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ABSTRACT. – We consider the vibrations of a system consisting of the domainΩ of RN, N = 2,3, that
contains a small region with diameter depending on a small parameterε. The density is of order O(ε−m)
in the small region,the concentrated mass, and it is O(1) outside;m is a parameter,m > 2. We study the
asymptotic behaviour, asε→ 0, of the eigenvalues of order O(1), the high frequencieswhenm> 2, and the
corresponding eigenfunctions of the associated spectral problem. We provide information on the structure of
these eigenfunctions. We also check theoretical results with explicit calculations for the dimensionsN = 1
andN = 2 and give correcting terms for the eigenfunctions. Elsevier, Paris

1. Introduction

We study the high frequency vibrations of a body occupying a domainΩ of RN that contains
a small region of high density, the so-calledconcentrated mass. The diameter of this region,εB,
is O(ε) while the density is O(ε−m) in εB and O(1) outside;m andε are two parameters;m> 2
and we shall makeε go to 0. We consider the corresponding spectral problem for the Laplace
operator (see (2.1)). It should be pointed out that the results and techniques in this paper are very
different from those in the literature for systems with concentrated masses.

Many papers have been devoted to the study of the vibrations for systems with one single
concentrated mass using different techniques: let us mention [21] for the elasticity system, [6] for
rods and plates equations, and [7,8,14–16] and [18–20] for the Laplace operator. Very different
cases appear according to the operator, the dimensionN of the space and the value of the
parameterm > 0. Whenm > 2, only a few of the above mentioned papers consider the high
frequency vibrations, i.e., the vibrations associated with the eigenvaluesλε of order O(1); the
results are obtained in terms of asymptotic expansions or convergences of spectral families:
see [8] and [19–21]. See [9–11] for different results in systems with many concentrated masses.

Dealing with the low and high frequencies, whenm > 2, a common fact which is clearly
described in the literature is that two kinds of vibrations appear:local vibrationsand global
vibrations.

The local vibrations are those for which the corresponding eigenfunctionsuε are significant
only in a region near the concentrated mass (i.e., for|x| =O(ε)) while they are very small at the
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distance O(1) of the concentrated mass (the order of magnitude ofuε depends on the dimension
N ). The associated eigenvalues are of order O(εm−2): the low frequencies.

The global vibrations affect the whole body and the corresponding eigenfunctions are small in
a neighbourhood of the concentrated mass (i.e., for|x| =O(ε)). The corresponding eigenvalues
are of order O(1): the high frequencies.

On the basis of different approaches, the asymptotic behaviour of the low frequencies
have been widely studied in [8,14–16], and [19–21]. They accumulate at the origin: once the
frequencies are normalized, the values(λε/εm−2) are approached by the eigenvalues thelocal
problem (see (2.4)). Here, we are not concerned with these frequencies; see Lemma 2.1 for
the main results that we shall use throughout this paper. To our knowledge, there is a lack
of information on the behaviour of the high frequencies, as well as for the corresponding
eigenfunctions, which we describe here below.

For the high frequencies, in Section VII.12 of [19], it is proved that eachλ ∈ σg is an
accumulation point of eigenvaluesλε; σg denotes the spectrum of the Dirichlet problem (2.8).
We notice that other converging sequences of eigenvalues of order O(1) could also exist. On the
other hand, this result for the eigenvalues does not provide any information on the eigenfunctions,
as it is obtained in terms of a very poor convergence of certain spectral families. The only
information for the eigenfunctionsuε associated with the eigenvaluesλε ≈ λ0, for λ0 ∈ σg , is
obtained from the matching asymptotic techniques (see [8] whenN = 2 and Section VII.10 of
[19] whenN = 3): uε are approached through the eigenfunctions of the Dirichlet problem (2.8)
and it seems as if they are zero inεB (see Remark 4.2).

In this paper, we prove that the high frequencies accumulate in(0,∞) (see Section 3), and
we characterize the behaviour of the eigenfunctions associated with the frequencies according to
whether these frequencies are asymptotically near a point ofσg or not (see Sections 4 and 6).

