Self-timed multiplier based on canonical signed-digit

recoding

G.A.Ruiz and M.A.Manzano

Abstract: A data-dependent self-timed multiplier structure in dynamic logic and DCVS logic based
on canonical signed-digit (CSD) recoding is presented. This coding increases the number of null
partial products up to 33%, compared with the 25% of the traditional modified Booth recoding. The
carry-save structure is a data-dependent parallel array, which uses this characteristic to reduce the
number of addition operations, and thus increase the speed of the multiplier by 20% compared with
other classical implementations. Thus, the adders of a null partial product become pass cells
postponing the addition operation to the next stage. The layouts of a 16 x 16-bit and a 32 x 32-bit
signed CSD multiplier have been devised. These present a rectangular-shaped structure and regular
layout suitable for implementation in VLSI. Simulation results highlight that these CSD multipliers
have a similar throughput to other pipeline asynchronous multipliers, but with a significant reduction
of latency. The delay computation time is less than for published synchronous multipliers. However,

the cost in terms of area and power is high.

1 Introduction

Asynchronous digital logic appears to be a valid alternative
to its synchronous counterparts in VLSI digital systems,
since it is free of clock skew problems (it does not use a
global clock) [1] and has a substantial advantage in power
and noise-sensitive applications [2]. Asynchronous circuits
are designed for average-case, rather than worst-case,
performance at the maximum speed, which allows for the
intrinsic hardware delays, variations in fabrication process
and operating conditions. However, the design of these
circuits is more difficult because of hazard and race prob-
lems, and, in many cases, they lack the required supporting
design tools [3].

The ‘speed-independent’ self-timed circuits are a ‘purist’
asynchronous approach, which uses dual-rail data recoding
and completion detection logic to determine when an oper-
ation has finished. This approach enables a handshaking
protocol to be established between computation blocks,
independent of both circuit and interconnection delays. The
dynamic differential cascode voltage switch (DCVS) logic
has complementary outputs [4], which provide a general
way of generating completion signals. It also has an inher-
ent self-testing property to implement fault-tolerance cir-
cuits at low cost [5]. These completion signals can produce
a performance improvement when there is a data-depend-
ent variation in computation time. For example, Reitwies-
ner [6] and Hendrickson [7] demonstrated that, in an
asynchronous #-bit ripple-carry adder, the average longest
carry can be approximated by log,(5n/4).

©IEE, 2001

IEE Proceedings online no. 20010524

DOI 10.104%ip-cds:20010524

Paper first received 13th March 2000 and in revised form 9th April 2001

The authors are with the Departamento de Electronica y Computadores, Fac-
ultad de Ciencias, Avda. de Los Castros $/n, 39005-Santander, Spain

IEE Proc.-Circuits Devices Syst., Vol. 148, No. 5, October 2001

The self-timed array multiplier with Booth recoding in
DCVS logic presented by Meng [1] is an example of a
speed-independent design. Its main drawback is that the
computational delay of its carry-save structure is practi-
cally independent of input data patterns since there is no
carry propagation. This drawback is partly solved using the
concept of data-dependent computation time in carry-save
arrays introduced in by Kearny and Berman [§] and
applied to basic bundled asynchronous parallel array multi-
pliers and iterative multipliers. However, most proposed
designs of asynchronous multipliers are based on pipeline
and micropipeline structures, which achieve a high
throughput in a low area, but with a significative latency
[9-17].

In this paper, we present an efficient structure of a speed-
independent self-timed multiplier based on a data depend-
ent carry-save array with CSD recoding. The CSD recod-
ing [18] generates an average of 33% of null partial
products, compared with 25% of the traditional modified
Booth recoding of synchronous multipliers. When a partial
product is null, the adders are turned into simple pass cells,
postponing the addition operation to the next stage. In this
way, the number of arithmetic operations in the carry—save
structure is reduced, increasing its speed and lowering its
power. The characteristics of CSD recoding and Booth
recoding are analysed and compared. The self-timed signed
CSD multiplier structure in mainly DCVS logic is
described. The simulation results of 16 x 16-bit and 32 x
32-bit multipliers are presented and compared with other
implementations.

