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We consider the asymptotic behavior of the vibration of a body occupying a region
Q C IR3. The density, which depends on a small parameter ¢, is of order O(1) out
of certain regions where it is O(¢~™) with m > 2. These regions, the concentrated
masses with diameter O(e), are located near the boundary, at mutual distances O(m),
with n = n{e) — 0. We impose Dirichlet (respectively Neumann) conditions at the
points of 8 in contact with (respectively, out of) the masses. For the critical size
€ = O(n?), the asymptotic behavior of the eigenvalues of order O(¢™~2) is described
via a Steklov problem, where the ‘mass’ is localized on the boundary, or through the
eigenvalues of a local problem obtained from the micro-structure of the problem. We
use the techniques of the formal asymptotic analysis in homogenization to determine
both problems. We also use techniques of convergence in homogenization, Semigroups
theory, Fourier and Laplace transforms and boundary values of analytic functions to
prove spectral convergence. In the same framework we study the case m = 2 as well as
the case when other boundary conditions are imposed on 9Q.

1. Introduction

Vibration problems of systems with concentrated masses have recently been ap-
proached by several authors: they study the asymptotic behavior of a body con-
taining a small region where the density is very much higher than elsewhere. In
Refs. 10 and 18 a problem for the Laplace operator has been studied by using quite
different techniques. In Ref. 19 the problem is generalized to the elasticity system.
References 4 and 11 studied the problem for a vibrating membrane. A lot of cases
appear depending on the dimension of the space and the density of the small region.

In this paper we study the vibrations of a body placed in a domain Q, which
contains many small regions of high density, the so-called ‘concentrated masses.’
These regions share a part of their boundary with a part % of the boundary of Q.
Besides, as the small region size decreases, the number of small regions increases, in
an analogous way as it happens in homogenization problems. Therefore, techniques

This work has partially been supported by the D.G.I.C.Y.T.
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of Uo:san homogenization (cf. Refs. 1, 3, 6,9 and 17) and spectral perturbation
theory Anm Refs. 15 and 16) are used for the study of this problem. Some results
related t6 Secs. 2-4 and 5.1 have already been announced in Ref. 8.

We shall suppose that the diameter of the small regions B® is O(¢) and the
distance between them is O(n); €, being the parameters such that n{e) — 0 as
€ — 0 (see Fig. 1). The density is of order O(e~™) in these regions, B® and o(1)
elsewhere, m > 2. We study the limit behavior as € — 0, of the eigenvalues of a
problem for the Laplace operator with Dirichlet condition on £NJB° and Neumann
conditions on ¥ — 8B¢. Using the mini-max principle we prove that the eigenvalues
are of order O(e™~2) as stated in Proposition 1 (Sec. 2).

Fig. 1.

Using the method of matched asymptotic expansions we characterize the be-
havior of the eigenvalues of order O(¢™~2) for the critical size € = an?, a > 0,
and m > 2: These eigenvalues are of type: A6 =™ 2)\0 + ..., where either X is
an eigenvalue of a local problem (problem (3.5)) with an unbounded part without
kinetic energy (see Sec. IV.8 of Ref. 15), or F(X\°) is an eigenvalue of a homogenized
problem. This homogenized problem is a Steklov type eigenvalue problem (problem
(4.5)) where the mass term is localized only on the surface I, and the function
F is obtained from the micro-structure of the problem in a neighborhood of each
concentrated mass (see (3.6)). In the extreme cases, € /n? — 0 and €/n* — oo, the
behavior of these eigenvalues is described only through those of the local problem
(see Remarks 3 and 5). We study the local problem and some properties of function

F in Sec. 3.
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We point out that unlike the case of one concentrated mass, where small eigen-
values (of order O(¢™2)) give rise only to ‘local vibrations’ (i.e., vibrations only
significant in a neighborhood of the concentrated mass), in this case, because of the
existence of many concentrated masses, small eigenvalues also give rise to ‘global
vibrations’ (i.e., vibrations affecting all the body).

The results of spectral convergence for m > 2 are stated in Theorem 1 (Sec. 5).
We justify the formal asymptotic expansions by using the Energy Method (see
Sec. 5.1). Besides, we also derive spectral convergence by the knowing properties of
time-depending solutions of vibrations problems and by using Fourier and Laplace
transforms (see Secs. 5.2 and 5.3). .

Quite different limit behavior is obtained for the eigenvalues in the case m = 2
(see Sec. 6): the homogenized problem that we obtain is an implicit eigenvalue
problem with the spectral parameter appearing both in the equation and in the
boundary condition. In the extreme cases eigenvalues of order O(1) can give rise to
global and local vibrations (see Sec. 6.1).

In Sec. 7 we study the asymptotic behavior of the eigenvalues when Neumann
condition is imposed on all the boundary X.

2. Setting of the Problem

Let Q be a bounded open domain of R® situated in the semi-space R3- =
{(z1,22,73)/x3 < O} with a Lipschitz boundary 8Q = % U I'q, its part £ =
0Q N {z3 = 0} is assumed to be non-empty.

Let B be the semi-ball B = {(y1,¥2,¥3)/¥i + v3 + yr < 1, y3 < 0}, in the
auxiliary space R® with coordinates y1,¥2,y3. Let OB be its boundary 8B = TUT,
where T is the circle T = {(y1,72,0)/y} + y2 < 1} in the plane {y; = 0} (see
Fig. 1). Let B¢ (T°,T* respectively) denote its homothetic B (eT, el respectively)
in the z;,z2, T3 space. In order to simplify, if there is no ambiguity, we shall also
use B (T¢,T* respectively) to denote the domain obtained by translation of the
previous B¢(T*,T¢ respectively) in the plane {z3 = 0}, centered on the points
Zr = (k17, k21, 0), k1,k2 € N. Both parameters ¢, 7 are positive, with ¢ < 7.
n = n(e) — 0 as € — 0. The number of all the B® contained in Q is N(e), with
N(e) = O(1/n?) (see Fig. 1). The geometric configuration in the plane {z3 = 0} is
analogous to that described in Refs. 6, 9 and 17.

We study the asymptotic behavior as € — 0, of the eigenvalues of the problem:

—Aut = pf(z)X°u® in Q
ut=0 on HJQCCM‘G AM:

£
ww -0 on T-UT*,

where p® = p®(z) is the function defined as:

pFflx)y=1/em™ if z€ UB® and p(z)y=1 if reN-—-JBc. (2.2)
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Here and in the sequel the symbol | is extended, for fixed ¢, to all the semi-balls
BE centered on iy, contained in . The parameter m being m > 2.

The variational formulation of problem (2.1) is:

Find ) and uf € V&, uf # 0, satisfying the equation:

uvidz + A° \

uffdz YV of eVe, (23)
Q-UB* o

\ Vus - Vofdz = (A°/e™)
Q UBe
V€ being the completion of {u € C-1(Q)/u = 0 on JT* UTq} in the topology of
HY{(Q).