In Section 4.1, we provide information about the structure of the eigenfunctions associated
with the high frequencies: only those associated with eigenvaluesλε converging towards a point
of σg , asε→ 0, are asymptotically non-null inL2(Ω). In addition, in Section 4.2 we prove that
all the eigenfunctions have an oscillatory character inεB: in the local variabley = x/ε, they are
approached through eigenfunctions of the local problem (2.4) associated with large frequencies.

The oscillations of the eigenfunctions associated withλε = O(1) inside εB were already
glimpsed in Section VII.10 of [19]. Nevertheless, it should be emphasized that it could very
well occur that these eigenfunctions concentrate on a neighbourhood of the boundaryεB and
vanish insideεB, that is to say, some kind ofwhispering gallery phenomenawould happen (see
Remark 6.3). In Section 6, we prove this strongly oscillatory character on the wholeεB for
certain eigenfunctions. Explicit computations, whenN = 2 andB is a circle, allow us to give
a correcting term for the eigenfunctions. In particular, we improve the convergence results in
Section 4 for certain sequencesλεk , whenεk→ 0.

In Section 5 we give the results for a vibrating string (N = 1), as we consider that they may
clarify the more general results of Section 4 (see [7] for a study of the low frequencies). We
observe a different behaviour for the eigenfunctions than that noted for the dimension of the
spaceN > 2: whenN = 1 all of them are strongly oscillating functions inside the concentrated
mass and no whispering gallery phenomena can occur.

Finally, in Section 7, we consider the caseN = 2 andm= 2: we give convergence results for
the eigenelements(λε, uε) of (2.2).

2. Statement of the problem

Let us considerΩ an open bounded domain ofRN , N = 2 or 3, with a smooth boundary∂Ω .
Let B be an open bounded domain with a smooth boundary which we denote byΓ . For the
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sake of simplicity, we consider that bothΩ andB contain the origin. Letε be a positive small
parameter that we shall make to go to 0. Let us considerεB andεΓ the homothetics ofB andΓ
respectively with ratioε, and we assume thatεB is contained inΩ . Letm bem> 2.

Let us consider the spectral problem:


−1uε = λεuε in Ω − εB,
−1uε = λεε−muε in εB,

[uε] =
[
∂uε

∂n

]
= 0 onεΓ ,

uε = 0 on∂Ω ,

(2.1)

wheren is the unit outward normal toεΓ and the brackets denote the jump acrossεΓ of the
enclosed quantities.

The variational formulation of problem (2.1) is:
Findλε , uε ∈H 1

0(Ω), u
ε 6= 0, satisfying:

∫
Ω

∇uε.∇v dx = λε
[ ∫
Ω−εB

uεv dx + 1

εm

∫
εB

uεv dx

]
, ∀v ∈H 1

0(Ω).(2.2)

For each fixedε > 0, (2.2) is a standard eigenvalue problem. Let us consider

0< λε16 λε26 · · ·6 λεn 6 · · · n→∞−−−−→∞,

the sequence of eigenvalues, with the classical convention of repeated eigenvalues. Let{uεi }∞i=1
be the corresponding eigenfunctions, which are assumed to be an orthonormal basis inH 1

0 (Ω),
i.e., ∥∥∇uε∥∥

L2(Ω)
= 1.

Let σε denote the spectrum of (2.2):σε = {λεi }∞i=1.
An estimate for the eigenvalues can be obtained by using the minimax principle and the

coerciveness of the form on the left-hand side of (2.2) (see [9] and [11], for example, for the
technique). In fact, for each fixedi = 1,2,3, . . . we have:

Cεm−2| lnε|−1< λεi < Ciε
m−2 for N = 2,

Cεm−2< λεi < Ciε
m−2 for N = 3,

(2.3)

whereC, Ci are constants independent ofε andCi→∞ wheni→∞.
Problem (2.2) has been studied by several authors using different techniques: the case when

