed ‘state’ is used to represent the state of the drains
and sources of the transistors in a row. Each bit of this
variable is associated with a transistor terminal; state;
(bit situated in state position j + 1) represents the state of

List 3
procedure MKOR () {

The procedure MKOR summarised in List 3 performs
the exploration of the submodules from a knowledge of
their dimensions (s + 1) x (r + 1), for example. First, the
r + 1 first bits of the state variable are initialised and the
auxiliary variable k is identified with the number of rows
in the level module. Next, STEP 1 and STEP 2 are per-
formed on the rows of transistors from k=sto k=1
Finally, STEP ! is carried out on the row of transistors
k = 0 to determine the state of their drains. In the final
state value, if 3j, j = 1, ..., r + 1, so that state; = 1, then
at least one conduction path exists between the drain ter-
minal of the j transistor in the zero row and the reference
terminal. This result is equivalent to finding a unitary
column at M* when KOR procedure is applied. This
search process is interrupted when state = 0 is detected
at any intermediate stage, in which case it can be guar-
anteed that no conduction paths exist.

state = 1,,, -+ 11; /* initialisation of the state value */
k=s; /*initialisation of k with row number of the level module */

while (k > 1) {

STEP I; /* exploration of row k of transistors */
STEP 2; /* exploration of row k of horizontal connection branches */

if (state = 0) {

There are no conduction paths in the level module;
return; /* end of the procedure */

!
k=k-1;

}

STEP 1 /*last process; exploration row 0 transistors */
StateOutput (); /* state of the output node or nodes */

the transistor terminal situated in column j. The least sig-
nificant bit corresponds to the transistor terminal situ-
ated on the extreme right of the row, represented in state,
(bit situated in state position 1). With this notation,
state; = 1 indicates the presence of a conduction path
between the j transistor and the reference terminal;
state; = 0 indicates the opposite.

The conduction path search in the level module is
carried out through the simultaneous search of each row
of transistors and its corresponding row of horizontal
connections, a process which is repeated until all rows
have been evaluated. The individual exploration of rows
is based on the following operations:

(a) STEP I: An exploration of the conduction paths
between the sources and drains of a row i of transistors.
To do this, the operation AND is carried out at bit level
between the state variable and the GL vector corre-
sponding to this row:

state = state AND GL[i];

(b) STEP 2: An exploration of the conduction paths
through the connection branches of row i. This process is
converted into a search of the conduction paths between
the drains of the transistors in row i and the sources of
the transistors in row i — 1, through the ETs existing in
the common horizontal connections. If, given that ET{i,
j—k} 3t te(,j+1,...,j+ k) so that state, = 1, then
state; = state;, = -~ = state;, = 1; this operation
must be extended to all the ETs in this row. This step is
equivalent to applying the KOR transformation to a row
of transistors and their respective horizontal connection
branches.
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Once the procedure MKOR has ended, the state of the
output nodes is determined by executing procedure State-
Output, summarised in List 4. The presence of a conduc-
tion path between an output node defined by IT{0, t}
and the reference terminal is reflected in state. If state, =
1, such a path exists and the output takes the low value
(0); if, on the other hand, state, = 0, there is no such path
and the output takes the high value (1) since, as assumed
earlier, there is a fault-free load transistor at each output.
For an output node defined by ET{i, j — k}, if 3t, t € {},
..., J + k}, such that state, = 1, then the output will take
the low value (0); otherwise, the output will take the high
value (1). Fig. 11 shows an example of the NMOS level
module search process.

®
©@ O ®

state| 10 0
o]

step 1
state 100 step 2
state 100

step 1

state 110 4) step?
state 010

n step 1
state 1 11

Example of the NMOS level module search process

Fig. 11
@ Output 1 identified by IT {0, 0}; state, = 0 — output 1 is high
@ Output 2 identified by ET {0, 1-2}; 3r € {1, 2}/state, = 1 — output 2 is low
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List4
procedure StateOutput () {

forall (Voutput node j € level module)}
if (output node j is IT{0, k}) {/* independent terminal */

if (state, = 1)

output low or 0; /* conduction path exists */

else
output high or 1,

else {

/* no conduction path */

if (output node j is ET{0, j — k}) {/* equipotential terminal */
if At € {j, ..., + k})/state, = 1)
output low or 0; /* conduction path exists */

else
output high or 1;
}
}
}
}

6.3.2 Simulation of CMOS level modules

The level module for CMOS cells consists of two sub-
modules, as shown in Fig. 12: one is of type P, situated in
the upper part, and the other of type N, situated in the

?

