Identification of Functional mob Regions in Rhizobium etli: Evidence for Self-Transmissibility of the Symbiotic Plasmid pRetCFN42d

Daniel Pérez-Mendoza,1 Ana Domínguez-Ferreras,1 Socorro Muñoz,1 María José Soto,1 José Olivares,1 Susana Brom,2 Lourdes Girard,2 José A. Herrera-Cervera,1* and Juan Sanjuán1**

Departamento Microbiología del Suelo y Sistemas Simbióticos. Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain,† and Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrogeno, UNAM, Cuernavaca, Morelos, México*

Received 29 March 2004/Accepted 2 June 2004

An approach originally designed to identify functional origins of conjugative transfer (oriT or mob) in a bacterial genome (J. A. Herrera-Cervera, J. M. Sanjuán-Pinilla, J. Olivares, and J. Sanjuán, J. Bacteriol. 180:4583-4590, 1998) was modified to improve its reliability and prevent selection of undesired false mob clones. By following this modified approach, we were able to identify two functional mob regions in the genome of Rhizobium etli CFN42. One corresponds to the recently characterized transfer region of the nonsymbiotic, self-transmissible plasmid pRetCFN42a (C. Tun-Garrido, P. Bustos, V. González, and S. Brom, J. Bacteriol. 185:1681-1692, 2003), whereas the second mob region belongs to the symbiotic plasmid pRetCFN42d. The new transfer region identified contains a putative oriT and a typical conjugative (tra) gene cluster organization. Although pRetCFN42d had not previously been shown to be self-transmissible, mobilization of cosmids containing this tra region required the presence of a wild-type pRetCFN42d in the donor cell; the presence of multiple copies of this mob region in CFN42 also promoted conjugal transfer of the Sym plasmid pRetCFN42d. The overexpression of a small open reading frame, named yp028, located downstream of the putative relaxase gene traA, appeared to be responsible for promoting the conjugal transfer of the R. etli pSym under laboratory conditions. This yp028-dependent conjugal transfer required a wild-type pRetCFN42d traA gene. Our results suggest for the first time that the R. etli symbiotic plasmid is self-transmissible and that its transfer is subject to regulation. In wild-type CFN42, pRetCFN42d tra gene expression appears to be insufficient to promote plasmid transfer under standard laboratory conditions; gene yp028 may play some role in the activation of conjugal transfer in response to as-yet-unknown environmental conditions.

Bacteria grouped within the Rhizobiaceae, Phyllobacteriaceae, and Bradyrhizobiaceae families, collectively known as rhizobia, are able to establish nitrogen-fixing symbiosis with leguminous plants. Many of these organisms contain complex genomes, with one chromosome and one or more large plasmids ranging in size from ca. 100 kb to >2 Mb. A common feature of the genomes of the rhizobia is that genes involved in the symbiotic process are located on independent replicons known as symbiotic plasmids (pSym) or in “symbiotic islands” within the chromosome. In addition to these symbiotic elements, rhizobia may carry additional plasmids, namely, non-symbiotic or cryptic plasmids, that are not indispensable for symbiosis or simply with no specific function assigned (29, 38, 39, 45).

Rhizobia are difficult to isolate directly from the soil or rhizosphere; they are often isolated by virtue of their ability to nodulate specific legumes, although the presence of large numbers of nonsymbiotic rhizobia in soils is well recognized (32, 47, 52). Acquiring the ability to nodulate leguminous plants provides rhizobia with the capacity to exploit a very exclusive ecological niche and, therefore, some important advantages over a strictly saprophytic lifestyle. Thus, it seems reasonable to think that the gain of the genetic information necessary to nodulate a specific host should be a very important event in the evolution of these soil bacteria.