2 Booth recoding against CSD recoding

The radix-4 modified Booth algorithm [19] has been widely
used in high-speed multiplier structures. In an m-bit by -
bit multiplication (4 x B), the multiplier B represented in
two’s complement is converted into a radix-4 redundant
signed digit (SD) representation D; = {£ 2, £ 1, 0}, with the

235

result that

n—2
B=-2""'B, 1+ Y 2B
j=0
(n/2)-1 (n/2)—1
= Y (Baj-1+Boy—2B2y1)4’= > D4’
J=0 J=0

1)
with B_; = 0. This recoding reduces the design of an n-bit
(n is even) synchronous multiplier exactly to »/2 partial
products, which can be easily calculated by shifting and by
add/subtract operations. The CSD algorithm (whose rules
for radix-4 arc summarised in Table 1) simplifies to a mini-
mum the number of add/subtract operations, finding the
minimal non-redundant SD representation in terms of the
number of non-zero digits. Table 2 shows the average
percentage of digit values for different lengths resulting
from the Booth and CSD recoding scheme. It can be
observed that the probability that the digit D; is 0 is always
higher in the CSD recoding than in the Booth recoding. D,
= 0 means that no operation needs to be performed on the
partial product (J); it is enough to transmit data between
the previous partial product (J — 1) and the subsequent one
J+ 1.

Table 1: Recoding scheme of radix-4 CSD algorithm and
5-out-of-1 coding signals {N,, X, 2X, Y,, 2Y}

Biy B By C Dy CO Ny X, 2X5 Y, 2V
0 0 0 o0 0 ©0 1 0 0 0 o
o o 1 o 1 0 0 1 0 0 0
0 1 0 0 2 o0 0 0 1 0 0
0o 1 1 0 -1 1 0o 0 0 1 ©
17 0 0 1 0 0 1 0 0 0 0
1 0 1 1 o 0 1 0 o0 o0
1 1 0 1 =2 1 0 0 0 0 1
171 1 1 -1 1 o0 0 0o 1 0
o o 0o 0 1 0 0 1 0 0 O
0o 0 10 2 o0 0 0 1 0 0
o 1 0o o -1 1 o0 0 0 1 0
o 1 1 0 0 1 1 0 o0 0 0
17 06 0 1 1 0 0 1 0 0 0
10 1 1 =2 1 0 0 0 0 1
1 1 0 1 -1 1 0 6 0 1 0
171 1 1 0 1 1 0 0o 0 0

Table 2: Average percentage of digit values in radix-4 SD
representation using CSD and Booth recoding for different
numbers of bits

16-bit 32-bit 64-bit co-bit
Dy
CSD Booth CSD Booth CSD Booth CSD Booth

0 326 250 327 250 331 250 333 250
+1 180 250 174 250 170 250 166 250
+2 157 109 163 117 165 121 166 125
-1 180 250 173 250 17.0 250 166 250
-2 158 141 164 133 165 129 166 125

In a self-timed multiplier, this characteristic can be used
to increase the speed of the multiplier by reducing the
number of partial products with arithmetic operations. The

* complexity of this multiplier is slightly greater than other

236

standard self-timed multipliers based on Booth recoding for
two reasons: (i) the CSD recoder is slightly more complex
than the Booth recoder in order to propagate the carry,
and (ii) the partial products must include the non-arithme-
tic operation or the null operation (D, = 0). However, elec-
trical simulations at transistor level comparing the two
multipliers show that the CSD recoding self-timed multipli-
ers are 20% faster than the self-timed Booth muitipliers
with a small area cost.

The CSD recoder has been carried out on a 5-out-of-1
code {N,, X, 2X). Y}, 2Y,} representing each of the values
of the SD representation {0, +1, +2, —1, -2}. These signals
(defined in Table 1) are given by

]VJ = E}E]_lw + Bij_l CI
Xy= _Ej(Bj_l @& GI)
2X; = §j+1 (Bjﬁj ,lﬁ + FjB‘,ALCI)
Yy = Bj(Bj—1 @ CI)
2Y; = B (Bij_1m+§ij-1CI) (2)
Figs. la and b show the implementation of eqn. 2 in
dynamic domino logic, including output buffers for the
driving load capacity requirement. These gates use compact
transistor sharing structures to reduce the number of tran-
sistors, and they have weak PMOS transistors (labelled *)

fed back from the outputs to solve the charge sharing and
current leakage problems.