N = 2 is considered in [8,14,15,18,19], while the caseN = 3 is studied in [14,16,18–20].
Regarding the low frequencies, a thorough study is performed in the above mentioned papers

and we do not add anything to what has already been said. We state here the main results, obtained
in these papers whenN = 2,3, which will be useful in Sections 4, 6 and 7.
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The change of variabley = x/ε leads us to the following eigenvaluelocal problem:

−1yU = µU in B,

−1yU = 0 inRN −B,

[U ] =
[
∂U

∂n

]
= 0 onΓ,

U
|y|→∞−−−−−→

{
c if N = 2,
0 if N = 3,

(2.4)

wherec is an unknown but well determined constant. This problem, posed in an unbounded
domain, has the variational formulation:

Findµ andU ∈ V , U 6= 0, satisfying:∫
RN

∇U.∇V dy = µ
∫
B

U V dy, ∀V ∈ V,(2.5)

where the spaceV is the completion ofD(RN) for the norm

‖U‖V =
[∫
B

∣∣U(y)∣∣2 dy +
∫
RN

∣∣∇yU(y)∣∣2 dy

]1/2

.(2.6)

Problem (2.5) has a discrete, non-negative spectrum (see Section IV.8 of [19], for example).
Let us consider

06 µ16µ26 · · ·6 µn 6 · · · n→∞−−−−→∞,
the sequence of eigenvalues, with the classical convention of repeated eigenvalues. Let{Ui}∞i=1
be the corresponding eigenfunctions suitably normalized.

Let us denote by‖ · ‖1 the norm inH 1(B), equivalent to the usual norm,

‖U‖21= ‖U‖2H1(B)
+ 〈T U,U〉H−1/2(Γ )×H1/2(Γ ),(2.7)

whereT denotes the trace operator onΓ (see Section IV.8 of [19]). The following result is
proved in [8] whenN = 2 (Section VII.11 of [19] whenN = 3) and in [15] (Section III.5 of [16],
respectively) with other techniques of the Spectral Perturbation Theory.

LEMMA 2.1. – Letm bem> 2. Letλεi be the eigenvalues of(2.2)andUεi the corresponding
eigenfunctions with norm1 in V . For fixedi, the valuesλεi /ε

m−2 converge, whenε→ 0, towards
the eigenvalues of(2.4) with conservation of the multiplicity. For each sequence it is possible
to extract a subsequence, still denoted byε, such that the corresponding eigenfunctions,Uεi ,
converge towardsUi in L2(B) whereUi is an eigenfunction associated with thei-th eigenvalue
of (2.4), and{Ui}∞i=1 form an orthonormal basis ofH 1(B) for the scalar product associated with
the norm(2.7).

Note, that it is an essential fact, in order to obtain the result in Lemma 2.1, to consider the
microscopic variabley. In the macroscopic variable, we observe that, if{uεi }∞i=1 is an orthonormal

basis ofH 1
0 (Ω), for each fixedi, uεi

ε→0−−−−→0 weakly inH 1
0 (Ω) (see Proposition 4.3). This
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suggests that other asymptotically non null eigenfunctions should exist and obviously we must
look for these eigenfunctions among those associated with the high frequencies.

Dealing with the high frequencies, we outline here the main results obtained in [8,19,20].
Asymptotic expansions for the eigenvaluesλε = λ + o(1) and for the eigenfunctionsuε =
u+ o(1) lead to the Dirichlet problem:{

−1u = λu in Ω,

u = 0 on ∂Ω,
(2.8)

which ignores the concentrated mass. Let

0< λ16 λ26 · · ·6 λn 6 · · · n→∞−−−−→∞,

be the sequence of eigenvalues, with the classical convention of repeated eigenvalues. Let us
denoteσg the spectrum of (2.8),σg = {λi}∞i=1.

The Fourier transform technique for time dependent problems provides the following result on
the spectral convergence (see Section VII.12 of [19] for the proof).

LEMMA 2.2. – For eachλi eigenvalue of(2.8), there is a sequenceλεi(ε) of eigenvalues of
(2.2)converging toλi asε→ 0.

For convenience we introduce here a result from the Spectral Perturbation Theory that will
prove useful in Sections 4 and 6 (see [22] for its proof).