There is abundant evidence for symbiotic gene transfer among different species or genera of rhizobia. Much of these data come from the analysis of soil populations and the finding that different bacterial species carry similar plasmids (10) or, vice versa, that different plasmids may associate with similar chromosomes (55). After introduction of inoculant strains in soils where no native symbiotic rhizobia are present, sometimes new rhizobial populations arise as a consequence of symbiotic gene transfer from the inoculant to nonsymbiotic rhizobia in the soil (51). However, direct experimental data are required to understand the dynamics of rhizobial DNA exchange. Furthermore, conjugal transfer of pSym plasmids under laboratory conditions appears to occur at negligible frequencies or is undetectable, which raises questions about the actual capacity of these elements for lateral spread. Indeed, few rhizobial nodulation plasmids (pSymns) display consistent and high conjugation frequencies in normal laboratory media. One of these is pRL1JI from Rhizobium leguminosarum, a plasmid carrying genes for nodulation and nitrogen fixation on legumes such as pea, vetch, and lentil. pRL1JI conjugal transfer is regulated by quorum-sensing N-acyl-homoserine lactones (AHLs) through...
a novel regulatory relay (12). It seems likely that similar regu-
latory mechanisms operate in other rhizobial nonsymbiotic
plasmids, such as pRme41a from Sinorhizobium meliloti (36) or
pRetCFN42a from R. etli (53). In other cases, such as the Sym
plasmid of Rhizobium sp. strain NGR234, tra gene expression
may be regulated by AHLs, but conjugal transfer is negligible
under laboratory conditions and not affected by quorum sens-
ing AHLs, suggesting that additional upstream regulatory cas-
cades control tra gene expression (21). Such a hypothetical
cascade would perhaps be analogous to the opine response
controlling conjugal transfer of Agrobacterium tumefaciens Ti
plasmids (17, 26, 35).
In other cases, as for the R. etli symbiotic plasmid
pRetCFN42d, the ability to cointegrate with a resident conjuga-
tive plasmid, pRetCFN42a, provides an alternative means
for lateral spread (9, 53).
For most symbiotic plasmids or islands, it is clear that
significant conjugal transfer does not occur under laboratory
conditions; frequencies of transfer range from very low to unde-
tectable (2, 21, 27, 41, 50), which suggests that either their
transfer is precisely controlled or that these elements have lost
the capacity for efficient lateral spread. However, genome se-
quencing is revealing that many of these elements do carry
genes potentially involved in conjugal transfer (18, 19, 30, 31).
Therefore, it seems necessary to investigate whether pSym
plasmids that do not transfer at appreciable rates in the labo-
atory are actually proficient for self-transmissibility under nat-
ural conditions. For this purpose, approaches such as that
reported by Turner et al. (54) do not provide an optimal solu-
tion, since the presence of tra genes in a particular replicon
do not guarantee its conjugation proficiency, as indicated above.
We have previously reported an approach for the iden-
tification of functional mob regions in S. meliloti (24). The use
of merodiploid donor populations allowed the identification of
clones carrying functional oriTs under the experimental condi-
tions. This approach allowed us to characterize the mob region
of plasmid pRmeGR4a, a cryptic, self-conjugal plasmid of
S. meliloti GR4. Indeed, 10 other putative oriTs were identi-
cified. Here we report on the development of this original
approach, where a recA-independent recombination event dur-
ing the construction of merodiploid donor populations
resulted in the downstream selection of false Mob+ clones.
The approach has been modified to prevent such disadvantages,
and its efficacy was tested during the identification of mob
regions in the R. etli CFN42 genome. This has allowed us to
obtain the first evidence that the Sym plasmid of this strain may
be self-transmissible and that its transfer is subject to regula-
tion.

MATERIALS AND METHODS

Bacterial strains and plasmids. All bacteria and plasmids used in the present
study are listed in Table 1. R. etli and S. meliloti strains were grown at 30°C
on TY medium (tryptone-yeast extract-CaCl2) (4). Escherichia coli and A. tumefa-
ciens were grown on Luria-Bertani medium (44). When required, antibiotics
were added at the following concentrations: nalidixic acid, 20 μg/ml; spectino-
ymycin, 50 μg/ml for R. etli and 200 μg/ml for S. meliloti; kanamycin (Km), 50
μg/ml for R. etli and A. tumefaciens and 200 μg/ml for S. meliloti; gentamicin
(Gm), 10 μg/ml; rifampin (Rif), 50 μg/ml; streptomycin (Sm), 100 μg/ml for R.
etli, 200 μg/ml for S. meliloti, and 25 μg/ml for E. coli; and tetracycline (Tc), 2
μg/ml for Rhizobium and 10 μg/ml for E. coli.

Bacterial matings. Donor strains grown to an approximate optical density at
600 nm of 0.2 and recipient Rhizobium, Sinorhizobium, or E. coli strains grown
to late exponential phase were mixed and incubated in a 1:1 donor/recipient ratio.
Mating mixtures were resuspended in 50 μl of TY medium and loaded onto a
0.45-μm pore size filter. Filtered mating mixtures were deposited on TY-agar plates and incubated overnight at 30°C. Cells were resus-
pended by vigorous vortexing and diluted in liquid medium. To calculate transfer
frequencies, donor, recipient, and transconjugant CFU were counted after mat-
in disruption and plating of serial dilutions. Transconjugants were selected on
plates supplemented with appropriate antibiotics. The transfer frequency was ex-
pressed as the number of transconjugants per recipient output. Donor and recip-
ient spontaneous resistance to selective antibiotics was also determined.

Plasmid profiles. Plasmids profiles were visualized by the Eckhardt procedure
(14) as modified by Hynes and McGregor (28).

DNA hybridizations. For DNA hybridization, total genomic DNAs of S. me-
liloti or R. etli strains were isolated by standard procedures (37) and digested with
endonuclease EcoRI, electrophoresed on 0.8% agarose gels, transferred to
positively charged nylon membranes by the method of Southern (44). Blots of
intact plasmid profiles electrophoresed in 0.8% agarose–1% sodium dodecyl
sulfate–Eckhardt gels were transferred to positively charged nylon membranes as
well (44). DNA hybridization probes were digoxigenin labeled according to
manufacturer instructions (Roche, Barcelona, Spain). Hybridization and mem-
brane washes were carried out under high-stringency conditions. Membranes
were prepared for chemiluminescent detection (Roche) and exposed to Kodak
X-Omat film (Sigma).