Gij | = qu._‘_? Y I,'_J|
s s

(n+l,m=T1 En+1.2 _Ln+1] Ln+1,0

.......... LL(n+1)
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GOm ; G0,2 GO,1 G0,0| GL(O)
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.Ls.f‘l'_H, Ls+1,2 4 Ls+1] [ Ls+1,0 LL(s+)
Fig. 12  CMOS level module
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/* non-conduction path */

lower part; both submodules are similar in structure to
the NMOS level module. The outputs of this module are
obtained by grouping pairs of output nodes of the two
submodules. The simulation process is applied independ-
ently to each submodule, using the procedures described
above. Once the presence or absence of conduction paths
has been confirmed, the state of each of the outputs is
determined according to the following criteria:

@i A path exists in submodule-P but not in
submodule-N (outut high or 1), or vice versa (output low
or 0). The level module functions correctly and the
output will take one of the logic states, depending on the
submodule that conducts.

(ii) No paths exist in either submodule (memory state).
A memory state arises when there is electrical isolation
between the output and the corresponding supply ter-
minals; this type of situation is generally solved by main-
taining the previous logic state.

(i) Both submodules conduct simultaneously
(analogue state); the output state will be set by the
dominant submodule.

To solve memory and analogue states, the following deci-
sion parameters are used:

(i) mem1_0. For an output which is in a memory state,
this parameter indicates the maximum time this node can
remain in the high state; when this limit is exceeded, it
changes to the low state. This time is measured by
counting the number of test patterns applied to the
circuit.

(i) memO_1. For an output which is in a memory
state, this parameter indicates the maximum time this
node can remain in the low state; when this limit is
exceeded, it changes to the high state.

(iii) domp_n: This parameter indicates the dominant
submodule, which may be the P submodule or the N sub-
module, or the submodule where the fault is located.

6.3.3 Simulation of pass-logic level modules

The structure of a pass-logic level module is shown in
Fig. 13. As can be seen, the basic structure of the other
modules is maintained, except that in this case the basic
element is the CMOS pass transistor and there are two
kinds of node: input nodes and output nodes. Input
nodes are defined as the ITs and/or ETs ascribed to the
lowest horizontal connection branches, and output nodes
are similarly defined as the uppermost horizontal connec-
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tion branches. In the search process three sets of vectors
are used: set GL, which represents the conduction states
of the N transistors; set FL, representing the P transistor
conduction states; and set LL, representing the horizon-
tal connection branch topology. The same structure can
also be used for NMOS pass transistor logic; this only
requires the P transistors being maintained in a cutoff
state.

1.
Fij | G

' [
Lor-t v Loz o Lol LL©O)
[Forleor] | [cozfeoz] [Fo.r[Gor] [FG.0 Go,olgt%
oLt 525 S S VNN SRS LL(1)
: FLO
[FLeienr] [Ghzleiz] [Fuilont] [FLo[6uo] GLE&
ler b2 220 4 e
1.55.-!"1 ; L,s24,___,L§-J._,,.,___E&O_,,,ﬂ LL(s)
[For [Gsr] | [2|os2] [Fsd [osd] [Fs.016s0 gtg

Ls+l,r-1. Ls+1,2 L Ls+1,1 Ls+1,0
& - - : P Dol NI e @ -----T0.-n LL{s+D

Fig. 13 Pass logic level module

The evaluation algorithm for these modules is similar
to that previously described for CMOS and NMOS
modules, but differs in three ways: the search process is
performed from output nodes towards input nodes; it
confirms the presence of conduction paths between the
outputs and each of the associated inputs; and the logic
state of each output node is obtained from the corres-
ponding states of its inputs according to the following
criteria:

(i) When there are no conduction paths, the previous
logic state is maintained.