Problem (2.3) is a standard eigenvalue problem: Let us consider the sequence

of eigenvalues of this problem:
D<A LIS <A< — © (2.4)
n—00

(with the classical convention of repeated eigenvalues). Let {uf}{2; be the corre-

sponding sequence of eigenfunctions, which is assumed to be an orthonormal basis
of V&.
We find estimates for the eigenvalues of (2.1):

Proposition 1. For eachi=1,2,...,m, ..., we have:
X< Ce™ 2, (2.5a)
Ce™ 2 <), (2.5b)

where C and C; are constants, C; independent of €, and C independent of € and i.

Proof. (a) Let us prove (2.5a). By the mini-max principle, for each i fixed, we

\_de_ugs
A% = min { max 2 (2.6)

. .nH
Breve 1l — _%%+\ Esa
€ UB* Q-uBe

have:

where the minimum is taken over all the subspaces Ef C V€, with dim Ef = 1.

We take the particular space Ef = [Wf,W5,... ,W¢], where *S\MKHH are
constructed in the following manner:

Let us consider the eigenvalues {};}52, of the problem:

IDeS‘tuvS\umcwq @Ha\mv
W,=0 on 0B
(with the classical convention of repeated eigenvalues). Let {W;}32, be the corre-

sponding sequence of eigenfunctions which is assumed to be an orthonormal basis
of L*(B). For each p=1,2,... ,i, we define W} as

S\vAalaV if As|evmmm for each T = Tg

€ &€
0 if zeQ-UB*.

Wy (z) =
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It is evident that:

\_Qe_na& m:_ln\ |Vo|2dy
Q B _

max — = max —2B—— =)™ %,

veEf” 2 2 veEs 12
oo o Jope [v] &8+\blcmn l*dz "% .\m?_ dy

so from (2.6), inequality (2.5a) follows.

?vFoamanovnoﬁﬁ.ms,Emoonmamngmmuomaom&,m Emnsmzﬁ%mgﬁﬁmmﬁmv\
u = 0 on T} to obtain: s

(1/€%) A\N,w« [v]2dz < Cte e |Voe|2dz Vv € v* (2.7)

(Cte being a constant independent of ). So, by taking Xf = X¢ and v = uf = uf the
corresponding eigenfunction in (2.3), on account of (2.7) and the Poincaré inequality
for {u € H'(Q)/u = 0 on T} we obtain inequality (2.5b). O

Remark 1. We have considered B as a semi-ball for simplicity. Nevertheless, all
the results of this paper hold if B is assumed to be a bounded open domain of R3-
with a Lipschitz boundary, and T = 8B N1 {ys = 0} is an open domain containing
the origin.

3. Local Problem

In this section we study the local problem which gives us microscopic information
about the eigenfunctions of (2.1). This problem is posed on the semispace R3 =
{ys < 0} and leads us to the study of an eigenvalue problem. We also study some
properties of a function F defined through the solution of the local problem, and
which will appear in the study of asymptotic behavior of the eigenvalues of (2.1).
The relation of the local problem and function F' with problem (2.1) will be justified
in Sec. 4.
Let us introduce the function V* = V*(y) depending on the parameter A:

VAy) = H @) + W), (3.1
where W = W(y) is the solution of the problem:

-AyZW =0 in R3-
ow

W=0 T, = =0}-T 3.2}
on - 0 on {ys=0} (

S\A@le“ _@_100“ @wAO<

considered in Sec. V of Ref. 13 (cf. also Ref. 6), and H *(y) is the solution of the
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‘local problem’:

A

'

P (-AH=MH+)W in B
7 ~A,H=0 in R>--B
OH
(H] = TMH =0 on T 53)

H=0 on T, — =0 on {y3=0}-T

i «v";zgg,u gl Jf!” ;,”qn}.*
-

P
D
S

|

i ﬁmA@le. _@_I.voov @mAO
which contains the parameter A, and the brackets denote the jump across I'.

Problem (3.3) has an equivalent variational formulation:
Find H> € V, satisfying:

\ VH* . VVdy + (TH*r, Vir) n»\ m:&i\/\ WVdy YV eV, (34)
B B B

where V is the complete space of {u € CY(B)/u = 0 on T} with the norm of
H'(B), and operator 7 € L(H 1/2(T), H~'/*(T")) is the ‘normal derivative’ operator
(see Sec. IV.8 of Ref. 15 for definition and properties of 7).

Let us consider the eigenvalue problem associated with (3.4):

Find v and U € V, U # 0, satisfying:

\ VU - YVdy + (TUe, Vir) = c\ UVdy YVeEV. (35)
B B

wHoEm.B. (3.5) has a countable infinity of positive eigenvalues (see Sec. IV.8 of
Ref. 15 for a study of this kind of problems).

Provided ) is not an eigenvalue of (3.5), problem (3.4) has a unique solution in
V. In this case we have:

_ H=(A-))"1Ww,
A being the operator associated with the form defined on V on the left-hand side
of (3.5). Besides, on account of (3.1), we can also define the function F()) as:

Py = {2 ;v
.vA v. Amzw e H-1/3(T) x HY/2(T)

= IAHV (A=X7AW + W) __iv ; (3.6)

Oy H-1/2(0)x HY/2(T")

where 7, denotes the unit outer normal vector to I'.
We give,some properties of the function F that we shall use in the following
sections.

Proposition 2. The function F(}) defined in (3.6), for A€ C, s a meromorphic
function with positive real poles {v:}22,, which are eigenvalues of (8.5). Moreover,
for eachi€ N and e R, it satisfies:

- lim F(\).=+oo and lim F(A\)=—oo.
A=y,

A—vt :

i [3

N AT e
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Proof. On account of (3.6), it is evident that the only possible singular points of
F are those of the spectrum of A.

Let v; be a fixed eigenvalue of (3.5). Considering the Laurent expansion of the
resolvent operator (A — )1 in a reduced neighborhood of this value, we can write:

|b yﬁ..S\
m..l@ﬁé \/|~\...

where P; is a projection of the space L%(B) on the eigenspace associated with v,
ie.,

9

on,

(A-X2"DwW -+ analytic part in A,

r

9

dny

- 1 8
(A=XNTAW| =350 > _(W,U;)U;

r J r

+ analytic part in A, (3.7)

where the summation is extended from j = 1,2,... ,m;;m; being the multiplicity
of the eigenvalue ;, and Uj the corresponding eigenfunctions associated with vy,
supposed orthonormal in L%(B), and (W,U;) = [z W - Ujdy.