PCR, cloning, and sequencing. Total DNA was prepared from mid-exponen-
tial-phase R. etli cells. PCR primers Yp028F and Yp028SR were designed to
match conserved regions of yp028 gene of pRetCFN42d of R. etli (NC004041).
The primer sequences of Yp028F (GGATCCTCTCTGACCGACG) and
Yp028SR (GGATCCGCGCAACGTCTGAGAC) correspond to positions
104073 to 104090 and 141118 to 141135, respectively, of the R. etli
pRetCFN42d replicon sequence (19), with BamHI restriction sites at the 5' end
of the primers (underlined) to facilitate subsequent clonings. These primers were
used at a final concentration of 50 pmol in 50-μl amplification reactions con-
taining 1× PCR buffer, 200 μM deoxynucleoside triphosphates, 1.5 mM MgCl2,
and 1 of Tag polymerase (Sigma). The PCR profile used was as follows: an
initial denaturation of 94°C for 10 min, followed by 30 cycles of 94°C for 60 s,
52°C for 60 s, and 72°C for 60 s, followed in turn by a final extension of 72°C for
10 min. The PCR product was checked and digested according to standard
procedures (44). For all cloning procedures, standard DNA techniques were
used as described previously by Sambrook et al. (44). Several EcoRI fragments
from cosmid pRe182R1a were cloned into pBluescript (48). Sequencing was
carried out with a Perkin-Elmer ABI Prism 373 automated sequencer. DNA
sequence edition, translation, and analysis were performed by using the Vector
NTI 5.0 software package and the program BLAST from the NCBI network
service (1).

Construction of a traA4 mutant derivative of pRetCFN42d. Two primers,
RetraA4F (TCCTGGTTGGTGCACGTGACG) and RetraA4R (CGCCAGCG
GGATGCTCA), were used to amplify a 2,489-bp fragment from the
R. etli C5E3 pSym (from positions 143900 to 146388 of accession number NC
004041 [19]). The PCR product was cloned into pGEM-T Easy cloning vector; a 673-bp
EcoRV fragment from traA4 was removed and replaced by a Gm resistance (Gm')
genome cassette from Smal-digested pMS255 (3). The construction was cloned as
an EcoRI fragment into plasmid pKs18mobSacB (46) and introduced by conju-
gation into strain CFNX195 of R. etli. Allele replacement was selected as de-
scribed previously (46), and traA4 mutants were verified after hybridization
with a labeled plasmid pK18AmoGm BamHI digested as a probe.

Cell transformations. Bacterial transformation was carried out by electropo-
ration by using an electro-cell manipulator apparatus (BTX 600: BTX, San
Diego, Calif.). Electroporated cells were prepared according to the instruc-
tions of the manufacturer and stored at ~80°C. For electroporation, cells were
thawed on ice and mixed with plasmid DNA (0.3 to 0.5 μg/ml of cell suspension)
and then transferred to a 0.2-μm electrode gap chilled cuvette. A field strength of
2.5 kV/cm, a 0.8-μs pulse length, and a 129-Ω set resistance was applied; cells
were then immediately suspended in 1 ml of TY or Luria-Bertani medium and
then incubated at 30°C for 15 h or 37°C for 1 h for R. etli or E. coli, respec-
tively. Appropriate dilutions were plated on selective media.

RESULTS

Analysis of putative mob regions previously identified in S.
meliloti. Herrera-Cervera et al. (24) reported an approach to

5754 PÉREZ-MENDOZA ET AL. J. BACTERIOL.
identify DNA regions with the ability to convert a nontransmissible vector into a mobilizable plasmid and thus to identify functional origins of conjugative transfer (oriT and mob). RecA+ S. meliloti merodiploid populations were obtained by transferring an S. meliloti gene library from E. coli into S. meliloti by triparental matings using pRK2013 as a helper plasmid (16). The S. meliloti merodiploids were used as donors in matings with S. meliloti recipient strains and transconjugants carrying vector-encoded antibiotic resistance selected. Eleven putative mob regions were identified, most of which originated from plasmid replicons. This approach allowed identification and further characterization of the oriT from the conjugative plasmid pRmeGR4a (24), as well as the mob region from pRmeGR4b cloned in cosmid pRmOR65, a non-symbiotic plasmid that can be mobilized in trans by pRmeGR4a (22).

During the analysis of the remaining nine putative mob regions, we found that all of these nine cosmids showed unusually high transfer frequencies from either S. meliloti (24) or E. coli donors and therefore behaved as self-transmissible Mob+ Tra+ plasmids. In contrast, cosmids pRmOR69 (oriT from pRmeGR4a) and pRmOR65 (oriT from pRmeGR4b) displayed a Mob+ Tra− phenotype. After removing all of the EcoRI insert from the nine Mob+ cosmids to theoretically obtain the empty vector pLAFR1, we observed that the nine empty vectors (form here on named pLAFR1*) still maintained the Mob+ Tra− properties of the original vector pLAFR1. This suggested that the Mob+ Tra− capacity of the nine cosmids was due to a change in the cosmid vector pLAFR1. After digestion with EcoRI the restriction profiles of the pLAFR1* molecules were compared to those of vector pLAFR1 and plasmid pRK2013. Whereas the empty vectors derived from mob cosmids pRmOR69 and pRmOR65 had restriction profiles identical to the original pLAFR1 vector, the remaining nine pLAFR1* molecules with Mob+ Tra− phenotype showed re-