(i) When there is a single path, the output node will
take the logic state of the input node connected by this
path.

(ili) When there are several input nodes with the same
logic value connected to the same output node, the
output node will take the same logic state as these
inputs; if, however, the inputs connected to the output
node do not have the same logic value, an inconsistent
fault is produced which is not included in the proposed
fault model.

7 Fault insertion

Faults affect the structure of the cells and level modules,
so that fault insertion is performed by modification of the
GL and LL vectors, depending on the nature of the fault.
Thus transistor faults affect the GL vectors, whereas
shorts and breaks modify the GL or the LL vectors,
according to whether it is the horizontal or the vertical
connection branch that is affected. Cell input and output
line faults involve different treatment: the former are
modelled as multiple transistor faults and the latter affect
the variable representing the state of the cell outputs.

The insertion of a stuck-open fault (stuck-on) in a
transistor situated in position i, j is performed by main-
taining GL[{]; = 0 (GL[i]; = 1) during the whole simula-
tion process. Shorts and breaks in the level module affect
the horizontal (LL) and vertical (GL) connection
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branches. The insertion of a line-break is effected by nul-
lifying a connection branch and a short-circuit is intro-
duced by creating a new branch. A fault in a cell input
line is transmitted to the transistors controlled by this
line. Thus, a stuck-at-1 (stuck-at-0) type fault is modelled
by setting all the cell’s N transistors associated to this
line at On (Off) and its P transistors at Off (On), and
maintaining this state during its simulation. A fault in an
output terminal modifies the variable that represents its
state by maintaining the value O or 1, according to the
fault type.

8 Haar and Walsh spectral analysis for digital
signals

Let f(i) be the sequence of length N = 27 formed from a
Boolean function f(x) = f(X,_ 1, Xg—25 --+» X2, X1, Xo) Of @
variables obtained by changing the pair of values {0, 1}
for {1, —1} for the function values and for the variables,
with index i being defined by the expression

i=2721 —x, ) + 2731 — x,_5)
+o (1= x) + 31 = x0) 3
Let {H,} be the set of discrete Haar functions of N points
quantified over {—1, 0, 1}, as given by the expressions
Hyi) =1

H)=H, ()= +1, nN aN N

7 SISty

nN N < n+1
PR T

—1, N

=0, in all other cases 4)
where
0<p<(og; N)—1,0<n<2"—1,
k=n+2°,0<i<N-1

With the previously established conditions, the discrete
Haar transform of sequence f(i) is defined as the real
number sequence D, , calculated using

D, = NilHk(i)f (), 0<k<N-—1 )
i=0

The number of operations needed to find D, can be con-
siderably reduced if the sequences of length N/2 are con-
sidered:

1) =f0);

fz(i)=f<i+%>; OSisg—l (6)

and a strategy similar to the decimation in frequency is
applied to eqn. 5, from which the following is obtained:

D, =[D} +(—1)"2Dg]; k=01 G
and
N -1
Dy = Z,o Hy O f) =Dy w ®
where

N
=1,2;N=—;p=p—
r 2p p—1
1<p<(og, N - 1;0<n <27 — 1;

Wo=n+20 log,r (9)
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Eqn. 7 indicates that the first two coefficients of the Haar
spectrum of f(i) are obtained by the addition and sub-
traction of the first coefficient of f,(i), DS, with the first
coefficient of f,(i), D}. The remaining N — 2 coefficients
of f(i) are obtained directly from the remaining coeffi-
cients of f1(i) and f,(i), as indicated in eqns. 8 and 9. This
process can be repeated as many times as possible, until
the basic sequences are of length 2, (N — 1) being the
total number of additions and subtractions that have to
be performed. The iterative application of eqns. 7 and 8
constitutes the fast Haar transform.

Calculation of the complete spectrum of f(i) means
generating a complete test set; however, eqn. 8 indicates
that it is possible to determine groups of spectrum coeffi-
cients without the need to generate an exhaustive test.
Thus, to determine the set of spectrum ocefficients C, ,,
defined by

Cqmz{Dp.n}’ q>0 g<p <(10g2 N)—l
im<n<2¥m+ -1 (10)

it will be necessary to apply a test set of length 2°79,
beginning at i = m?®~ 9 after the circuit has been initial-
ised.