LEMMA 2.3. – LetA :H →H be a linear, self-adjoint, positive and compact operator on a
Hilbert spaceH . Letu ∈H , with‖u‖H = 1 andλ, r > 0 such that‖Au−λu‖H < r. Then, there
exists an eigenvalueλi of A satisfying|λ − λi | < r. Moreover, for anyr∗ > r there isu∗ ∈ H
with ‖u∗‖H = 1 such that ∥∥u− u∗∥∥

H
<

2r

r∗
,

u∗ belonging to the eigenspace associated with all the eigenvalues of the operatorA lying on the
segment[λ− r∗, λ+ r∗].

3. Spectral concentration ofσε in [0,∞)
As is well known, the classical Weyl numbers give an idea about how, for certain elliptic

problems, the large frequencies are distributed; actually, depending on the dimension of the
space, they can become closer and closer. A small parameterε appearing in the problem could
enlarge the field of applications of these classical results allowing the densification of the
spectrum in[0,+∞) to be guessed, asε→ 0 (see [5] and [12]). We prove here that this is
the case for the spectrumσε of (2.2).

The main result in this section is stated in Theorem 3.1. We use the method of the Fourier
Transform for its proof (see [12] and Section V.13 in [19]). Note that this method is very general:
all ends up as a weak convergence of the corresponding spectral families operating on certain test
functions. This allows us to obtain spectral convergence results when the limit spectral family is
not a constant one (see [9,17], for very different cases).

THEOREM 3.1. – For anyλ∗ > 0, there is a sequenceλεi(ε) of eigenvalues of(2.2)converging
towardsλ∗ asε→ 0.
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The proof of the theorem is based on Lemma 3.1 bellow. Let us first introduce some notations
which will prove to be useful for the proof. We dilate the space variablex by introducing a new
variableξ , ξ = x/εm/2. We denote byΩε = {ξ ∈ RN : ξεm/2 ∈ Ω}, Ω̃ε = {ξ ∈ RN : ξεm/2 ∈
Ω − εB}, B̃ε = {ξ ∈RN : ξεm/2 ∈ εB}. We assume that the elements ofH 1

0(Ωε) are extended to
RN with the value 0. Let us consider problem (2.2) written in theξ variable:

∫
Ωε

∇ξ uε.∇ξ v dξ = λε
[
εm
∫
Ω̃ε

uεv dξ +
∫
B̃ε

uεv dξ

]
, ∀v ∈H 1

0(Ωε).(3.1)

LetAε be the positive, self-adjoint, anticompact operator onHε associated with the form on
the left-hand side of (3.1), where byHε we denote the spaceL2(Ωε) with the scalar product

(u, v)Hε = εm
∫
Ω̃ε

uv dξ +
∫
B̃ε

uv dξ, ∀u,v ∈Hε,

thenAε has a discrete spectrum,σε = {λεi }∞i=1. Let {eεi }∞i=1 be the corresponding eigenfunctions
eεi ∈H 1

0(Ωε), which are assumed to be an orthonormal basis inHε. LetBε beBε =Aε + I ε , I ε
the unitary operator inHε .

Let us considerA the operator onL2(RN) associated with the Laplacian operator. As is known
A is a non-negative, self-adjoint operator inL2(RN) with continuous spectrum,σ(A)= [0,∞)
(see, for example, Sections II and V of [23]). LetB denote the operatorA + I whereI is
the unitary operator inL2(RN); in fact, B is the operator associated with the scalar product
in H 1(RN) andσ(B)= [1,∞).