TABLE 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strains</th>
<th>Relevant features</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. meliloti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR4</td>
<td>Wild-type strain</td>
<td>38</td>
</tr>
<tr>
<td>GR4KLR</td>
<td>GR4 RecA+ derivative with pRmeGR4a::Sm/Spc and pRmeGR4b::Km</td>
<td>23</td>
</tr>
<tr>
<td>GRM10KR</td>
<td>GR4KLR derivative cured of pRmeGR4a::Sm/Spc; Km'</td>
<td>23</td>
</tr>
<tr>
<td>GRMR8SR</td>
<td>GR4 derivative cured of pRmeGR4a and pRmeGR4b; Sm' Rif'</td>
<td>38</td>
</tr>
<tr>
<td>R. etli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE3</td>
<td>Sm' derivative of wild-type strain CFN42</td>
<td>42</td>
</tr>
<tr>
<td>CFNX2001</td>
<td>CFN42 derivative (p42Δ/p42a−)</td>
<td>34</td>
</tr>
<tr>
<td>CFNX667</td>
<td>CFN42 recA mutant derivative (p42a−, p42Δ::Tn5mob)</td>
<td>J. Martinez (CIFN)</td>
</tr>
<tr>
<td>CFNX105</td>
<td>CE3 derivative (p42a−, p42Δ::Tn5Mob)</td>
<td>9</td>
</tr>
<tr>
<td>CFNX182</td>
<td>CE3 derivative (p42a−)</td>
<td>8</td>
</tr>
<tr>
<td>CFNX182Rif</td>
<td>CE3 derivative (p42a−/p42b−/p42c−/p42d−/p42eΔ/p42f−); Rif'</td>
<td>This work</td>
</tr>
<tr>
<td>CFNX195ΔTraAGm</td>
<td>CFN195 derivative (ΔtraA::Gm')</td>
<td>This work</td>
</tr>
<tr>
<td>A. tumefaciens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMI9023</td>
<td>Plasmidless Cs8 derivative</td>
<td>43</td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH5α</td>
<td>supE44, ΔlacU169, φ80, lacZΔM 5hsdR171, recA1, endA1, gyrA96 thi-1 relA1</td>
<td>20</td>
</tr>
<tr>
<td>HB101</td>
<td>supE44, hsdS20, recA13, ara-14, proA2, lacY1, galK2, rpsL20, xyl-Smt1</td>
<td>6</td>
</tr>
<tr>
<td>SI7-1</td>
<td>thi, pro, recA, hsdR, hsdM; RP4-2-Tc::Mu-Km::Tn7</td>
<td>49</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pB3T1c19</td>
<td>IncP cloning vector; Te' Ap'</td>
<td>5</td>
</tr>
<tr>
<td>pLAFR1</td>
<td>IncP cosmid vector; Te'</td>
<td>13</td>
</tr>
<tr>
<td>pTE3</td>
<td>IncP cloning vector carrying Salmonella enterica serovar Typhimium trp promoter; Te'</td>
<td>15</td>
</tr>
<tr>
<td>pGEM-T Easy</td>
<td>PCR cloning vector; Ap'</td>
<td>Promega</td>
</tr>
<tr>
<td>pKl8mobSacB</td>
<td>Mobilizable Km' suicide vector with a sacB gene of Bacillus subtilis</td>
<td>46</td>
</tr>
<tr>
<td>pBlueScript II KS</td>
<td>2.961-kb phagemid cloning vector; Ap'</td>
<td>Stratagene</td>
</tr>
<tr>
<td>pMS255</td>
<td>pUC derivative with the Gm' cassette</td>
<td>3</td>
</tr>
<tr>
<td>pRK2013</td>
<td>RK2 derivative helper plasmid; Km'</td>
<td>16</td>
</tr>
<tr>
<td>pRe182R1a</td>
<td>pLAFR1 derivative containing mob region from pRetCFN42d</td>
<td>This work</td>
</tr>
<tr>
<td>pRe182R1b-d</td>
<td>pReOR182R1a overlapping cosmids from the CFN42 library</td>
<td>This work</td>
</tr>
<tr>
<td>pRe182R1aΔHindIII</td>
<td>pRe182R1a derivative with a 1-kb HindIII deletion</td>
<td>This work</td>
</tr>
<tr>
<td>pJBDp2</td>
<td>pJ3Tc19 carrying 7.7-kb HindIII fragment from pRe182R1a</td>
<td>This work</td>
</tr>
<tr>
<td>pJBDp3</td>
<td>BamHI deletion of pJBDp1</td>
<td>This work</td>
</tr>
<tr>
<td>pJBDp4</td>
<td>BglII deletion of pJBDp2</td>
<td>This work</td>
</tr>
<tr>
<td>pTEy0028</td>
<td>pTE with yp028 cloned in front of the trp promoter</td>
<td>This work</td>
</tr>
<tr>
<td>pTEy0028R</td>
<td>Same as pTEy0028 but with yp028 in reverse orientation</td>
<td>This work</td>
</tr>
</tbody>
</table>
striction patterns that appeared to be chimeras derived from both pLAFR1 and the mobilizing plasmid pRK2013 (data not shown). However, the pLAFR1* cosmids carried no resistance to Km, as does pRK2013. In conclusion, 9 of the 11 mob cosmids isolated by Herrera-Cervera et al. (24) did not contain any S. meliloti oriT. These cosmids probably were the result of recombination events between the pLAFR1 vector and the mobilizing plasmid pRK2013 during construction of the S. meliloti merodiploid populations. However, the recombination between the two plasmids must have been a recA-independent phenomenon, since all of the strains used by Herrera-Cervera et al. were recA defective (24).