Given the set of discrete Walsh functions, { W}, defined
from the variables of f (after changing the pair of values
{0, 1} for {1, —1}) by the expressions

W, =1
W) =x;, Vje©1,...,a—1)
Wi ka1 =x;%, Vi, ke(©,1,...,a—1),j<k
Wiz, o) = Xexq 00 X4y 1y

the discrete Walsh transform of f(i) is defined as the
sequence of length N obtained from

N-1
= z W;k
i=0

j<k<-

MGEEUN

<me(l,2,....,a) (12)

In this case, owing to the structure of the base set (eqn.
11), it is not possible to obtain any spectrum coefficient
(eqn. 12) without performing an exhaustive exploration of
the circuit.

Spectral analysis includes the calculation of the Walsh
and/or Haar (depending on the case) spectra of the circuit

List5

(i) Identification of equivalent faults. Equivalent faults
are those faults which, having different origins and/or dif-
ferent placements in the circuit, generate the same state in
the output; these sets implicitly include topologically
equivalent faults (TEFs). From these faults, coverage can
be calculated. Coverage indicates the fraction of faults
detected, that is, the number of faults detected in terms of
the total number of faults dealt with. The sets of non-
equivalent faults are aiso obtained and used as a meas-
urement of diagnosis.

(ii) To find the minimum set of spectrum coefficients
which allows univocal identification for each of the non-
equivalent faults considered. To perform this selection,
the spectrum coefficients are first ordered according to
their diagnosis value, placing the best results first. This
ensures that the coefficients selected are the most appro-
priate for the circuit type, test sequence and fault list
under consideration.

When the spectral analysis process has ended, a list of
detected faults, a list of nonequivalent faults and the spec-
tral signature for each of the nonequivalent equivalent
faults set are all obtained. All this information will later
be used to test the circuit.

The processes of circuit simulation and spcctral
analysis for each of the selected fault situations result in
the generation of two sets of identifiers: {F} and {S'}.
The {F} set composed of m + 1 identifiers {F,, F, F5,

.., F,} represents each of the faults dealt with in the
simulation process; F, is the identifier of the fault-free
circuit. Each identifier F, € {F} contains the fault type,
its placement in the circuit and the list of TEFs for this
fault. The {87} set contains the spectra obtained from the
i output of the mrcmt and is composed of (m + 1) identi-
fiers, {S5, 8%, 85, ..., SL}; Sh is the spectrum of the i
output of the fault-free circuit.

The process of identifying equivalent faults is applied
to each circuit output operating on the sets {F} and {S'}.
To do this, the set {FS'} is created: {FS'} = {{F;, S}}},
for j=0, ..., m, and a comparison is made of the set of
m+ 1 spectra so that the fault identifiers F; which have
the same spectrum can be grouped together. The pro-
cedure IdentifyinEquivFault, summarised in List 5,
obtains this identification. It uses three variables: m®*,
which indicates the current number of spectra in the list,
and p and g, which select spectra for their comparison.

procedure IdentifyinEquivFault () {

m* =m /*initialises m* */
foreach (p € {0, ...
foreach(ge {p+ 1,.

,m* — 1}) { /* selects first spectrum */
,m*) { /*selects second spectrum */

if (S' = S') { /* equlvalent fault identified */

F,is added to the list {F,,

Sy} = {Fq, Fp, S35

{F St} is removed from {FS'} set;

m"‘—m —-1;
1
}
}
}

responses obtained for each of the fault situations simu-
lated, and the comparative analysis of these spectra. This
process is applied individually to each output, and the
fault-free circuit spectra are compared with those for each
of the fault situations. Spectral analysis is applied in two
phases:

304

/* number spectra in list decreases */

In this procedure, if two spectra are identical (S' =5,

p < q), then the F, identifier is added to S} giving {F 2
F,, S}, with the palr {F,, Si} then bemg taken from
{FS'}. At the end of the process the original {FS'} set of
m + 1 pairs of identifiers will contain g(< m + 1) subsets
of nonequivalent fault identifiers, with their correspond-
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ing spectra. With this information, fault coverage at
output i is obtained using the following equation:

Fault coverage = 1 — ﬂﬂm—l
where niff represents the number of identifiers associated
with fault-free circuit spectrum and m is the total number
of faults.