Fig.1 Implementation of CSD recoding signals in domino logic
a Generation of Ny, 2X,,2Y,
b Generation of Y;and X

The carry-out of the CSD recoder and its complement
are defined as

CO = B;11B;_1CT + B;(CI + B;_1 + Bj11)
CO =B;11B;-1CI1+ B;(CT+ B; 1 + Bjy1)

(3)

Fig. 2 shows the implementation in DCVS logic of eqn. 3.

IEE Proc.-Circuits Devices Syst., Vol. 148, No. 5, October 2001

8l

o o

Fig.2 Carry generation of CSD recoder in DCVS logic

3.
% o
o
"
S —
S 2 L
5 —
a /
z /
g
8 ¢ /
&1
s
(3 L
@ /
o bl ok N .
] 16 32 48 64
length

Fig.3 Average size of longest carry propagation path for different lengths of

CSD decoder

In the CSD recoder, similar to an asynchronous adder,
the average carry propagation path is lower than the worst-
case path. Fig. 3 shows the average size of the longest carry
propagation path for different lengths, assuming random

0
By — 1
B, — CSD
By
B; —CsSD
B4
Bs; —csp
Bg
B; —{csp

data distribution. These experimental results show that the
average length of the longest carry sequence is bounded by
~0.5log,n. This means that the average carry propagation is
far lower than the worst-case propagation, which leads to
the minimisation of the average computation time of the
CSD recoder.

3 Self-timed signed CSD multiplier

The architecture of an (8 x 8)-bit self-timed signed CSD
multiplier is shown in Fig. 4; this architecture can be easily
extended to an n x m-bit multiplier. This is composed of an
array (n/2) of CSD recoders described above, an array (n/2)
of partial products made up mainly of half/full adders and
selector circuits, and a final 2#»-bit ripple-carry adder, with a
completion circuit to generate the Done signal. A ‘high’
Done indicates that the multiplication has finished. The
completion circuit is based on a tree-like structure of
dynamic Or-And-Invert gates described elsewhere [20].

The cell PFA represents one bit in a partial product and
is made up of two components: a selector (PP) and a full
adder (FA). This cell also works in non-arithmetic opera-
tion mode when the control signal is N; = 1; in this mode,
it simply transmits data between the previous and the sub-
sequent partial products. The PP selector carries out the
selection of the bit 4, 4.1, 4; or A, of the partial product
according to the control signals, in order to perform the
operation of 4, 24, -4 y -2A4. The logic equations for the
output PP and PN signals of this selector are given by

PPy =2YjA; 1+ YjA; +2X A1 + X 4;
PANJ,Z' = 2XJZ¢,1 + X,]Zi +2Y A1 + Y A;
4)

Note that PP;; = PN,; when N, = 0. Otherwise, when N,
= 1, these signals are inactive (PP;; = PN,; = 0) since X; =
2X,=Y,=2Y,=0. Fig. 5 shows the implementation in
dynamic logic of eqn. 4. This implementation is not strictly
DCVS logic since precharging voltages are maintained
when N, = 1 without switching the outputs (no evaluation
phase is made). In this operational mode, the power

ripple-carry adder + completion circuit
L

Taone [Pis [Pis [Pig [Py [Py [Py fPg lPa" (SR O N E P EO CO
’

2
- —
CliiyCliin SSui ¢, 6,
h Gy,
’

’

1

[A A

AD; PP;
@—{r]
NyXp2Xp¥p2¥gmiped 7 PN
Y A

€0,;C0,; 80,80,

Fig.4 Architecture of (8 x 8)-bit self-timed signed CSD multiplier

IEE Proc.-Circuits Devices Syst., Vol. 148, No. 5, October 2001

237

consumption of the circuit in Fig. 6 is reduced, as there
isno discharge of either the dynamic nodes or of the
outputs.