A modified approach to identify Mob

regions in rhizobial genomes. The above results indicated that, although the approach reported by Herrera-Cervera et al. might be useful for identifying rhizobial functional oriTs, a modification was needed in order to prevent or at least reduce the excessive selection of false Mob+ clones. As a general rule, we recommend against using the suicide helper plasmid pRK2013 when the transfer of Mob+ plasmids from *E. coli* to rhizobial strains is needed. Alternatively, this can be done by using mobilizing *E. coli* strains (i.e., S17-1 [49]) instead of mobilizing vectors or, when feasible, by direct introduction of cosmids or plasmids into the rhizobial strains by electroporation. We have tested both alternatives as a modification to the oriT cloning strategy of Herrera-Cervera et al. (24).

The cosmids from the *S. meliloti* GR4 gene library were isolated from pooled *E. coli* HB101 clones by standard methods and electroporated into the mobilizing strain S17-1. The resulting clones were pooled and used as donors en masse in matings with the *S. meliloti* strains GR4KLR and GRM10KR (24), yielding merodiploid populations derived from both rhizobial strains. From here, we repeated the experiments of Herrera-Cervera et al. (24). When we used the new GRM10KR merodiploid population as the donor in matings, no transconjugants were obtained, in contrast to the \(10^{-5}\) transconjugants per recipient obtained by Herrera-Cervera et al. (24). However, when the GR4KLR merodiploid population was the donor, transconjugants arose at a frequency of \(10^{-7}\), a finding similar to that obtained by Herrera-Cervera et al. (24).

The cosmids acquired by 24 of the transconjugants were studied by restriction analysis, and all of them were found to correspond to cosmids pRmGR4a, carrying the oriT of plasmid pRmeGR4a (24). Thus, the modified approach resulted in the selection of *mob* region of pRmeGR4a plasmid without the appearance of any false Mob+ clones. We were unable to isolate additional putative oriT-containing regions from *S. meliloti* GR4. The fact that we could not isolate the mob region from plasmid pRmeGR4b in this experiment may be due to the fact that mobilization of this plasmid by pRmeGR4a is at least 10-fold less efficient than transfer of pRmeGR4a itself.

We also applied the modified approach to the isolation of mob regions from *R. etli* CE3. This strain carries six plasmids, ranging from 180 to 630 kb in size (9). To date, only the cryptic plasmid pRetCFN42a (abbreviated as p42a) has been shown to be self-transmissible (9, 53). Transfer of pRetCFN42d (the pSym; abbreviated as p42d) has also been detected (8), but this was shown to be fully dependent on the presence of p42a. The mechanism for pSym transfer appeared to require its cointegration with p42a.

Merodiploid populations of *R. etli* strains CE3 and CFNX182, a CE3 derivative cured of plasmid p42a (see Table 1), were obtained after introducing by electroporation cosmids from an *R. etli* CE3 gene library made in vector pLAFR1 (25) into each strain. Each merodiploid population was used as donor en masse in matings with *R. etli* CFNX218Rif or *E. coli* HB101 as recipients.

Using the CFNX182 merodiploids as donors, HB101 *Tc* transconjugants arose at frequency of \(1.6 \times 10^{-4}\) (Table 2). Cosmids from 20 of such transconjugants were isolated by standard procedures and subjected to restriction analysis with endonuclease EcoRI. All putative mob cosmids showed similar EcoRI patterns (data not shown), with at least five EcoRI fragments in common, indicating that all of them contained overlapping DNA inserts. Furthermore, one of these cosmids showed a restriction profile identical to cosmid pC-13, which was recently characterized by Tun-Garrido et al. (53), which contains the oriT and all transfer functions from plasmid p42a. To maintain the nomenclature used by Tun-Garrido et al. (53), we named the two different overlapping cosmids pC13a and pC13b, respectively. The selection of the p42a mob region demonstrated that our approach could also be applied to *R. etli*. When *R. etli* CFNX218Rif was used as a recipient in matings with the CFNX182 merodiploids, CFNX218Rif *Tc* transconjugants arose at frequency of \(3 \times 10^{-5}\) (Table 2). Cosmids from 32 such transconjugants were isolated and subjected to restriction analysis with EcoRI. Cosmids from 27 transconjugants showed similar EcoRI patterns to any one of members of the pC-13 cosmid family described above (with the appearance of a new member of this family, pC13c), whereas