To determine the spectral signature of the g subsets of
{FS'}, the spectral coefficients are first reordered accord-
ing to the number of faults that they diagnose, and then a
minimum set of coefficients is selected to identify univo-
cally the g subsets.

] Testing the circuit

The fault simulation and spectral analysis processes,
which are performed on a workstation, allow the selec-
tion of the spectral signatures appropriate for carrying
out the test process of the circuit prototypes. To apply
the test sequences to the prototypes and to collect their
responses, a logic analysis system (LAS) (Hewlett
Packard HP16500A) is used as an interface between the
workstation and the circuit prototypes, as shown in Fig.
14.

10 Example of application

The CMOS serial adder shown in Fig. 15 was used. This
circuit consists of a complete adder, shown in the upper
part of the figure, and a master—slave D flip-flop to store
the carry, in the lower part. The input test sequence used
has a length of 32 test patterns applied synchronically
with each clock cycle. A total of 240 simple faults were
selected: 48 stuck-on and 48 stuck-open faults, 76 shorts
and breaks, and 68 input and output line stuck-at faults;
of this set, 64 faults (26.6%) were eliminated by fault col-
lapsing. During the simulation process, 18 inconsistent
and 6 unstable faults were identified.

The results in the SUM output for the 216 (240-18-6)
faults finally considered were as follows:

(i) Groups of nonequivalent faults: 46 (21.3%).

(i) Faults detected 191 (88.4%): 39 stuck-open
(81.3%), 40 stuck-on (100%), 52 shorts and breaks
(76.5%), 60 stuck-at line faults (100%). Fig. 16 shows the
solution of the percentage of detected faults in terms of
the number of test patterns applied during the 64 half-
clock cycles of the test sequences.

(iii) Statistics of the spectral signature: Walsh coeffi-
cients selected: R, and Rs; Haar coefficients selected:
H,,Hsand H,,.

logic analysis system

(LAS) Walsh & Haar

spectral analysis

selection of
coefficients

spectral signature

/\/ vy /\/\/\/\/\I/\
J~ spectral AN
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N
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NNNANANN

faulty circuit

circuit under test
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diagnosed fault nondiagnosed fault
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Fig. 14  Testing the CUT

The prototype testing process begins with the pro-
gramming of the LAS from the workstation to ensure
that the circuit is tested in the same conditions as those
used in the simulation process; this programming
includes assigning channels and labels, selecting probes,
setting clock rates and loading the test vectors used in
the simulation process, among others. When program-
ming is finished, the LAS applies the electrical stimuli to
the circuit and stores the responses, which are later read
from the workstation, where their spectra are computed.
Of these spectra, only those coefficients that constitute
the spectral signature are used in the comparison with
those stored in the data file during the simulation
process; as a result of this process, the circuit is classified
as fault-free or faulty, in which case the diagnosis results
are also included.

The problems of aliasing, and/or the presence of faults
not detected by the test sequence, may result in the erron-
eous identification of a faulty circuit as good. The phe-
nomenon of aliasing is caused by loss of information,
which is characteristic of any compression method; it
arises when the fault-free and the faulty circuit have the
same spectral signature. In our case, the spectral signa-
ture selection process used ensures that aliasing does not
occur for the fault set and the selected test sequence.
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11 Performance analysis

An evaluation of the cost in terms of CPU time was
carried out for the fault collapsing, fault simulation and
spectral analysis modules; there was no point in doing so
for the rest, as there is a ‘human interface’. Most compu-
tation time is taken up by fault simulation. One of the
most important features of simulation tools is the execu-
tion speed, which allows a large number of faults to be
dealt with; this is due to the use of the simple switch
model for transistors and to the simplicity of the level
module exploration process, in which rapid simulation
algorithms have been used in order to handle a large
number of faults. Table 1 gives the execution times for
the simulation of a set of typical circuits using the soft-
ware tools implemented on a SUN 3/260 (~4 MIP)
workstation with a UNIX operating system. The table
contains information about the number of transistors
and cells in each circuit, the length of the test sequence
used, the number of faults dealt with in each case, the
number of collapsed faults, and the total time for the
complete process.