Let us consider the evolution problem associated with (3.1), in the spacesHε andH 1
0(Ωε), for

some initial data: 
d2uε

dt2
+Bεuε = 0,

uε(0)= 0,
duε

dt
(0)= fε,

(3.2)

where the indexε denotes the restriction of the functionf in L2(RN) to Ωε. Similarly, let the
evolution problem associated withB be:

d2u∗

dt2
+Bu∗ = 0,

u∗(0)= 0,
du∗

dt
(0)= f,

(3.3)

in the spacesL2(RN) andH 1(RN).
Let us introduce a smooth functionϕε which takes the value 1 in|ξ | 6 1

2ε
1−m/2, and 0 in

|ξ |> ε1−m/2:

ϕε(ξ)= ϕ
(

2|ξ |
ε1−m/2

)
,

whereϕ ∈ C∞(R), ϕ(r)= 1 if r 6 1 andϕ(r)= 0 if r > 2.
We use the technique in [12] and Section VII.6 of [19], with minor modifications, to prove the

following result for the solutions of (3.2) and (3.3):
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LEMMA 3.1. – Let uε(t) be the solution of(3.2) (u∗(t) that of(3.3)), with values inH 1
0(Ωε)

(H 1(RN) respectively), that we assume to be extended by0 toRN −Ωε . We consider̃uε = uεϕε.
Then, 

ũε
ε→0−−−−→ u∗ in L∞

(−∞,∞;H 1(RN )) weak-∗,
dũε

dt
ε→0−−−−→ du∗

dt
in L∞

(−∞,∞;L2(RN )) weak-∗.
(3.4)

From Lemma 3.1, we obtain the convergence of the corresponding spectral families associated
with Aε andA respectively:

(
E
(
Aε, λ

)
vε,wε

)
Hε

ε→0−−−−→ (
E(A, λ)v,w

)
L2(RN) in L∞(−∞,∞) weakly-∗,(3.5)

for anyv,w ∈L2(RN).

Proof of Theorem 3.1. –We show that for anyλ∗ > 0 and for anyδ > 0, there existsj (ε) such
thatλεj (ε) ∈ (λ∗ − δ,λ∗ + δ), for sufficiently smallε.

Taking into account the definition ofAε andA respectively, forλ> 0, we have:

(
E
(
Aε, λ

)
vε, vε

)
Hε =

( ∑
λεi6λ

(
eεi , vε

)
Hε e

ε
i , vε

)
Hε
=
∑
λεi6λ

(
eεi , vε

)2
Hε , ∀v ∈ L2(RN ),(3.6)

({eεi }∞i=1 being the eigenfunctions of (3.1)) and

(
E(A, λ)v, v

)
L2(RN) =

∥∥E(A, λ)v∥∥2
L2(RN) =

∫
|p|6√λ

∣∣v̂(p)∣∣2 dp, ∀v ∈ L2(RN ),(3.7)

wherev̂(p) is the Fourier transform ofv ∈L2(RN).
On account of (3.5), taking derivatives in (3.6) and (3.7), we obtain:

∑
λεi6λ

(
eεi , vε

)2
Hεϕ

(
λεi
) ε→0−−−−→<

1

2
λ
N−2

2

∫
SN−1

∣∣v̂(√λη)∣∣2 dη, ϕ >S ′(R)×S(R), ∀ϕ ∈ S(R),(3.8)

whereSN−1 is the unit sphere inRN . Then, takingv andϕ ∈D(λ∗ − δ,λ∗ + δ), in such a way
that the right hand side of (3.8) be different from zero, we deduce that, for sufficiently small
ε, there areλεj (ε) such thatϕ(λεj (ε)) 6= 0, so thatλεj (ε) ∈ (λ∗ − δ,λ∗ + δ), and Theorem 3.1 is
proved. 2

4. On the structure of the eigenfunctions associated with the high frequencies

Convergence results for high frequencies are given in Lemma 2.2 and Theorem 3.1 in terms of
the convergence of certain spectral families. However, no information about the structure of the
corresponding eigenfunctions seems to be obtained from these results. Two different operators
are obtained: the first one (associated with the Dirichlet problem (2.8)) has a pure point spectrum,
σg , while the second one has a continuous spectrum,[0,∞) (see [12] for an analogous situation).
Asσg ⊂ (0,∞), the eigenfunctions associated with eigenvaluesλε asymptotically near the points
of σg should have a different behaviour from those associated with the rest of the eigenvalues.
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The aim of Section 4.1 is to differentiate this behaviour. In Section 4.2 we give information about
the structure of the eigenfunctions insideεB.