TABLE 2. Isolation of Mob+ cosmids from a *R. etli* cosmid library

<table>
<thead>
<tr>
<th>Merodiploid donor</th>
<th>Recipient</th>
<th>Frequency of transconjugants</th>
<th>No. of transconjugants analyzed</th>
<th>Cosmid types (no. of occurrences)</th>
<th>No. of nonoverlapping cosmids</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFNX182</td>
<td>E. coli HB101</td>
<td>(1.6 \times 10^{-4})</td>
<td>20</td>
<td>pC13a (18), pC13b (2)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>R. etli CFNX218Rif</td>
<td>(3 \times 10^{-5})</td>
<td>32</td>
<td>pC13a (11), pC13b (12), pC13c (4), pRe182R1b (2), pRe182R1c (1), pRe182R1d (2)</td>
<td>2</td>
</tr>
<tr>
<td>CE3</td>
<td>E. coli HB101</td>
<td>(7.68 \times 10^{-6})</td>
<td>32</td>
<td>pC13a (18), pC13b (5), pC13c (3), pRe182R1a (4), pRe182R1b (2), pC13a (18), pRe182R1a (1), pRe182R1d (1)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>R. etli CFNX218Rif</td>
<td>(1.17 \times 10^{-4})</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*An *R. etli* gene library was transferred by electroporation into CFNX182 or CE3 strains, and corresponding pools of merodiploids were used as donors in matings with HB101 and CFNX218Rif. Transconjugants were selected for Tc encoded by the vector supporting the gene library. Cosmids from transconjugants were isolated and identified by EcoRI restriction analysis.*
the remaining five cosmids were of three overlapping types (which we designated pRe182R1b, pRe182R1c, and pRe182R1d), with restriction patterns completely different to the pC-13 family, suggesting that they could represent a new mob region.

Using the CE3-derived merodiploid population as donor, Tc’ transconjugants arose at frequencies of \(7.68 \times 10^{-6}\) and \(1.17 \times 10^{-7}\) when HB101 or \(R. etli\) CFNX218 Rif’ strains were used as recipients, respectively. Cosmids from the transconjugants obtained from each mating were analyzed and identified as members of either of the two cosmid families described above (Table 2). A new member of the pRe182R1 cosmid family, pRe182R1a, was identified.

In summary, our modified approach for identifying oriT regions appeared to work correctly in \(R. etli\), since it had been able to select for the only previously known functional mob region in strain CE3, located in plasmid p42a. In addition, we were able to isolate a new functional mob region not reported previously.

Characterization of a mob region in the \(R. etli\) CFN42 symbiotic plasmid. The putative mob region present in the cosmid family pRe182R1 was found to belong to the symbiotic plasmid p42d after cosmid pRe182R1a was used as a probe in hybridizations either against blotted digested genomic DNAs from various \(R. etli\) strains or against blotted Eckhardt-type gels containing intact plasmids from these strains. Specific hybridization signals were absent only in strains cured of p42d (Fig. 1).

To confirm that the isolated cosmids of the pRe182R1 family could indeed be mobilized from \(R. etli\), individual cosmids were introduced back into CFNX182, and the corresponding strains were separately used in matings with CFNX218 Rif as recipients. No transconjugants were obtained from these matings, indicating that mobilization of these cosmids required the presence of p42d in the donor cell. To further characterize this oriT, we cloned and end sequenced several EcoRI fragments from cosmids pRe182R1a. Comparison with the genome sequence of plasmid p42d (19) demonstrated that we had isolated a putative mob region containing two divergently transcribed tra operons and an oriT located in this symbiotic plasmid (Fig. 2A). As described above, our data suggested that this cloned mob region was functional and that its mobilization required plasmid p42d, despite the fact that this plasmid has never been shown to be self-transmissible. This apparent paradox could be explained if both the intact plasmid and the cloned mob region (in multicopy) were necessary for the plasmid to show self-transfer in laboratory media. If so, then the cloned mob region would promote transfer of the entire plSym. Indeed, strain CFNX667 (RecA−) carrying cosmid pRe182R1a was able to donate the plSym p42d to either \(R. etli\) CFNX218 Rif (1.38 \(\times\) 10\(^{-3}\) transconjugants per recipient). A. tumefaciens GMI9023 (frequency of 2.56 \(\times\) 10\(^{-5}\)) in media where the transfer of p42d is otherwise undetectable. This suggested that multiple copies of the p42d mob region allowed conjugation of the symbiotic plasmid to occur at detectable rates in standard laboratory conditions. Furthermore, a derivative of cosmid pRe182R1a carrying an 11-kb HindIII deletion that removed this mob region (plasmid pReOR182RaΔHindIII) also lost the ability to promote transfer of p42d.