Fig.5 PP cell in dynamic logic

W5 e P

5,1 4fi“'—*li i
) l__S|i
‘J‘l l._PPJ’i
R_{E-

SO, : ?jb—ﬂ—qﬁ : SO,

Fig.6 FA cellin DCVS logic
a Sum gate
b Carry gate

The FA adds the bit of selector PP to the output of the
previous partial product. The Boolean expression for the
FA is

S0,,;=PPj; (CIJJ' ® SIJ’Z->
+PNy (OIJ,z’ ® 51"],1‘) + N;S1;;:

238

SOy;= PPy, (C]J,i b SIJ,i>

+PNy,; (m) + N;SI;;
COy; =PP;;S1;;
+ <PNJ,iSIJ,i + PPJ,iﬁj,z) Cly; +N;Clj;
CO,; =PNySI;;
+ (PNJ,iSIJ,z' + PPJ,z'WJ,z') Clji+ N;CIj;y

(5)
Fig. 6 shows the sum gate and carry gate in DCVS logic of
FA. This FA only has four more transistors than the
implementation proposed by Meng ([1], p. 99). Its purpose
is to transform the FA into a pass circuit when N; = I:
SI;;, SI;; is transmitted directly to the output SOy, S0,
and CI 7i1s CI; 1, which is the input carry of the right-
hand FA, at output CO;,;, COy,.

In the partial product J = 1 the PHA cell is used, since
only the addition of two bits is necessary. This cell is made
up of the PP selector and a half-adder (HA), whose
Boolean expression is given by

SO;;=PNy;SI;;+ PP;;S1;;+ NjSI;;

SO, = PP;;SI;;+ PN;;SI;;+ N;SI;;

CO,,; = PP;;SI;;

66]77; = WJ,i + PIVJ):L' + Ny (6)
The multiplier also uses two cells; the PI selector and the
AD cell. PI, has a function similar to the PP @elector and
performs the selection of the bit 0, 4,, 4,4, A, of the

first partial product (/ = 0). The logical expresswn for the
PI is obtained from eqn. 4 resulting in

PI, = 2YyA; 1 + YoA; + 2X04; 1 + XoA;
PI; = 2X0A; 1 + XoA; + 2YoA;_1 + YoAi + No
(7)
The AD cell performs the ‘add 1’ operation to LSB

required to take two’s complement of a partial product.
The Boolean equation of this cell is

AD;=Y;+2Y;+ N,;CI

EJ:XJ+2XJ+J\/Y‘]W (8)
The sign extension has been resolved using the ‘sign gener-
ate’ method described by Annaratone [21]. This method

applied to an n x m-bit multiplier allows the sign bit (Sgn)
to be defined as

n/2—1 n/2—1
Sgn=2m+ Y 22Hmil g NG9 (g)
J=0 J=0

where S, is the sign bit for each partial product. The imple-
mentation of each of the three terms of eqn. 9 are carried
out in cells PFA marked with a diagonal line and in cell PS
whose logical expressions are

PS;=Nj +Zm_1(XJ +2Xy) + Apm1 (X5 +2X)
PSy=An_1(Xs+2X7) + A1 (X +2X) (10)

4 Realisation and circuit simulation

A 16 x 16-bit and a 32 x 32-bit self-timed signed CSD mul-
tiplier were designed in a standard 0.6 um n-well CMOS

IEE Proc.-Circuits Devices Syst., Vol. 148, No. 5, October 2001

mi-g;‘ Eﬁ“’loi_‘m“!nﬂ w&h‘l«t‘udﬂki& “E ‘.%};% b

»@E%%W&:@ L L&s@n&lﬁw

[lxA L xw - e I
Ok ﬁﬁ?’vﬁgm

AR E LI o
-VIEI'%IVPEI%!T il
SR B g e e SR
IR EAR R Ry

it laibintleiddai,
(EHRRIR 4
& ui&M ﬁ ==

Fig.7 Mask layouf of 16 x 16-bit CSD mulnpl[e/

double-metal process technology (Austria Mikro Systeme
International AG Technology). Fig. 7 shows only the
mask layout, with the different blocks for the 16 x 16-bit
multiplier designed using the Design Framework II tool
from CADENCE; the chip has not been processed. The
final size of this multiplier is 2.43mm x 0.83mm (2mm?)
and the total number of transistors is 10931, ~1000 of
which correspond to fed-back PMOS transistors. The 32 x
32-bit multiplier has an arca of 447mm X 1.57mm
(7mm?), with 36897 transistors (3500 are fed-back PMOS
transistors).