Taking V = U = Uj, foreach j = 1,2,... ,m;, and v = v; in (3.5) we show that
(3.7) can be written as

1 ) .
2 (A—naw| = -2 15 (9% 4 oY,
on, A—vy; v &\ Ony Ony

r i r [/ H-/2()xHY*(T) r
+ analytic part in A .
Therefore, from (3.6), in a reduced neighbourhood of v; we have:
1 1 ouU. ?
FQ)=A——— AL_? Hv +g9(N), (3.8)
A—viy; 7 %3& H-1/2(T)x HY/2(T)

where g()) is an analytic function of A.

We note that if W is orthogonal in L?(B) to the eigenspace associated with v,
then F is an analytic function in a neighborhood of v;. Nevertheless, it is easy to
prove that there are countable number of eigenvalues of (3.5), such that W is not
orthogonal in L2(B) to the eigenspace associated with them. So, the result of the
proposition follows from (3.8). O -

Remark 2. By the Fredholm alternative, if A = v is an eigenvalue of (3.5), and
W is orthogonal to the eigenspace associated with v, then (3.4) has a solution H,
but it is not unique. Nevertheless, as we can see in the proof of proposition 1, F(v)
exists and it is unique (see Egs. (3.6) and (3.8)). O

In order to simplify the calculations in Secs. 5 and 6, it will prove useful to write
F()) as:

F(\) =~ \%- |VU|2dy + \/\may —1)2dy, (3.9)



¥

(3.10)

L U@y) — 0, lyl—oo, y3>0.

From the variational formulation of (3.10), Eq. (3.9) follows. On the other hand, it is
evident that U can be extended to a harmonic function out of unit ball. Therefore,
we have the estimates: U*(y) = O(ly|™), m%@ 2 (y) = O(jy|™?) in a neighborhood of
infinity.

In the sequel if there is no ambiguity we shall call the eigenvalues of (3.5),
‘eigenvalues of the local problem.’

4. Asymptotic Expansions and Homogenized Problem

In order to have an idea about the asymptotic behavior of the eigenelements of
problem (2.1) we shall apply the techniques of asymptotic matched expansions. In
this section we shall consider m > 2.

On accord of relations (2.5) we postulate an expansion of A\* = Af for a given
ieN: i =

T 2 A (4.1a)

we also postulate for the corresponding eigenfunction u® an outer expansion in

of the form: :
uf(z) = u¥(z) +eut (@) +--- (4.1b)

where 40 satisfies the conditions: it is a harmonic function in ©,4° = 0 on I'g and
some boundary condition ‘on. 3} that we will obtain using the matching relations
with the local expansions, in an analogous manner as it was performed in Refs. 6
and 17: | A

Introducing the local varigble y = (z — %) /€ in a neighborhood of £ = Z (for
each k fixed), we postulate aocal expansion for u®,u® = v0(y) +evt(y)+---. The
matching condition with 0¢mmn expansion (4.1b) allows us to obtain microscopic
information of solution ¢ in’a neighborhood of B® : O (y) = wO()V*° (y), where
V*° is the function defined in (3.1) for A = A°.

Using this microscopic information of u¢, we consider a local asymptotic expan-
sion, for the derivatives of :.m,wu a neighborhood of . The matching condition with
the outer expansion gives =mw

ou® ; . vy’
= — lim

1

o ~

—_— —u(Z)T.

Ox3 _ e—n04— g @) on,
z3=0 z T,

E.mv.
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where T, denotes the change of variables from y to &, and the summation is extended
to all the centers & of B contained in €2 (see Refs. 6 and 17 for more details about
this kind of techniques). ‘

By calculating the limit on the right-hand side of (3.4) we obtain:

w2
@Hm

vx’
= —

= ,1 Py, 4.3
b @3@ E A v

T [ g-13)xHY3(T)

where o = lim._o(e/n?) > 0.
On account of definition (3.6), the condition verified by u® on T is

oul

e M aF(A)d|x . (4.4)

=

So, the calculations performed in this section allow us to affirm that, if A° is not
an eigenvalue of the local problem (3.5) (see also Sec. 3), then (F(X°),u?) must be
an eigenelement of the Steklov type problem:

—Au=0 in Q

u=0 on HJD AhmV
ou

— =pouon L.

on

This problem has an equivalent variational formulation:
Find p and v € V,u # 0, satisfying:

\Qc.Qe&&HQt\:c&M YveV. (4.6)
Q >

V being the completion of {1 € C*({})/u = 0 on I'p} in the topology of H'(Q).

Problem (4.6) can be considered as an eigenvalue problem for a compact and
self-adjoint operator A defined on V. So, there is a countable number of positive
eigenvalues, {1;}%,, of (4.6) converging to infinity, as ¢ — oo(1/p; eigenvalue of
A). This result leads us to consider the ‘characteristic equation™

F(A) = p (4.7)

for each k € N (see Ref. 12 for other characteristic equations).
As an immediate consequence of Proposition 2 we have:

Proposition 3. For each . eigenvalue of (4.6), there is a positive root of (4.71.
This result ensures the consistency of the preceding formal expansions where,

for the critical size £ ~ an?, we must take A° (in (4.1a)) equal to an eigenvalue of
(3.5) or a solution of (4.7) for each eigenvalue i of (4.5).
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S

We point out that in (4.5) the ‘term mass’ (i.e., the coefficient of the spectral
vmwmamemw 1) appears only on the surface X. This term is obtained from a homog-
muﬁmﬁmwwm the point masses. By analogy with homogenization problems we shall
call ﬁrm@u.mogma (4.5) the ‘homogenized problem.’ :

mwoaucunwmw. In the extreme case £/n% — 0 (¢/n? — oo respectively) the condition
satisfied by u° on X is u® = QAWWW = 0 on ¥ respectively), i.e., u® = 0. It seems
that, in these cases, the eigenvalues of order O(¢™?) of problem (2.1) give rise to
local vibratipns of each mass independent of the others, and not to global vibrations
of the body.

5. Results of Convergence

In this section we shall use the Energy Method, Semigroups theory, Fourier series,
Fourier and Hmﬁgm transforms and results about boundary values of analytic func-
tions, in order to give results of convergence of eigenvalues of order (€™2) of (2.1).
Throughout this section we shall consider m > 2 and lim¢ .o (e/n*)=a>0.

We show, that some of these eigenvalues can be approached through eigenvalues
of the local problem (3.5), and others through roots of the characteristic equation
(4.7). We state the main results of this section in the following theorem:

Theorem 1. Let \/Mm.m 3 be a sequence of eigenvalues of (2.1) such that v,mmm.;\mwztu
converges to X\’ as e, — 0. Then, X0 is an eigenvalue of (3.5) or F (A7) is an
eigenvalue of (4.5). Reciprocally, if A0 is an eigenvalue of (3.5), or A° is a root of
equation {4.7) such that F'(X°) # 0, then A0 is a point of accumulation of X§ /™2

(X¢ being eigenvalues of (2.1)).