4.1. Global behaviour

The main result in this section is stated in the following theorem:

THEOREM 4.1. – Letλ be any positive real number. LetIδε denote an interval[λ−δε, λ+δε]
having eigenvaluesλε

i(ε)
of (2.2), with δε → 0 as ε→ 0. Then,λ ∈ σg if and only if there are

{δε}ε and {ũε}ε, eachũε with norm1 in H 1
0(Ω), belonging to the eigenspace associated with

all the eigenvalues inIδε and such that‖ũε‖L2(Ω) > a > 0 for some constanta independent of
ε. Moreover, ifλ ∈ σg andu∗ is an eigenfunction associated withλ, u∗ with norm1 in H 1

0(Ω),
then the sequencẽuε converge towardsu∗ in H 1

0(Ω).

The proof of the Theorem is a consequence of Propositions 4.1 and 4.2 below.

PROPOSITION 4.1. – Let λ ∈ σg , and u∗ be an associated eigenfunction such that
‖∇u∗‖L2(Ω) = 1. Then, there is a sequence{dε}ε, dε→ 0 asε→ 0, such that[λ− dε, λ+ dε]
contains eigenvalues of(2.2): λεi(ε), λ

ε
i(ε)+1, . . . , λ

ε
i(ε)+k(ε). Moreover, there isũεi(ε) ∈ H 1

0(Ω),
with ‖∇ũεi(ε)‖L2(Ω) = 1, ũεi(ε) belonging to the eigenspace associated with the eigenvaluesλεi(ε)
in [λ− dε, λ+ dε], such that ∥∥ũεi(ε)∥∥L2(Ω)

> a > 0,

for some constanta > 0, andũεi(ε) converging towardsu∗ in H 1
0(Ω) asε→ 0.

Proof. –LetAε be the positive, compact and symmetric operator onH 1
0 (Ω) defined by:

〈
Aεu, v

〉
H1

0 (Ω)
=

∫
Ω−εB

uv dx + 1

εm

∫
εB

uv dx, ∀u,v ∈H 1
0 (Ω).(4.1)

The eigenvalues ofAε are 1/λε , λε being the eigenvalues of (2.2).
Let u∗ ∈ H 1

0(Ω) be as the proposition states. For sufficiently smallε, we constructvε ∈
H 1

0(Ω) such thatvε = 0 in εB and ∥∥u∗ − vε∥∥
H1

0 (Ω)
6 Cρε(4.2)

whereC always denote some constant independent ofε and

ρε = | lnε|−1/2 whenN = 2 and ρε = ε1/2 whenN = 3.(4.3)

In order to prove this result, it suffices to take:

vε(x)=


u∗(x) if |x|>√ε,
u∗(x) ln(|x|/ε)

ln(1/
√
ε)

if ε 6 |x|6√ε, if N = 2,

0 if |x|< ε,

(4.4)

andvε = u∗ψε if N = 3, whereψε(x) = ψ(|x|/ε) with ψ ∈ C∞(R), ψ(r) = 1 if r > 2 and
ψ(r)= 0 if r < 1.
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Taking into account the definition ofAε, the fact thatvε vanishes inεB and that(λ,u∗) is an
eigenelement of (2.8), we have:〈

Aεvε − 1

λ
vε, v

〉
H1

0 (Ω)

=
∫
Ω

(
vε − u∗)v dx − 1

λ

∫
Ω

∇(vε − u∗).∇v dx, ∀v ∈H 1
0(Ω).

We apply Schwarz and Poincaré inequalities to obtain:∣∣∣∣〈Aεvε − 1

λ
vε, v

〉
H1

0 (Ω)

∣∣∣∣6 C∥∥vε − u∗∥∥H1
0 (Ω)
‖v‖H1

0 (Ω)
, ∀v ∈H 1

0(Ω).