Overexpression of the yp028 gene promotes \(R. etli\) pSym transfer in standard media. Since all overlapping cosmids pRe182R1a to pRe182R1d displayed the same capacity to promote p42d conjugation, it seemed obvious that the gene or genes responsible for this effect would be located in a DNA fragment common to all of them. This would be a DNA fragment flanked by yp026 and traD (see Fig. 2A). Indeed, a pJB3 derivative including a 7.7-kb HindIII fragment carrying the mob region (pJBdp1) had the same effect as the entire cosmids in promoting p42d transfer (Fig. 2B and Table 3). Several fragments were subsequently subcloned into pJB3Tc19 and tested for promotion of p42d conjugational transfer. As outlined in Fig. 2B and Table 3, clone pJBdp2, containing an intact yp028
open reading frame (ORF), maintained the ability to promote conjugation of p42d, but this property was lost when a BglII deletion removed the C-terminal half of yp028 (plasmid pJBdp3). The results indicated that it was the presence of this ORF that was responsible for promoting conjugation of p42d. Since this effect was only observed when this gene was cloned in multicopy vectors (p42d contains an intact copy of yp028), we reasoned that a change in yp028 expression resulted in the observed effects on p42d conjugal transfer. Indeed, when the yp028 coding sequence was placed under the control of the trp promoter (plasmid pTEYp028), it had the effect of promoting conjugal transfer of p42d at high frequencies (Fig. 2B and Table 3). In contrast, plasmid pTEYp028R containing the same yp028 cloned in the opposite orientation to the trp prom-
moter (thus containing a promoterless yp028) was unable to promote conjugal transfer of the p42d Sym plasmid (Fig. 2B; Table 3). These results strongly suggested that both the presence of an intact yp028 and expression of the ORF were necessary to promote conjugal transfer of the R. etli Sym plasmid. Transconjugants were verified to carry the p42d plasmid after the plasmid profiles were visualized (Fig. 3). We observed that most of the transconjugants that had acquired only plasmid p42d from CFNX195(pTEyp028) (Fig. 3, lane 3), whereas in some cases both p42d and p42b were transferred (Fig. 3, lane 2). Cointegration of p42d and p42b has previously been observed (7). As a result, the transconjugants carrying these two plasmids may have been generated through the transfer of a p42b-p42d cointegrate and its subsequent resolution into the wild-type plasmids in the recipient.

yp028 is located downstream of traA and putatively encodes a protein of 171 amino acids that shows no sequence homology to any protein sequence of known function described in the databases. Yp028 displayed some sequence conservation (<30% sequence identity and 47% sequence similarity) with two small ORFs of unknown function, Sma0974 (1235562) from S. meliloti pSymA and Atu5116 (1136889), from the A. tumefaciens pAtC58 cryptic plasmid.

yp028-dependent transfer of p42d requires traA. To determine whether the effect of overexpressing yp028 on the promotion of conjugal transfer of p42d was indeed dependent on p42d conjugal transfer genes, we investigated the effect of a

![FIG. 3. Eckhardt-type gel electrophoresis showing plasmid profiles of transconjugants that had acquired the Sym plasmid p42d from CFNX195(pTEyp028) using CFXN218Rif(pea) as recipient. Lanes: 1, CFNX195(pTEyp028); 2, type I transconjugant; 3, type II transconjugant; 4, recipient strain CFNX218Rif. The bands corresponding to plasmids p42d and p42b are indicated.](image)

TABLE 3. Identification of an ORF promoting conjugal transfer of the R. etli symbiotic plasmid p42d

<table>
<thead>
<tr>
<th>Donor</th>
<th>p42d transfer frequency<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>CFNX667(pBDp1)</td>
<td>2.3 × 10<sup>-5</sup></td>
</tr>
<tr>
<td>CFNX667(pBDp2)</td>
<td>1.36 × 10<sup>-5</sup></td>
</tr>
<tr>
<td>CFNX667(pBDp3)</td>
<td>ND</td>
</tr>
<tr>
<td>CFNX667(pBDp4)</td>
<td>ND</td>
</tr>
<tr>
<td>CFNX667(pTE)</td>
<td>ND</td>
</tr>
<tr>
<td>CFNX667(pTEyp028)</td>
<td>2.63 × 10<sup>-5</sup></td>
</tr>
<tr>
<td>CFNX195(pTEyp028)</td>
<td>1.8 × 10<sup>-5</sup></td>
</tr>
<tr>
<td>CFNX667(pTEyp028R)</td>
<td>ND</td>
</tr>
<tr>
<td>CFNX195ΔtraAmpyp028</td>
<td>ND</td>
</tr>
</tbody>
</table>

^aThe recipient was A. tumefaciens GMI9023. ND, no transconjugants detected.