The proof of this theorem is a direct consequence of Theorems 2, 3 and 4 that we
shall prove in Secs. 5.1, 5.2 and 5.3 respectively.

5.1. Convergence to the spectrum of the homogenized problem

This section is devoted to proving the first result of Theorem 1. This result jus-
tifies in ‘some way the formal calculations performed in Sec. 4, and it was already
announced in Ref. 8 without proof. We use the Energy Method to prove it (see
Refs. N@%a 9 in relation to its usage in homogenization problems).

Theorem 2. Let X5 and uf be the eigenelements of problem (2.1). Let us suppose
that there is a sequence £, — 0 such that:

= (A~ fem™®) — X
B o ur — u®, weakly in H'(Q),
n—oo
where the indez i may depend on €y, and A0 is assumed not to be an eigenvalue of the
local problem (3.5). Then p = F(\°) and v° are eigenelements of the homogenized

problem (4.5).

e

1Bt (R
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Proof. Throughout this proof we shall write, for simplicity, (A¢,u°) instead of
(A5, ué"). We shall do this proof in two steps; in the first one we give some results
which will simplify the proof; in the second we show the result of the proposition.

Step 1. As in homogenization problem, taking into account the structure of the
solution of the local problem (3.10), we construct a sequence of ‘test functions’ w®
which allows us to take limits in (2.3). We use the same kind of techniques as in
Refs. 3 and 13.

Let U = U*® be the solution of problem (3.10) for A = A%, we shall denote by U*
the function U¢(z) = U(Z). Let ¢° be the smooth function which takes the value
1 in the semi-ball of radius (¢ 4 7/8), B(e + 1/8), and is zero out of the semi-ball of

radius (e + n/4), B(e + n/4):
o (z)=¢ ANEV )

n

where ¢ € C®[0,1],0 < ¢ < 1, =1 in [0,1/4] and Supp(yp) C [0,1/2].

Let us consider the function w® = (1—U#¢*) that we prolong by periodicity over
all the semi-balls B(e + n/4) centered on £ contained in €2, and by value 1 outside.
We have:

(a) w® € HY(R), w|upcurg = 0 and w® — 1 weakly in H'(Q2).

e—0
(b) For each v € V and each sequence {v°}. with v* € V¥ and v* v weakly
£—
in H'((), there exists a sequence 9° € H'(Q),°|useurq = 0, such that & — v
—
weakly in H'(Q) and satisfies the relations:
lim { V& - Vuedr = Q.\ _Qsm&@\. vpdT (5.1)
£=0Jq R3- >
:BC,m\mSv\ *wddr = Dyo\ (1- va%\\ védy (5.2)
€0 uB* B by

:E A\/m\msv\ ?MIQJEMQQ&I \. dﬁcmlzqu\sms&aﬂo.a,wv
¢—0 uBs UB(e+n/4)
¢ being any function of {u € C1(Q)/u =0 on I'n}.

Property (a) is shown as in Refs. 3 and 13 (Sec. 3). In order to prove property
(b) we use the usual techniques in boundary homogenization problems (cf. Refs. 1,
3 and 13):

For each fixed h > 0, let us consider a regular triangulation of the domain 2
composed of tetrahedrons of diameter h (see Ref. 14 for example). Let Il u denote
the projection of the element u € H'(2) on the space of the continuous functions
over (! which are polynomial of degree 1 on each tetrahedron and take value zero
on I'g. Let v®" be the function v&"* = (II,v°)}ws. By a process of taking lim'ts.
first as € — 0, and later as h — 0, we may choose a sequence h{g), with h(z) — 0
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as ¢ — 0, and with the functions ° = (ITp(eyv®)w® converging to v weakly in
H'(Q) and satisfying Eqgs. (5.1) and (5.2) (see p. 37 of Ref. 1 and Refs. 3 and
.13, Sec. mmmoH details of the proof). Relation (5.3) is proved on the basis of the
" variational formulation of (3.10) and the estimates for U¢, ¢ and their derivatives
“on B(e +1n/4) — B(e + n/8).

Step 2. Let us consider ¢ € {u € C'())/u = 0 on T'q}. By taking v* = ¢uf in
(2.3), because of X* = O(¢™~?), we have:

wEwtedz +o(1) . (5.4)
UB*

\ Vuf - Vurddz +\ Vut - Vowsdz = (A /e™)
Q Q

Let % be the sequence constructed in Step 1, (b). Considering (56.1) and the
convergence of sequences uf,w® weakly in H 1(Q) as € — 0, we obtain in (5.4):

\: VulVdr + a \5 . |VU|2dy \m updr

= lim _ﬂﬁym\msv\‘ ufwpdr — .\ V(uf — i) - Vuédz
e=0 uBe o (5.5)

For each ¢ € {u € C*(Q)/u = 0 on n} we consider the function Yw® and the
relation:

\ utwt pdx H\. dYwidz +\, (u® — Yuw)wdr .
UB* uBe uBe

Taking into account that ¢ = 1in Bf, € =~ an?, ¢ and 1 are smooth functions,
(Ae/e™2) — AP, and (5.2) we have:

e—0

lim (A€ /e™) uCwipds = ar’ \ (1-U)%dy \ $pdY
-0 UBs B b

H € /.m € _ ~EY,,E 0 - 2 0 _ ds .
+ Hm(X /e v\cmm? w6z + aN \m: U) &\ME ! "

In relation (5.6) we make ¢ tend to u° in H'(Q) and we substitute it in (5.5).
On account of (5.3) (¢° = 0 out of the semi-balls B(e + n/4)), and relation (3.9) we
deduce:

\ VulVedz = aF(\0) \ uwWpdT
Q =

and the result of the theorem is proved. O
Remark 4. If, in Theorem 2, A’ is an eigenvalue of (3.5) and W' is orthogonal to
the eigenspace associated with A%, then the result of theorem also holds (cf. Remark

3). O
We give complementary results of Theorem 2 in Secs. 5.2 and 5.3.
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5.2. Local vibrations

According to Sec. V.12 of Ref. 15 in this section we shall use the idea about obtaining
spectral properties of problems depending on a parameter when properties of time-
depending solutions of vibrations problems are known. We shall introduce two
hyperbolic problems associated with (2.3) and (3.5) respectively and we shall prove,
by using Fourier transform, that each eigenvalue of the local problem (3.5) can be
approached by sequences \/ME /e™2 as ¢ — 0, X¢ being eigenvalues of (2.3). We
point out that special initial conditions must be chosen for these problems, in order
to prove convergence of the time-depending solutions.
Let us change the variable in (2.3) by setting y = x/e. We obtain:

VUV, Vedy=~f | B(y)UVedy VV e Ve, (5.7

Q. Q.

Q. being the space {y/ey € Q}, 7¢ = Af/e™ 2, and (°(y) the function defined as:

Byy=1 if QmCﬁ\Wm and (°(y)=¢em if @mbmlCHumm,

where T;, B denote the transformed domains of semi-balls B¢ contained in O to the
variable y. V€ is the functional space: {U = U(y)/U(ey) € V¢}. Let {7, Ef};2, be
the eigenelements of (5.7), where {E£}22, is assumed to be an orthonormal basis
of Ve.