With the chosen fault model, fault situations may arise
that are difficult to deal with and the mechanisms devel-
oped to overcome these difficulties may, therefore, not be
appropriate. In order to assess the model of the faulty
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Table 1: Execution times for the simulation of a set of typical circuits

Circuits NITR NTR NCELL NFAULT NCF TIME
2-bit comparator 16 36 4 142 24 58
4-bit multiplexer 64 28 3 112 18 10
4-state bidirectional parallel/serial input/output register 32 328 12 1018 218 1020
4-bit full-adder 512 148 5 736 186 3635
4-bit BCD full-adder 512 204 16 848 176 4075
4-bit paraliel muitiplier 266 384 16 1560 469 5010
Presettable 4-bit up-down counter with BCD-to-seven segment decoder 512 384 19 1618 429 12182
4-bit arithmetic logic unit 1024 300 1 1364 386 26542

NITP: Number of input test pattern. NTR: Number of transistors. NCELL: Number of cells. NFAULT: Number of faults. NCF:

Number of collapsed faults. TIME: CPU time in s.
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circuit’s behaviour at logic level, several cases were
studied and the results were compared with those
obtained using a SPICE electrical simulator. In SPICE,
stuck-on faults and shorts were modelled as resistive ele-
ments of 200 Q, stuck-open faults as open circuits, and
breaks as open lines. The comparative analysis showed
that over 90% of the faults are dealt with correctly, which
offers sufficient guarantee for the test environment to be
applied.

12 Conclusions

A test environment has been presented for fault detection
and diagnosis in MOS circuits. It consists of a set of soft-
ware tools written in C under UNIX. These tools run on

IEE PROCEEDINGS-E, Vol. 139, No. 4, JULY 1992



a workstation and act on a logic analysis system con-
nected to it for the physical testing of the circuits. The
test process is carried out in two phases: in the first
phase, simulation of the circuit faults is performed, as a
result of which a dictionary of fauits and the correspond-
ing set of spectral signatures are obtained. To achieve
this, a series of tasks is performed: circuit editing, fault
collapsing at the transistor level, simple switch-level fault
simulation, and spectral analysis of the response obtained
by simulation. Circuit editing is carried out using tran-
sistor matrix modules, called level modules, which are
appropriate for dealing with faults at the transistor level.
Indeed, certain shorts and breaks faults existing in the
circuit can easily be handled by these modules. This
feature is very important, as these are the fault types that
occur most often in MOS circuits. The fault-collapsing
technique at the transistor level, which makes use of the
process of the identification of topologically equivalent
faults in the level module, allows a reduction in the
number of faults to be simulated. Fault simulation deals
with each of the preselected fault situations in the circuit
following a hierarchical scheme that includes three oper-
ational levels: global simulation, cell simulation and level
module simulation. The simulation algorithms are char-
acterised by their low memory requirement and high pro-
cessing speed, thus allowing a large number of faults to
be dealt with in a relatively short computation time.
Spectral analysis of the circuit’s simulated response is
performed with discrete Walsh and/or Haar transforms.
The dictionary of faults contains a list of unstable faults,
a list of inconsistent faults, a list of detected faults and a
list of nonequivalent fault groups (diagnosis) as well as
the spectral signature for each of the latter. To generate
the spectral signatures, the spectrum coefficients most
appropriate for diagnosis are chosen, which ensures that
aliasing does not occur for the test sequence, circuit type
and the fault list under consideration.

In the second phase, the physical process of testing the
circuit is carried out. First, the logic analysis system is
programmed to ensure that circuit testing is performed as
foreseen in the simulation. Next, electrical stimuli are
applied to the circuit under test and its responses are col-
lected and sent to the workstation for its spectral signa-
ture to be computed. The result of the test is obtained by
comparing this spectral signature with those obtained in
the first phase; the circuit is classified as fault-free or
faulty, in which case the diagnosis results are included.
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