25 YEARS AFTER THE DISCOVERY: SOME CURRENT TOPICS ON LENSED QSOs

Santander (Spain), 15th-17th December 2004

Multi-wavelength and multi-epoch imaging of J1131-1231 *A flux ratio anomaly ?*

D.Sluse, J.-F. Claeskens, J.Surdej (IAG Liège)

Introduction

- Discovered in 2002 (Sluse et al. 2003)
- Long axis quad.
- Source : z_s = 0.658
- Lens : z_I = 0.295

Elliptical galaxy

 Cusp configuration systems are systems for which flux ratio anomaly may be easily identified : « magnification sum rule » (Schneider & Weiss 1992)

Introduction

$$R_{cusp} = \frac{|\mu_A + \mu_B + \mu_C|}{|\mu_A| + |\mu_B| + |\mu_C|} = \frac{|1 - I_B / I_A - I_C / I_A|}{1 + I_B / I_A + I_C / I_A}$$

For J1131-1231, R_{cusp} (discovery) ~ 0.36 while R_{cusp} (SIS+shear) ~ 0.065.

Although R_{cusp} may deviate from 0, it seems that it is not possible to construct realistic smooth lens models of J1131-1231 with R_{cusp} as large as 0.36 (Keeton et al., 2003; see also Amara et al., 2004).

Should we invoke micro or milli-lensing ?

Introduction

Follow-up observations of J1131-1231 to disentangle between those two scenarii ...

i)Improve the relative astrometry.
ii)Study the time flux variation (microlensing, intrinsic variability).
iii)Investigate the chromatic flux variations.

The data

Date	Epoch	Instrument	Filtre	
21 Nov 2002	1	SOFI	J	
12 Avr 2003	2	ISAAC	Ks	
21 Avr 2003	3	FORS2	Rspec	
02 May 2003	4	FORS2	Rspec	
26 May 2003	5	FORS2	В	
17 Jun 2003	6	FORS2	V, Rspec	
17 Nov 2003	7	FORS2,NIC2	B, V, R, F160W	
09 Feb 2003	8	CFHT-IR	J, H, K'	
12 Avr 2004	9	FORS1	B, V, R, I 5	

i) Relative astrometry

- New data : NICMOS + FORS + ISAAC
- Relative astrometry deduced from the MCS (Magain, Courbin, Sohy 1998) deconvolution / gaussian fit.
- All the relative positions (obtained with typically 5 mas accuracy) agree within less than 10 mas on all the data sets.

i) Relative astrometry

Improved smooth lens models (SIS+shear, EIS; EIS+ γ) : lens parameters not very different from the discovery (however C leading)

Expected flux ratios (EIS+ γ) and observed ones (*discovery paper*, Sluse et al 2003)

	Δm_{AB}	Δm_{AC}	Δm_{AD}	Δm_{BC}	R_{cusp}
Model	-0.54	-0.65	-3.2	-0.11	0.07
Observed	+0.46	-0.62	-2.2	-1.1	0.36

ii) Time flux variations

- Photometry = output of the MCS (Magain, Courbin, Sohy 1998) deconvolution (same ring at all epochs).
- R band FORS1 and FORS2 images.
- 5 epochs (April 2003 -> April 2004)

ii) Time flux variations

R band

ii) Time flux variations

•Scenario **S1** : [🤛]

- A is micro-lensed (end of a de-amplification or begining of an amplification)
- •Scenario S2 :
- **B** & **C** are micro-lensed (end of an amplification or begining of a deamplification)

iii) Chromatic variations

a) Differential extinction

B-V-R colors in April 2004

Idem in November 2004

 $\overline{=}$

iii) Chromatic flux variations

b) Ring contamination + differential amplification : schematic view

iii) Chromatic variations⁼

iii) Chromatic variations

c) Micro-lensing

With the increasing ring brightness, the micro-lensed flux (QSO only) will be damped in the total point-like flux (QSO+host).

=> Flux ratio will tend towards the *contaminated* macro-lensed flux ratio with the increasing host galaxy contribution (i.e. going from visible to NIR wavelength).

iii) Chromatic variations =

iii) Chromatic variations Observed flux ratios

S1 : A is DE-AMPLIFIED

 $\Delta m_{AB}(EIS+\gamma)=-0.54$

S2 : B is AMPLIFIED

iii) Chromatic variations Observed flux ratios

 $\Delta m_{BC}(EIS+\gamma)=-0.11$

iii) Chromatic variations Observed flux ratios ₱

 $\Delta m_{AC}(EIS+\gamma)=-0.65$

S1 : A is DE-AMPLIFIED

S2 : C is AMPLIFIED (cf K band)

Summary and conclusions

- Improved astrometry => EIS+ γ model reasonably good (Δm_{BC} =-0.11).
- Time flux variations => A is micro-lensed (S1) OR B & C are micro-lensed (S2).
- Chromatic flux variations => A is de-amplified (note that A = saddle point...) OR B & C are amplified.
- Whatever the micro-lensing scenario :
- $|\Delta m_{BC/AC} (obs)| >> |\Delta m_{BC/AC} (mod)|$.
- Chromatic flux variation => R_{cusp} (corrected)≥ 0.025.
 Microlensing : YES but flux ratios still deviate from simple model predictions.

More complex models but also substructures 3