It proves to be useful, in this section, to write the problem (3.5) in the form:
Find v > 0 and U € V,U # 0, satisfying:

VU -V, Vdy = :\ UVdy VVev, (5.8)
R3- B

where V is the complete space of {U € Uﬁwmu'v\q = 0 on T} with the norm
VyUllz2ms-y. It is evident that V C L?(B) with dense and compact imbedding.
Let {v;,U7}52, be the eigenelements of (5.8), where {U7}2, is assumed 1o be an
orthonormal basis of V.

For each k, we consider (vx, U¥) a fixed eigenelement of (5.8). Let $*(y) be the
smooth function which takes the value 1 in B(0, m+m\ 8) and zero out of B(0. “t1-%)
(see Step 1 of Theorem 2). Let A® (A respectively) denote the operator associated
with the form defined on V¢(¥ respectively) by the left-hand side of (5.7} ({5.8)
respectively). As U*F@® € V¢, let us consider the hyperbolic problem associated
with (5.7):

., d2UE
B

Us(0) = Ukg*® (5.9)

dUs
dt (0)=0

FAUS=0,¢t>0
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A

5

o

yperbolic problem associated with (5.8)

Esm%icHP £>0

U(0) = U* (5.10)
dU

la.ﬂﬁov =0,

where ((y) is the function defined as 1 in B and 0 in R3- — B.

It is known (see for example Vol. I of Ref. 5) that the solution of (5.9) is the
unique function U* such that U*® € L*°(0, 00, V*), U e L*(0,00, L%(2)), that
satisfies:

Us(0) = Uk¢® (5.11a)

and, for any T fixed (positive or negative):

HJ ’
[ [0 V060 = 60 Vimad O] =0, oy
YV eV and V¢e{yeCo,T|/¢(T)=0}.

In the same way, problem (5.10) has a unique solution U such that U € L*®(0, 00, V),
U’ € L*(0, 00, L*(B)), satisfies:

i u(0) = U* (5.12a)

and, for mma\ T fixed (positive or negative):

T
\o (YU, Yy V) 2o $(0) — (U, V)iasy¢ ()] dt =0, (5.12b)

VV eV and Y ¢e {peCo,T|/¥(T)=0}.

We state now the relation between the solution of the problems (5.9) and (5.10),
but before, let us observe that the elements of V¢, prolonged by zero in R3- - Q,,
are mmemm._nmqom V.

ﬁnovoﬂnwou 4. Let Ue (U respectively) be the solution of (5.9) ((5.10) respec-
tively).. Then,

U¢ — U in L®(0, oo, V) weak-" and,

R e—0

UY — U’ in L™(0, 0o, L*(B)) weak-".

e—0

Proof. From the conservation of energy, for each t € R, we have:

1(8)2U% ()], + IV U2,y = IV (UFE)l2can) - (5.13)
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On account of estimates for @¢(y), U*(y) as |y| — oo (see Sec. 3), and their deriva-
tives, and because of € = o(%), we deduce from (5.13) the relations:

__Cm__hooAPoo.an <C and __Abmv~\nc,ﬂ__h8no.oo.b~ﬁb«vv <C, AM.HAV

where C is a constant independent of .

Therefore, there exists a subsequence of U*® Ac.m\ respectively) which converges
to a function U* in L®(0,00,V) weak-* (to U*’ in L*(0,00, L*(B)) weak-*, re-
spectively) as e — 0. In order to identify U* with the solution of (5.10), we take
limits in (5.11b) for each V € {V € D(R3~)/V =0 on T}. On account of (5.14)
and the fact that Supp(V) C B(0, m.._.lwhv for € small, we obtain that U* satisfies
Eq. (5.12b). Besides, as U*@® converges to U k in V when ¢ — 0,U* also satisfies
Eq. (5.12a). Thus, the convergence results of the theorem follow. O

We prove the spectral convergence by using the same kind of techniques as in
Sec. XIL.3 of Ref. 16 and Sec. VIL12 of Ref. 15.

Theorem 3. Let vy be a fized eigenvalue of the local problem (8.5). Then vy is a
point of accumulation of X /e™ 2, X¢ being eigenvalues of (2.1).

Proof. Let us consider the Fourier series expansion of U¢(t) in V(U(t) in V,
respectively):

oo

US(t) = Y (UG5, Bf e cos(y/AFH)ES

i=1
oo

(U@ = MAQF U7)g cos(y/Tit)U7 = cos(/Trt)U* ,  respectively) .

=1

By multiplying both expressions by U k in the space V, and taking Fourier transform
from t to 8, due to Proposition 4, we have:

o

S (UG, B (U, By (88— /AE) + 88+ VAE)) 3 88— Vi)

e-+0
Jj=1
+6(B++vk) in §(—oo,0c) .

We proceed exactly as in Sec. VIL12 of Ref. 15 to prove that for € small there exist
eigenvalues 7§ = X¢/ ™2 in each small neighborhood of k. Therefore, the theorem
is proved. O

5.3. Global vibrations

This section is devoted to proving that for each py eigenvalue of the homogenized
problem (4.5), the positive roots of the characteristic equation (4.7) can be ap-
proached by sequences A,/ e™2 as e — 0, X{ being eigenvalues of (2.1).

As in Sec. 5.2, we shall also try to obtain spectral properties by knowing proper-
ties of some time-depending solutions of vibration problems. But in this case, it is
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difficult to characterize the foblem satisfied by the time-depending limit function.
&w.ooo.amnm‘ to Sec. V1.4 of:Ref. 16 we introduce Laplace transform to identify this

tion i use Fourier transforms to have results of spectral
convergence! We oosuooﬁwmwwwp transforms by using results about boundary values
of analytics functions (see®5ed. I1.2 of Ref. 2). .