The total area of both circuits is (except for some small
variations) divided as follows: partial products (68%), CSD
recoder (3.5%), final adder and completion circuit (17%),
buffers (8%) and power rail (3.5%). The electrical simula-
tion was made with HSPICE at level 49, 25°C and V), =
5V and 3.3V, using typical device parameters and very
precise extracted capacitances.

Our multiplier has an iterative parallel-array structure,
with rectangular-shaped and regular layout suitable for
implementation in VLSI. The problem associated with
DCVS logic (and, a general problem inherent in all differ-
ential logic) is the large area required for routing, resulting
from the need to duplicate the interconnection lincs. For
example, the carry—save multiplier described by Meng [1]
dedicates 50% of its area to routing, owing mainly to its
highly irregular interconnections. The BCL adder presented
previously [22] (even though it has great regularity) uses
35% of routing area due to the high number of intercon-
necting cells. In the proposed multiplier, the iterative paral-
lel-array structure substantially reduces this area to 24%,
resulting in a less area-consuming implementation.

The completion signal Dorne indicates when the multipli-
cation process has finished. The multiplication time is
measured from when signal R goes to high until Done goes
to high. This time includes the delay in the distributed
control buffers. Table 3 shows the simulation results for a
different power supply. The addition of average computa-
tion time (Z,,) and precharging time (z,,) is equivalent to
an effective throughput rate of 159MHz at Vpp = 5V
(108MHz at 3.3V) for the 16 x 16-bit multiplier and
104MHz (72MHz) for the 32 x 32-bit multiplier. The
speed of these multipliers is a result of the reduction in the
evaluation time of the FA cell when it works in non-opera-
tion mode (N, = 1). This time varies for the sum output of
0.464ns (N; = 0) at 0.309ns (N; = 1) for Vpp = 5V,
0.664ns at 0.450ns for Vpp = 3.3V, achieving a reduction
of 35%. Similar results are obtained for the carry output
with 0.469ns (N, = 0) at 0.302ns (N; = 1) for Vpp = 5V
and 0.676ns at 0.454ns for Vpp = 3.3V.

1EE Proc.-Circuits Devices Syst., Vol. 148, No. 5, October 2001

_ é_%lﬂ"ifmﬁiﬁl

m ‘: ‘ g‘% " ;
maga&&ﬁ&m&

LY -"m‘-w-' Ry g Srylrd B 1
mﬁﬁﬁﬁi ’*szmra:_ﬂzgﬁmm -
HETHE % : $it

Table 3: Simulation results of 16 x 16-bit and 32 x 32-bit CSD
multipliers

tave tore Lo

3.3V 5V 3.3V 5V 33v 5V
16x16-bit 7.95ns 534ns 1.25ns 0.95ns 16.3ns 10.6ns
32x32-bit 12.46ns 8.58ns 1.36ns 1.03ns 185ns 12.4ns

taves average computation time, f,: precharging time,
t.c: worst-case delay time

Table 3 reflects that the average computation time is
substantially lower than the worst-case delay time resulting
from the multiplication of —1 x 1. This difference is far
more significant for the 16 x 16-bit multiplier than for the
32 x 32-bit multiplier. The computation time probability
provides good information on how the average function
delays of these multipliers may govern overall throughput
rates, resulting in higher performance. Fig. 8 shows the
approximate distribution curves of completion signal Done
at Vpp = 3.3V, whose maximum values represent the aver-
age multiplication time; distribution curves obtained for
Vpp = 5V have a similar form. These results clearly show
that these multipliers operate with an average computation
time that is 61% less for the 16 x 16-bit and 33% less for
the 32 x 32-bit with respect to the worst-case delay time.

i
o

ARV
AR NN

6 8 10 12 14 16 18

time of Done, ns

Fig.8 Dzstr ibution of Done signal for Vi, = 3.3V
Olex1
V 32 x ?2 b]l

probability of occurrence, %

There is a wide variety of asynchronous approach and
design styles proposed in the design of asynchronous multi-
pliers, according to speed, area and power consumption.
Most of these implementations are based on pipeline and
micropipeline structures as a result of a trade-off between
throughput, latency and chip arca.