Hence, from (4.2), forρε defined in (4.3), it is evident thatvε converges towardsu∗ in H 1
0 (Ω)

asε→ 0, and, taking̃vε = vε/‖vε‖H1
0 (Ω)

, for sufficiently smallε, we have:∥∥∥∥Aεṽε − 1

λ
ṽε
∥∥∥∥
H1

0 (Ω)

6 Cρε.(4.5)

We apply Lemma 2.3 withA = Aε, H = H 1
0 (Ω), u = ṽε , r = Cρε and, for example,

r∗ = 2ρ1/2
ε . We deduce that there are eigenvalues,{(λεi(ε)+j )−1}k(ε)j=1, of Aε in Iε = [(1/λ) −

2ρ1/2
ε , (1/λ) + 2ρ1/2

ε ]. Moreover, for eachε, there isũεi(ε) ∈ H 1
0(Ω), with ‖ũεi(ε)‖H1

0 (Ω)
= 1,

ũεi(ε) belonging to the eigenspace associated with all of the eigenvalues inIε , such that∥∥ũεi(ε) − ṽε∥∥H1
0 (Ω)
6 Cρ1/2

ε .(4.6)

On account of̃vε→ u∗ in H 1
0(Ω) asε→ 0, (4.6) leads us to assert thatũεi(ε)→ u∗ in H 1

0(Ω)

asε→ 0. The fact that(λ,u∗) is an eigenelement of (2.8) reads:

∥∥ũεi(ε)∥∥L2(Ω)
→ 1√

λ
6= 0,

consequently, there exists a constanta > 0, independent ofε, such that‖ũεi(ε)‖L2(Ω) > a > 0,
for sufficiently smallε. Then, we have proved that the statements in Proposition 4.1 hold for
dε =O(ρ1/2

ε ). 2
PROPOSITION 4.2. – Let us considerλ > 0, let {δε}ε be any sequence such thatδε→ 0 as

ε→ 0, let {λεi(ε), λεi(ε)+1, . . . , λ
ε
i(ε)+k(ε)} be all the eigenvalues of(2.2) in [λ− δε, λ+ δε], and

ũε any function in the eigenspace[uεi(ε), uεi(ε)+1, . . . , u
ε
i(ε)+k(ε)] with ‖∇ũε‖L2(Ω) = 1.

(a) If there is some converging subsequence{ũεk}k such that‖ũεk‖L2(Ω) > a > 0, for some
constanta independent ofεk, then(λ,u∗) is an eigenelement of(2.8), whereu∗ is the limit
of ũεk in L2(Ω) asεk→ 0.

(b) If λ /∈ σg , then ∥∥ũε∥∥
L2(Ω)

→ 0, asε→ 0.

Proof. –We prove assertion (b) by contradiction. Let us suppose thatλ is not an eigenvalue
of (2.8), and the sequence‖ũε‖L2(Ω) does not converge to zero asε → 0. Because of the
boundedness of̃uε inH 1

0(Ω) we can assert that there is a subsequence{ũεk }k converging weakly
in H 1

0(Ω) towards some functionu∗, asε→ 0, with u∗ 6= 0.
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Let us consider̃uε =∑k(ε)
j=1β

ε
ju
ε
i(ε)+j , for certainβεj ; on account of relation (2.2) for each

eigenelement(λεi(ε)+j , u
ε
i(ε)+j ), j = 1, . . . ,k(ε), we obtain∀v ∈H 1

0(Ω):∫
Ω

∇ũε.∇v dx = λ
∫

Ω−εB
ũεv dx + λ

εm

∫
εB

ũεv dx +
k(ε)∑
j=1

(
λεi(ε)+j − λ

)
βεj

∫
Ω−εB

uεi(ε)+jv dx

+ 1

εm

k(ε)∑
j=1

(
λεi(ε)+j − λ

)
βεj

∫
εB

uεi(ε)+jv dx.

Takingv ∈H 1
0 (Ω) vanishing in a neighbourhoodof the origin, we obtain, for sufficiently smallε,

the relation ∫
Ω

∇ũε.∇v dx = λ
∫
Ω

ũεv dx +
k(ε)∑
j=1

(
λεi(ε)+j − λ

)
βεj

∫
Ω

uεi(ε)+jv dx.(4.7)

Then, on account of|λεki(εk)+j − λ| 6 δεk and
∑k(ε)
j=1(β

ε
j )

2 = 1, we take limits in (4.7) when
εk→ 0, to obtain thatu∗ satisfies:∫

Ω

∇u∗.∇v dx = λ
∫
Ω

u∗v dx.