Let us consider, monwnmmmrm < 0, the stationary problem:

funiction. ‘At the same_tirfie,

“Au—of(zx)u=f¢ in
u=0 on I'quUUT® (5.158)
- . Wuo on -JT¢,
where Qm?v..u po(x)e™ 2, p° Aav defined in (2.2), and {f¢}c C V' is assumed to be
a sequence verifying the relations:
(i) | f€llevey < C, (C is a constant independent of €),
(i) 3 f € V' such that, for each ¢ € {u € C'(f))/u=0onTqa},

(F5, W ) veyxve — (f,P)vixv as €0,

w® being the test functions constructed in Step 1 of Theorem 2, from the solution
U*y) of the local problem (3.10): w® = (1-Us¢f), Us(z) = U*z/€). The spaces
v€ and V were defined in (2.3) and (4.6) respectively.
Let us deénote by uf the unique solution of (5.15a) in the space V© satisfying
g

.\. QCW . Vivedx — v,.\. QMAHvﬁw,Cm&H = A.\.m.diA<nv\ xVE Vv € Ve, AmHmUv
1] Q

Proposition 5. For each A <0 and f¢ satisfying (3) and (i), uS, converges weakly
in Vv as £ — 0, to the unique solution :w of the equation:

\ Vul - Vudz LQ%TG \ wvdE = (f,v)vixy YVEV. (5.16)
Q >

Proof. Taking into mooocsd,wm%.wmvv and relation (i), we prove that {u§ }¢ is bounded
in H'(2). Therefore, there exists a subsequence which converges to an element
u € Vase — 0. The fact mga this function is a solution of (5.16) is proved by
using the same kind of techniques as in Theorem 2: the test functions are those of
property (ii) and because of this property we can pass to the limit in Eq. (5.15b).

On account of relation (3.9), we have F(A) <0 for A < 0. So, the uniqueness of
solution of (5.16) follows, mam the proposition is proved. O

It will prove useful to éaﬁm.\.q in the sequel, the solution u of (5.16) as the solution

s iakin

of the equation:

H |
Twl&:wnﬂxﬂ in VvV, (5.17)
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A being the compact and self-adjoint operator associated with (4.6) (see Sec. 4). In
fact, (5.17) has an unique solution for each A € C such that F(}) is not eigenvalue
of (4.6) and X is not a pole of F (see Proposition 2).

Let us consider the hyperbolic problem associated with (2.1) (see also (5.15a)):

£ %:m E44E
of(z) 72 + Au* =0, t>0
uf(0) =0 (5.18)
du®

A® being the operator associated with the form defined on V¢ by the left-hand side
of (2.3), and ¥ € C1(Q).

From the unitary semigroups theory, there exists a unique generalized solution
u® of (5.18): u® € L*(0, 00, V®), u® € L(0, 00, L2(R)). The conservation of energy
gives us the estimates:

[[U€]| Lo ooy S € and  [uf f|Leo(0,0,L3(0)) < C

(C being a constant independent of €). Therefore, we can extract a subsequence of

u® such that
ut = u* in L*=(0, oo, V) weak-*, and
£ —
, . (5.19)
uw — u*’ in L°°(0, 0o, L*(£2)) weak-*,
E—
for some u* € L*(0, 00, V).
In order to identify this element, we use the Laplace transform of u® and u* (see
Sec. VL4 of Ref. 16 relating to this kind of techniques):

Liwt)(p) = \o ” w(t)e~"tdt and Liu*)(p) = \o * w* (t)ePtdt for Re(p) > 0 .

Now L[uf](p) and L{u*}(p) are analytic functions in the half plane Re(p) > 0 with
values in V. Besides, from (5.19), we have:

L{[u®)(p) — L[u*](p) weakly in Vv , for Re(p) > 0. (5.20)

e—0

Proposition 6. The function L{u*|(p) is the solution of (5.17) for A = —p? and
Re(p) > 0.

Proof. By the semigroups theory, L{u®](p) verifies the equation:
afp? L[uf)(p) + A°L[uf)(p) = ¢, Liuf](p) € V¢ for Re(p)>0.

Therefore, for each real positive p, L[u®}(p) is the solution of (5.15b), being A = —p?
and f¢ = af. For f¢, we show relation i) as a consequence of (2.7), and relation
ii) by using techniques of type of Step 2 of Theorem 2: we obtain f = fy(—p?).

fol—p?) = \ (1= U~ (g))dy - 52(8) ,
B
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ety

where 65() is defined as (85(¥), #)vxv = [g $1dE, and U~P*(y) is the solution

of (3.10) for A= —p?.

Because of Proposition 5, for each real positive p, L[u®](p) converges to the
solution u? 4 of (5.16) weakly in V as € — 0, with A = —p% and f = fu(—p?).
wgmamynmﬁcmmbnogoosbaAm.mcvémrmﬁ“ L{u*|(p) = :mw» for real positive p.

On account of (5.17), :muu is defined by:

OFIHI_E-@J
T T z-&o F(=p7) (521

and it is an analytic function in Re(p) > 0 which takes the same value as Lu*](p)
for real positive p. Thus, by analytic continuation, for any p, with positive real part
we have: L{u*|(p) = :Wun and the result of the proposition follows. O

We point out that, by the uniqueness of the inverse Laplace transform and
Proposition 6, the convergence of all the sequence u® to u* in L% (0,00, V) weak-*
as £ — 0 follows. Let us try to obtain results of spectral convergence from this result
by using Fourier transform: we need a result about boundary values, on Re(p) =0,
of analytic functions that we state in the following lemma (see Sec. IL.2 of Ref. 2
for its proof):

Lemma 1. If f € S, (f € S with support contained in [0, +00)), then L{f](p) is
an analytic function in the half space Re(p) > 0. Besides, Lifl(a+i8) — FIf1(B)
in §' as a— 0%, in the sense:

o 1

Jim (L[f](e +1B), ¢(B)) = (FI1(B), ¢(B) VeeS .

Let us consider (i, ws) a fixed eigenelement of (4.5). In the sequel, throughout
this section, we shall denote by A° a positive root of the characteristic equation (4.7)
(i.e., F(A°) = p) such that F'(A%) # 0 and )° is not an eigenvalue of (3.5). Let
us observe that the case when A is an eigenvalue of (3.5) has been considered in
Sec. 5.2. Besides, considering Propositions 2 and 3, for large k there always exists
a positive root of (4.7) with F'(X°) # 0.

Let g°(t) (g(t) respectively) be the function defined as:

g t)= Awsm (®)  wedv M W m AQS = AM:* (), widv M W M nmmvmoaéqv
(5.22)

g°,g € S, and on account of Proposition 6 its Laplace transform is given for

Re(p) > 0 by:
Lig®)(p) = L[(u®(t), wehv](p) (Llgl(p) = (ul,2, wi)v  respectively) . (5.23)

We define the boundary value of L{g®)(c + i8) (L{gl(c + if) respectively) on
the imaginary axis a = 0 as F[g°](8) (Flg](8) respectively) in the way stated in

R

s
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Lemma 1. We shall try to identity this distributions in a neighborhood of VA%, by
using the Fourier series expansion of u®(t) (asymptotic expansion of the resolvent
operator (A — A)~! in a neighborhood of A = 1/u, respectively).