239

Table 4: Performance comparison of some asynchronous and synchronous multipliers

Asynchronous

Ref. Size Techn. Area Trans. Vpp Power Thro. Lat.

[9] 16%x 16 1.0 CMOS 2.59 5 219 156 64

[11 16% 16 1.6 CMOS 7 5 23 —

[12] 16x 16 1.2 CMOS 3.03 5 180 25

[11} 4x4 1.0 CMOS 4.6 (i.p.) 4213 5 2.36 195 29.2
4 1.14 162.5 35

[16] 24 %24 1.0 GaAs 25 5 46.7 76 24

[10] 4x4 1.2 CMOS 5.3 (i.p.) 6800 5 120 333

[14] 8x8 0.6 CMOS 1(i.p.) 6428 5 0.43 250 16.4

[13] 16x 16 0.6 CMOS 0.18 5 92 15

Thiswork 16x 16 0.6 CMOS 2.026 10931 5 137 159 5.3
33 4.7 109 7.9

32x32 0.6 CMOS 7.045 36897 5 48 104 8.6

33 16.5 72 125

Synchronous

Ref. Size Techn. Area Trans. Vop Power Delay

[23] 32x32 0.8 CMOS 7.26 27704 5 27.7 15

[24] 54 x 54 0.8 CMOS 12.9 82500 5 21.87 13

[25] 54 x 54 0.5 CMOS 12.5 81600 33 8.7 10

Ref.: Reference; Size: Length of muitiplier operands; Techn.: Technology;
Area: Chip area (in mm?, i.p.: including pads); Trans.: Number of transistors; Vpp: power supply (in V);
Power: Average consumption power supply {in mW/MHz); Thro.: Throughput (in MHz);

Lat.: Latency (in ns); Delay: Delay time (in ns)

Table 4 shows the characteristics of some asynchronous
multiplier designs and of the proposed CSD multipliers. A
fully four-stage pipeline multiplier with Manchester chain
adders combined with carry-save adder architecture in
latched differential pass transistor logic (LDPL) logic has
been presented elsewhere [9]. Meng [1] implemented a
speed-independent multiplier based on Booth decoding,
with carry-save architecture in DCVS logic. A five-stage
pipeline multiplier with carry-save adder architecture using
progressive evaluation technique (bundled data) is
described by Burford ez al. [12]. Acosta et al. [11] present
another pipeline multiplier with an array-based architecture
in switched-output differential structure (SODS) logic.
Chandramouli et al. [16] implemented in GaAs a micropi-
peline parallel multiplier with a partial array of array archi-
tecture, using bundled data-path and Booth decoding in
direct-coupled FET logic (DCFL). The wave pipelining
technique has been applied to a fully asynchronous design
of a carry-save multiplier in balanced CMOS gates [10].
Chiang and Lao [14] describe a ten-stage pipeline multiplier
with Booth decoding and carry-save architecture in com-
plementary pass-gate logic (CPL). Kearny and Bergmann
[13] present a data-dependent multiplier with iterative data
path in DCVS logic. Table 4 shows clearly that the 16 x
16-bit and 32 x 32-bit CSD multiplier presents a high
throughput (without latency), far higher even than some
pipeline structures with similar characteristics [13], but at
the expense of area and power.

Table 4 also shows some representative static synchro-
nous multipliers based on the Wallace tree, with a technol-
ogy similar to that used in CSD multipliers. It was
highlighted [9, 11] that synchronous multipliers are always
better than pipeline asynchronous multipliers because of
the cost in area and delay overhead of local control
circuitry. However, the 32 x 32-bit CSD multiplier has a
te Of 8.58ns, which is a smaller delay time than the 15ns

240

of the multiplier of the same size of Schuman et al. [23], but
has a higher cost in area and power. This comparison is
relative because the CSD multiplier is dynamic and the
synchronous multiplier static, and the used technology is
0.6um and 0.8 um, respectively.