DISCUSSION

The origin of transfer (oriT or mob) of conjugative or mobilizable elements is the only known cis-acting function required for DNA transfer. Its presence in a plasmid or a transposon is usually suggestive of the conjugative or mobilizable capacity of such genetic elements. Among the gram-negative bacteria known as rhizobia, genome sequencing is demonstrating that most, if not all plasmids and chromosomal islands in these bacteria contain an oriT, including the symbiotic plasmids and islands that carry genes important for the establishment of nitrogen-fixing symbiosis with legumes (18, 19, 30, 31, 40). In other cases, the search for oriTs by PCR amplification of putatively conserved traC-traA intergenic regions has provided similar results in *R. leguminosarum* (54). Neither approach, however, is able to determine whether the mob regions identified are actually functional in the genetic background where they are found. Indeed, relatively few rhizobial Sym plasmids and symbiotic islands have been found to conjugate at high frequencies under laboratory conditions (12, 21), despite the sequence data and other evidence indicating they may have self-transmissible (Mob⁺ Tra⁻) or mobilizable (Mob⁺) capacities under natural conditions (51, 55). Therefore, reliable approaches are needed that allow the identification of Mob⁺ capabilities in these bacteria, opening the possibility to study the putative regulation of their conjugal transfer. This was the aim of the approach described by Herrera-Cervera et al. (24), which allowed the identification of 11 putative oriTs in strain GR4 of *S. meliloti*. Among these were the mob region from the conjugative plasmid pRmeGR4a and that of the mobilizable plasmid pRmeGR4b. However, as shown in the present study, the remaining nine putative oriT-containing clones did not represent any functional mob region. These were actually false Mob⁺ clones generated after a recA-independent recombination event between the cosmid vector pLAFR1 and the helper plasmid pRK2013 during the construction of merodiploid rhizobial populations used as donors of putative Mob⁺ clones. Such recombination led to the generation of hybrid Mob⁺ Tra⁻ plasmids (resembling pRK2013) able to replicate in *S. meliloti* (as does pLAFR1). The subsequent experimental selection for Mob⁺ clones converted a probably unusual event into a frequently selected one. We modified the procedure to obtain merodiploid populations, avoiding the use of helper plasmids during transfer of the rhizobial gene library from *E. coli* into rhizobial strains, and verified that for *S. meliloti* GR4 no false Mob⁺ clones were ever obtained. Similarly, the procedure was applied to identify Mob⁺ clones in a *R. etli* CFN42 cosmid library. In addition to showing that no artificial Mob⁺ clones were isolated in this case, we demonstrated that there
are two functional mob regions in the genome of this bacterium that can be isolated by this procedure. One corresponded to the previously characterized transfer region of the cryptic, conjugal plasmid p42a (53), indicating the reliability of this approach and its application not only to S. meliloti but also to R. etli. The second was identified as a mob region in the symbiotic plasmid p42d of this strain. This was somewhat surprising since pSym p42d has never been shown to have conjugative capabilities (9, 19, 53). Although conjugal transfer of p42d has been detected previously under laboratory conditions, this transfer always relied on the cryptic plasmid p42a and required cointegration between p42d and p42a (9, 53). Furthermore, we observed that multiple copies of the mob region from p42d promoted conjugal transfer of this pSym in the absence of the cryptic plasmid p42a. Interestingly, we found that the presence of pSym was needed for mobilization of the cloned mob region. This apparent paradox was solved after identifying a small ORF, yp028, located adjacent to traA, which was responsible for this effect. Most likely, overexpression of yp028 was leading to conjugal transfer of the Sym plasmid p42d, providing the first evidence that this plasmid may be self-transmissible. The second piece of evidence comes from the fact that conjugal transfer of the R. etli pSym promoted by yp028 was dependent on the p42d traA gene. traA likely encodes the relaxase, which is essential for processing the oriT and for the initiation of DNA transfer. Thus, we have arrived at three conclusions: (i) the previously sequenced mob region of this pSym (19) is functional; (ii) conjugal transfer of this symbiotic plasmid under laboratory conditions can be promoted by overexpression of the yp028 gene; and (iii) plasmid p42d probably contains all functions needed for conjugal transfer and therefore may be regarded as a Mob" Tra", self-transmissible plasmid. In addition to Dtr genes, p42a carries a complete set of virB-like genes (19), similar to those identified in A. tumefaciens and involved in DNA transfer to plants or in pPacC58 plasmid conjugation (11, 33). These results support the hypothesis that the presence of transfer-related genes and particularly oriT-processing genes in rhizobial plasmids probably indicates that these elements actually have conjugative capabilities. The fact that these elements often display negligible or undetectable conjugal transfer rates in standard laboratory media does not preclude their conjugative potential under natural conditions and probably reflects a rather strict regulation of transfer functions. Based on our results, we suggest that conjugal transfer functions of the R. etli pSym may be silent under laboratory conditions and that transfer can be activated upon an environmental signal with the participation of yp028. Since overexpression of yp028 leads to pSym conjugal transfer, we speculate that activation of yp028 gene expression is a critical point during activation of conjugal transfer. The pRetCFN42d genome sequence annotation (19) includes a computational prediction that the yp028 promoter may be of the ς54 class, which would involve activation by a transcriptional regulator binding upstream of the promoter. Adequate experiments, however, are necessary to confirm this prediction.

At this point, we cannot speculate about the actual role of gene yp028 or whether such regulation is exerted at transcriptional or posttranscriptional levels. However, our results open a new window for investigating the actual capabilities of rhizobial symbiotic plasmids for lateral spread.

ACKNOWLEDGMENTS

This study was supported by grant BIO09-0904 from MCYT to J.S. and by a CSIC-CONACYT cooperation grant to J.S. and S.B. D.-P.-M. and A.D.-F. were supported by MCYT and MECD predoctoral fellowships, respectively. M.J.S. and J.A.H.-C. were supported by an MCYT postdoctoral contract.

We are grateful to G. Dávila (CIFN-UNAM [Mexico]) for sharing part of the sequence of pRetCFN42d prior to publication. Michael Hynes is acknowledged for critical comments on the manuscript.

REFERENCES