Proposition 7. There ezists a small neighborhood I of ,\\/lc, such that:

ia@na&al%vl%ﬁ%v e+ (iB-VMNi)e, in D'(I) (5.24)
and
Figl(8) = Y nes(9)6(8 — Vi) ~1P | 57 | €68 in D'(D), (529)

where ¢ and c5(iB) are compler number with ¢ # 0, Re(c) = Re(c{(i8)) = 0, and
(8 — pvﬁuﬁw'wﬂv respectively) denotes the translated Dirac-Delta (Principal value
of (1/B) respectively) distribution to the point a. Here i take the value A} Jem2,
with {X§}$2, the eigenvalues of (2.1).

Proof. (a) First, we show (5.24). On account of Proposition 6, we consider the

formula (5.21) for :mvn and p = a +i8, a > 0. Taking into account the Laurent ex-

pansion of the resolvent operator (A—X)~! in a reduced neighborhood of A =1 [k,

the fact that F(—p?) and fy(—p?) are analytic functions in a reduced neighbor-

hood of p = +v/A%, and F'(A\%) # 0, and Eq. (5.23) for L[g](p), we can write for
Re(p) > 0:

H o0
Ligl(p) = c——=+ 3 (0 — VX%)"¢n , (5.26)
p— VAL G

where ¢ and c¢,, are constants, ¢ defined as:

c (A%, wedv

Uk
T F(A0)2iV)0 Prfy
P, being the projection of the space V on the eigenspace associated with 1 [k So,
Re(c) = 0.

Let us consider a small interval I = (v/A® — r, /A0 + r) which does not contain
other values v\, with A positive root of (4.7) different from A or /v, with v pole
of F. Let 7 be a smooth function 7 € D(I). Let us pass to the limit in the relation
(Lig)( +i8), 7(8)) p(1yxp(ry @ @ — 0T. On account of (5.26) and Lemma 1, we

have
(Flgl(8), T(B)) pr(ryx ()
. 1
B Aﬁ&% -V - %Am - ,\y|ov9 lmvvcgcxb:v

+ W% ~ VXY en , T(B)

n=0 D'(IyxD(I) (

w

)

=1
—



i
1
i
i
H

(see .mma,..h L5 of Ref. 20, relating to the limit of the distribution 1/(a + iB) as
o — 0)ZTherefore, relation (5.24) is proved.

: ?vuém..mrwos (5.25) I being the interval chosen in part (a). Let {uf,ef}2, be
- eigenelenients of the eigenvalue problem associated with (5.18) (of course ué =

A¢/e™-2% with X§ the eigenvalues of (2.1)), where {€{};2, is assumed to be an
orthonorrial basis of L*(Q) for the scalar product: (u,v)e = [ of(z)uvdz.
~ We consider the Fourier series expansion of the solution u®(t) of (5.18) in V&:

u(t) = M z\u\ﬂ?\rmwm mmuA :ﬂvmm .
..u__

Thus, on account of (5.22) and (5.23), we have for each T € D(I):

(LI a+iB), 7(8)) p/(yxp(ry = (1 MUQMAQ +ip) . o 7(8) )

-1 B— VK D'(DyxD(I)

where cf(a+i8) = ﬂﬂ\ﬂlmﬂrﬂ?\r €£)e {5, wi)v. We pass to the limit in this relation

as @ — 0. Lemma 1 and the same kind of techniques used to prove (5.27) allow
us to obtain:

(Flg°1(B), 7(B)) pr(ryx D(1)
1

= S wes(B)6(B - Vi) —iP | = | & (i6),7(h) ,
A e B— VK D) x D)
(5.28)

where, we must observe that the number of terms of the summation in which singular
distributions appear is finite. Therefore, relation (5.25) is proved. 0

Theorem 4. Let py be an eigenvalue of the homogenized problem (4.6) and A0
a positive root of Eq. ({.7) such that F’ (A°) # 0 and X° is not an eigenvalue
of the local problem (8.5). Then A% is a point of accumulation of Af /€™ 2 being
eigenvalues of (2.1).

Proof. Wmowcmm of (5.19) and relation (5.22) we have:

. (Fle1B), (BN nyx by 13 (F[9)(8), 7(B)) pr(ryx D(1) (5.29)
for each T € D(I), I being the interval defined in Proposition 7. By taking imaginary
part in (5.27) and (5.28) we obtain from (5.29):

wﬁlmMa&%vxu|z\:\3iE
’ i=1 DH{I)xD(I)
= (~imes(B — VAO) +Im | 3 (18 — VA%)"en |, 7(B) Dty -
n=0 AmwOv

‘Vibrations of a Body with Many Concentrated Masses 269

We observe that for each neighborhood J of VA0, J C I, we can take 7 € D(J) in
such manner that the right-hand side of (5.30) is not zero. So, in each small neigh-
borhood of VA0 we find values /ué = 1/A/e™~2, and the theorem is proved. U

Remark 5. For the extreme cases lim._,¢ m\:m =0 or lim._¢ m\:u = oo, the result
obtained from the formal asymptotical analysis (see Remark 3) is justified by using
the techniques of Theorem 2: if Af,)/e™ % — X%, and ug,, — u® in HY(f)

e—0 e—0

weakly, and A is not an eigenvalue of the local problem (3.5), then u® = 0. In both
cases, the result of Theorem 3 follows.

Remark 6. The case when ¢ = an, with a € (0,1) has not been considered in
this work. The local problem is quite different from that of the case studied here,
¢ = o(n). Nevertheless, by using the kind of techniques of Proposition 5 and of
Sec. 1.4 of Ref. 7, we can obtain that if ywa\mslw ~— X% and uf,, — u®in

£—0 i(e) eo
H(Q) weakly, then u® = 0.

6. Study of The Case m =2

In Sec. 2 we have obtained the estimates (2.5) for the eigenvalues of the problem
(2.1) and for m = 2. In this section we study the asymptotic behavior of these
eigenvalues when ¢ — 0. The techniques of formal asymptotic analysis of Sec. 4
allow us to obtain the local problem (3.3) and the homogenized problem:

—~Au=Auin Q
ou_ OM\MD 5 ¢
B a % on

(F being defined in (3.6) and o = lim,_o(e/n*) > 0) with the spectral parameter
appearing both in equation and boundary conditions. The variational formulation
of this problem is:

Find ) and u € V,u # 0, satisfying

\ Vu - Vudz = Qm._;v\ wvd® + \/\ uwvdr VVEV (6.2)
Q b Q

(V is the space defined in (4.6)).