5 Conclusions

We have presented a self-timed multiplier structure in
dynamic and DCVS logic, with a data-dependent carry—
save structure more efficient than the carry-save structure
presented by Meng [1] whose computation time of its
carry-save structure is practically independent of input data
patterns. The multiplier uses a CSD recoding, which gener-
ates the highest value of null partial products (33%). A null
partial product means that the adders become pass cells.
The cost of including this non-arithmetic operation is four
transistors per adder out of a total of 40 transistors, achiev-
ing a reduction in delay time of 35% in this operational
mode.

The layout of a 16 x 16-bit and 32 x 32-bit signed CSD
multiplier presents a rectangular-shaped structure and regu-
lar layout suitable for implementation in VLSI. These mul-
tipliers have a throughput comparable with other pipeline
asynchronous multipliers but with a significant reduction in
latency. The average computation time is 61% less for the
16 x 16-bit and 33% less for the 32 x 32-bit with respect to
the worst-case delay time; this average time is apparently
less than for published synchronous multipliers. However,
the cost in area and power is high. The selection of an
asynchronous multiplier implementation should be made as
a result of a trade off between throughput, latency and chip
area.

Finally, the CSD multiplier is a fault-secure circuit
because of the characteristics of DCVS logic and the 5-out-
of-1 code used on recoding. This permits concurrent error

IEE Proc.-Circuits Devices Syst., Vol. 148, No. 5, October 2001

detection for all single faults and a large percentage of
multiple faults, highly suitable for applications with high-
reliability requirements and high-integrity data-processing.

6 References

1 MENG, T.H.: ‘Synchronization design for digital systems’ (Kluwer
Academic Publishers, Boston, 1991)

2 PAVER, N.C, DAY, P, FANSWORTH, C., JACKSON,D.L.,
LIEN, W.A,, and LIU, J.: ‘A low-power, low noise, configurable self-
timed DSP’. Cogency Technology, October 1997, (available via http:/
WWW.COgency.comy

3 HAUCK, S.: Asynchronous design methologies: An overview’, Proc.
IEEE, 1995, 83, (1), pp. 69-93

4 CHU, K. M and PULFREY, D.L.: ‘Design procedures for differen-
tial cascode voltage switch circuits’, IEEE J. Solid-State Circuits, 1986,
SC-21, (6), pp. 1082-1087

5 KANOPOULUS, N., PANTZARTZIS, D., and BARTRAM, F.R.:
‘Design of self-checking circuits using DCVS logic: a case study’, JEEE
Trans. Comput., 1992, 41, (7), pp. 891-896

6 REITWIESNER, G.W.: ‘The determination of carry propagation
length for binary addition’, IRE Trans. Electron. Comput., 1960, 9, pp.
35-38

7 HENDRICKSON, H.C.: ‘Fast high-accuracy binary parallel addi-
tion’, IRE Trans. Electron. Comput., 1960, 9, pp. 465-469

8 KEARNY, D.A., and BERMANN, N.W.: ‘Bundled data asynchro-
nous multipliers with data dependent computation times’. Proceedings
of 3rd international symposium on Advanced Research in Asynchro-
nous Circuits and Systems, IEEE Computer Society, 1997, pp. 186—
197

9 SALOMON, O., and KLAR, H.: ‘Self-timed fully pipelined multipli-
ers’. Prowedmgs of IFIP WG 10.5 working conference on Asynchro-
nous Design Methodologies, Manchester, UK, 1993, pp. 45-55

10 SCHUMANN, T., KLAR, H., and HOROWITZ M.: ‘A fully asyn-
chronous, high throughput multiplier using wave-pipeline for DSP
custom applications’. Mikroelektronik fiir dic Informationstechnik,
Chemnitz, 18-19 March 1996, pp. 283-286 (TG-Fachbericht, (138),
VDE Verlag, Vortrige der ITG-Fachtagung)

