25 YEARS AFTER THE DISCOVERY: SOME CURRENT TOPICS ON LENSED QSOs

Santander (Spain), 15th-17th December 2004

The University of Manchester Jodrell Bank Observatory

MANCHESTER 1824

CLASS B0218+357 and the Hubble Constant

Tom York Neal Jackson Ian Browne Olaf Wucknitz (Potsdam) Jess Skelton

York et al, astro-ph/0405115

JVAS/CLASS survey

- VLA 8.4GHz snapshots
- Resolved sources followed up with Merlin
- 22 lenses from 1990-1999

0128+437	0218+357	CLASS gravitational lenses		NG0414+054	0445+123
0631+519	0712+472	0739+366	0850+054	1030+074	1127+385
1152+199	1359+154	1422+231	1555+375	1600+434	1608+656
1933+503	1938+868	2045+285	2108+213	2114+022	2319+051

Myers et al. 2003 Browne et al. 2003

Radio properties of 0218

- Double source, separation 334mas
- 830, 340 mJy at 8.4GHz; variable
- Einstein ring
- Flat-spectrum core of larger overall source

Patnaik et al. 1992

3

Radio properties of 0218 (ctd)

- Also has VLBI structure in both components!
- Complex and knotty jet in both A and B

Redshifts of lens and source are 0.6847 and 0.944 (Browne et al. 1993, Carilli et al. 1993, Cohen et al. 2003)

Optical properties of 0218

HST/WFPC2 I (left) and V (right). Flux ratio is different – GMC towards A? (Wiklind & Combes 1995, Menten & Reid 1996).

Measurement of time delay

Mass models

Usual problem with 2 images: constraints
But in this case have Einstein ring and VLBI structure

LensCLEAN models

- Kochanek & Narayan 1992
- Developed by Ellithorpe et al. 1996, Wucknitz 2004
- Analogous to radio CLEAN but with lens inversion inbuilt – construct source structure by iteration

Lens centre is crucial

- Lens centre gives both Ho and M:R index
- Without it, get neither
- LensCLEAN gives it but better to measure directly as well
- Wucknitz et al. 2004: 78+/-4 km/s/Mpc

Lehar et al. 2000; Wucknitz et al. 2004

Fun with PSFs...

- 80mas PSF vs ~50mas B-G separation
- B is about 20x brighter peak than G
- PSF is not perfect variable with time

Would you like to win a game you don't know how to play? Just use your lack of knowledge in a systematic way.

(as far as I know, Cambridge Maximum Entropy group)

HST/ACS observations

- 36 orbits, 32 on source
- I band (F814W)
- WFC used to avoid scattered light problem
- 8-point dither to recover the 80-mas resolution

HST/ACS observations

- 5 epochs obtained
- PSF different in each!
- A and B appear closer than 334mas
- Galaxy has clear spiral arms
- Close to face-on
- Irritating star-forming regions

The same picture, in colour

Deconvolution method

- Make and test several PSFs (separate star, field stars)
- Use to deconvolve A, B by measurement and subtraction of peaks
- Leaves residual

Deconvolution method

- Choose possible galaxy position
- Calculate symmetry parameter corrected for photon and PSF errors
- Gives a X2 surface, best galaxy position
- Can do with or without blanking spiral arms

Value of Hubble constant

Data used	Masking	Position (RA, δ from B)	H0 (isothermal)	H0 (free index)	M:R index
optical	none	+57, +0	79+/-7	68+/-6	1.13+/-0.08
•		,			
optical	arms	+75, -5	66+/-9	56+/-14	1.16+/-0.19
VLBI+optical	none	+60,-12	74+/-6	70+/-5	1/05+/-0.03
VLBI+optical	arms	+74,-18	64+/-8	61+/-7	1.05+/-0.04

York et al. 2004 (optical only) in bold; Wucknitz et al. 2004 (VLBI only) in fainter type, for the isothermal case.

Value of Hubble constant

Ellipses represent VLBI-only and a combination of optical+VLBI constraints.

Other implications

- Very close to isothermal
- Central position still crucial
- Likely to dominate error until new observations (HST/JWST)...
- ...at which point, time delay needs refining
- No point in doing either to <3%

The error budget

- galaxy position (ignore arms): ~6%
- time delay: 4%
- line-of-sight matter: ~2%
- shear by nearby galaxies: 1-2%
- uncertainty in Ω , Λ : 1-2%

All errors are 2-sigma. They ignore the effect of the spiral arms, which is the biggest systematic in the measurement.