Problem (6.1) can be considered as an implicit eigenvalue problem for a compact
operator A()) (see Sec. V.7 of Ref. 15 for a study of this kind of problems). In
fact, the solution of (6.2) is the solution of

(AN —DNu=0 in Vv, (6.3)

where A()) is defined for real A:

(AN v) = F) \

uvd® + \/\ uvdr Y u,vEV. (6.4)
T

Q
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The mm..wsz% {A(A)}rep, D being the complex plane without the poles of F, is
an analyti¢ family of compacts operators on V (see Proposition 2). Moreover, A())
—m a mmwmlw&omue operator for real A, and we have:

,wunovwm#mo: 8. Problem (6.1) has at most countable number of isolated implicit
.nﬁm:e&fnm“ with finite multiplicity. Besides these eigenvalues must be positive real

R

numbers: .z

ek

Proof. For \* < 0 fixed, F()\*) < 0 (see (3.9)). Therefore (A(A*) —I) € L(V) is
one-to-one, by the open mapping theorem (A(A*) — I)~' € L(V). On account of
Proposition 7.1 of Ref. 15 only a countable number of isolated A, such that 1 is
an eigenvalue of A()\;) with finite multiplicity, may exist (A; is the isolated implicit
eigenvalue of (6.1) and a pole of (A(X) — I)™1).

The fact that these eigenvalues, if they exist, are positive real numbers follows
from relation (3.9) and relation (6.2). O

We state the result of convergence for a = lim.o(¢/7?) > 0.

Theorem 5. (a) Let \/mm.m 3 be a sequence of eigenvalues of (2.1) such that \/M.m 3
converges to X as €, — 0. Then, A° is an eigenvalue of the local problem (3.5) or
an implicit eigenvalue of the homogenized problem (6.1).

(b) Let A° be an eigenvalue of (3.5), then it is a point of accumulation of Af, eigen-
values of (2.1).

(c) Let X° be an implicit eigenvalue of (6.1) such that the resolvent operator (A(X) —
I)7! has a pole of order 1 in A°. Then X° is a point of accumulation of A;.

Proof. Part (a) of the theorem is proved by using the techniques of Sec. 5.1 with
minor modifications. Part (b) follows as in Theorem 3 (Sec. 5.2). On the other
hand, we can use the techniques of Sec. 5.3 to prove part (c) of the theorem, by
introducing convenient modifications. O

6.1. Extreme cases lim._,oe/n? =0 and lim._,oe/n* =co,m =2

The formal asymptotical analysis give us the local problem (3.3) and the homoge-
nized problem:

o —Au=Auin Q
; u=0on I’ f lim,_, =0,
Bu . Mb or 1m OM\J Am.mV
on on
and .
—Au=Auin Q 6
u=0on 92 for lim,oe/n? =00 . (6.6)

We state the results of convergence for the eigenvalues of (2.1) as € — 0, in both
cases. These results are quite different from the extreme cases for m > 2. Their
proof may be performed by using the techniques of Sec. 5, but many calculations
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are now simplified (see also the techniques of Sec. XI1.3 of Ref. 16, relating to the
proof of the second part of these results).

Theorem 6. Let us consider lim._o£/7° = 0. Let yw..m.; be a sequence of eigen-
values of (2.1) such that A7, | converges to X0 as e, — 0. Then, A° can be an
eigenvalue of the local problem (3.5) or an eigenvalue of the homogenized problem
(6.5). Reciprocally, if A is an eigenvalue of problem (8.5) or (6.5) then it is a point
of accumulation of eigenvalues of (2.1).

Theorem 7. Let us consider lim,_,oe/n? = co. Let X7,  be a sequence of eigen-
values of (2.1) such that \/MA:M .) converges to X0 as £, — 0. Then, X0 can be an
eigenvalue of the local problem (3.5) or an eignevalue of the homogenized problem
(6.6). Reciprocally, if A is an eigenvalue of problem (8.5) or (6.6) then it is a point
of accumulation of eigenvalues of (2.1).

7. Other Boundary Conditions on X

In this section we study the asymptotic behavior of the eigenvalues of problem (2.1},
as € — 0, when the Dirichlet conditions on T* are changed by Neumann conditions.
Thus, in this case the eigenvalue problem is:

—Auf = pf(z)X°uf in Q

[ A—
mhm =0onTp (7.1)
on =0on%,

p° = p°(z) being the function defined by (2.2) with m > 2. The variational formu-
lation of (7.1) is Eq. (2.3), with uf,v® € V instead of V* (cf. (4.6) for definition of
<v. .

Now we can prove estimation {2.5a) (see Proposition 1) for the eigenvalues of
(7.1). We use the formal asymptotic expansion as in Sec. 4. On the basis of
the expansions (4.1) for a given eigenelement (\°,u¢) of (7.1), we obtain the local

problem:
-AU=XU~-XAin B
-A,U=0inR* -B

ou
—Q«u = —‘r@ﬂ“_ =0onT A.NNV
Wm =0on {ys =0}

qﬁﬁvlc. _@_lOOy@wVO.

and the homogenized problem (4.5) for a = lime_o(e/n?) > 0. The characteristic
equation is now:

.T.:.,Av,v = ik A_va
for each py eigenvalue of (7.1), where F* is the function defined as:
A
F* Av;v - A.@h; s Hv s
Ony Ir /[ g-1a@yxm/a(m
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U being the solution of QMMWM We can study the local problem, and the properties

_ of function F* in the frame ork of Sec. 3 (cf. Propositions 2 and 3).
" We state the result of convergence for the eigenvalues of (7.1) as follow:

Theorem 8. (o) Let XJ.
ymm b.\mv:,l‘,n converges to’ _w, m €, — 0. Then, X0 is an eigenvalue of the homoge-
neous problem associated with(7.2), or F* (%) is an eigenvalue of the homogenized
problem (4.5). .

(b) Let X° be an eigenvalue of the homogeneous problem associated with (7.2), then
it is a point of accumulation of A Je™=2 (X¢ being eigenvalues of (7.1)).

Proof. Part (a) of the theorem can be proved by using the same kind of techniques
as in Theorem 2: in this case the test functions are constructed taking into account
the solution of the local problem (7.2). By using the techniques of Sec. 5.2, with
minor modifications, the result sated in (b) follows. [

Remark 7. The case m < 2 has not been considered throughout this paper. By
analogy with the case in which only a concentrated mass appears (cf. Ref. 10 and
Sec. VIL12 of Ref. 15) we can think that the eigenvalues of (2.1) can be approached
by those of a problem without concentrated masses. Unlike the precedent case (one
concentrated mass), we must consider the effect of the boundary conditions. The
asymptotic behavior as € — 0, of the eigenvalues of (2.1) can be described via the
eigenvalues of the problem:

'

; —Au=Aduin Q

= m: =0onTq
wm =—aCuon X,

where C = [pa- |VW |2dy, W{(y) being the solution of (3.2) (see Sec. V of Ref. 13
relating to this homogenized problem).
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