11 ACOSTA, AJ., JIMENEZ, R, BARRIGA, A., VALENCIA, M.,
and HUERTAS, J.L.: ‘Design and characterization of a CMOS VLSI
self-timed multiplier architecture based on a bit-level pipelined-array
structure’, IEE Proc, Circuits Devices Syst., 1998, 145, (4), pp. 247-253

12 BURFORD, R.G., FAN, X,, and BERGMANN, NW.: ‘An 180
MHz 16-bit multiplier using asynchronous logic design techniques’.
Proceedings of IEEE 1994 Custom Integrated Circuits confereuce,
1994, pp. 215-218

IEE Proc.-Circuits Devices Syst., Vol. 148, No. 5, October 2001

13

14

15

1

(=)}

17

18
19

2

f=}

2

—

22

23

24

25

26

KEARNY, D.A., and BERMANN, N.W.: “VLSI design of an asyn-
chronous multiplier with data dependent processing times’. Proceed-
ings of 14th Australian Microelectronics Conference, IEEE Society,
1997, pp. 282287

CHAING, J.S,, and LIAO, J.Y.: ‘A novel asynchronous control unit
and the application to a pipelined multipler’. Proceedings of interna-
tional symposium on Circuits and Systems (ISCAS), June 1998, Vol.
2, pp. 169-172

SPARSO, J.,, NIELSEN, CD., NIELSEN, LS., and STAUN-
STRUP, J.: ‘Design of self-timed multipliers: A comparation’. Pro-
ceedings of IFIP WG 10.5 Working Conference on Asynchronous
Design Methodologies, Manchester, UK, 1993, pp. 165-180
CHANDRAMOULL V., BRUNVAND, E., and SMITH, K.F.:
‘Self-timed design in GaAs—case study of a high-speed, parallel multi-
plier’, IEEE Trans. VLSI Syst., 1996, 4, (1), pp. 146-149

PANG, T.C.J,, CHOY, CS., CHAN, C.F., and CHAM, W.K.: ‘Self-
timed Booth’s multiplier’. Proceedings of 2nd International Confer-
ence on ASIC, Shangai, China, October 1996, pp. 2124
REITWIESNER, G.W.: ‘Binary arithmetic’, Advances in Computers,
1960, 1, pp. 231-308

MCcSORLEY, O.L.: ‘High Speed Arithmetic in Binary Computers’,
Proceedings of the IRE, 1961, 49, (1), pp. 67-91

JOHNSON, D., and AKELLA, D.V.: ‘Design and analysis of asyn-
chronous adders’, IEE Proc., Comput. Digit. Tech., 1998, 145, (1), pp.
1-8

ANNARATONE, M.: ‘Digital CMOS Circuit Design’ (Kluwer Aca-
demic Publisers, Boston, 1986)

RUIZ, G.A.: ‘Evaluation of three 32-bit CMOS Adders in DCVS
logic for self-timed circuits’, IEEE J. Solid-State Circuits, 1998, 33, (4),
pp. 604-613

SCHUMANN, T., KLAR, H., and HOROWITZ, M.: ‘A fully asyn-
chronous, high-throughput multiplier using wave-pipelining for DSP
custom applications’. Mikroelektronik fiir die Informationstechnik,
ITG-Fachtagung, Chemnitz, Germany, 1996, pp. 283-286
NAGAMATSU, M., TANAKA,S., MORILJ, HIRANO,K,
NOGUCHLI, T., and HATANAKA, K.: ‘A 15 ns 32 x 32-b CMOS
multiplier with an improved parallel structure’, /EEE J. Solid-State
Circuits, 1990, 25, (2), pp. 494-497

GOTO, G., SATO, T., NAKAJIMA, M., and SUKEMURA, T.: ‘A
54 x 54-b regularly structured tree multiplier’, IEEE J. Solid-State Cir-
cuits, 1992, 27, (9), pp. 12291235

MORI, J, NAGAMATSU, M., HIRANO, M., TANAKA, S,
NODA, M., TOYOSHIMA, Y., HASHIMOTO, K., HAYASHIDA,
H., and MAEGUCHI, K.: ‘A 10 ns 54 x 54-b parallel structured full
array multiplier with 0.5-um CMOS technology’, IEEE J. Solid-State
Circuits, 1991, 26, (4), pp. 600605

241