Now, as the set of the functions inH 1
0 (Ω) vanishing in a neighbourhood of the origin is dense in

H 1
0(Ω), andu∗ 6= 0, we obtain thatλ is an eigenvalue of (2.8) which contradicts the hypothesis.

Therefore, result (b) holds. It is evident that the proof of assertion (a) is contained in the previous
demonstration. 2

COROLLARY 4.1. – Letλ be a positive real number,λ /∈ σg , and let{λεi(ε)}ε be any sequence
of eigenvalues of(2.2)converging towardsλ asε→ 0. Then, the corresponding eigenfunctions
uεi(ε) converge towards0 in L2(Ω), asε→ 0.

Remark4.1. – In the proof of Proposition 4.1 we have obtained thatdε =O(ρ1/2
ε ). In fact, it

can bedε =O((ρε)1−β) for 0< β < 1, and‖ũεi(ε) − ṽε‖H1
0 (Ω)
6 Cρβε instead of (4.6). If there

is only one eigenvalue,λεi(ε), in [λ − dε, λ + dε], with multiplicity 1, then, the functioñuεi(ε)
is the corresponding eigenfunction. Moreover, in this case, Proposition 4.1 and Corollary 4.1
characterize the eigenfunctions associated with eigenvaluesλε ≈ λ: if λ ∈ σg , thenuε

i(ε)
→ u∗ in

H 1
0(Ω), whereu∗ is the eigenfunction associated withλ with norm 1 inH 1

0(Ω); if λ /∈ σg , then
uεi(ε)→ 0 in L2(Ω). That is to say, the eigenfunctions are asymptotically different from zero if
and only if the corresponding eigenvalues converge towards an eigenvalue of (2.8).2

In addition to the result in Corollary 4.1, in the following proposition, we prove that the
only converging sequencesλε/εα giving rise to global vibrations of the whole body are those
associated with the eigenvalues of order 1 that converge towards an eigenvalue of the Dirichlet
problem (2.8).

PROPOSITION 4.3. – Let us assume that{λεi(ε)}ε is any sequence of eigenvalues of(2.2)such
that λεi(ε)/ε

α converge towards someλ 6= 0, as ε→ 0, for someα, 0< α 6 m − 2 or α < 0.

Then, the corresponding eigenfunctionsuε
i(ε)

converge towards0 in L2(Ω), asε→ 0.
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Proof. –We suppose that there is a sequenceλεi(ε) such thatλεi(ε)/ε
α ε→0−−−−→λ∗ and the

corresponding eigenfunctions satisfyuεi(ε)
ε→0−−−−→u∗ 6= 0 weakly inH 1

0(Ω). Then, on account

that the set of the functions ofH 1
0(Ω) vanishing in a neighbourhood of the origin is dense

in H 1
0(Ω), we pass to the limit in the equation (2.2) and we obtain thatu∗ = 0, which is a

contradiction. 2
Remark4.2. – We observe that the eigenfunctionsuε, with norm 1 inH 1

0(Ω), associated
with eigenvaluesλε converging towardsλ 6= 0 satisfy‖uε‖2

L2(εB)
6 Cεm, i.e.,‖uε‖L2(εB)→ 0

whenε→ 0. This result agrees with the result obtained in [8] and Section VII.10 of [19] using
the method of matched asymptotic expansions. In particular, forN = 2, B the unit circle and
(λ,u∗) an eigenelement of (2.8) (see [8]):

uε ≈ u∗(x)+
(−1

ln ε
W

(
x

ε

)
− 1

)
u∗(x),

where (−1

ln ε
W

(
x

ε

)
− 1

)
u∗(x)

takes the value−u∗(x) in εB and(−1/ lnε) ln |x/ε|u∗(x) outside. In addition, estimate (4.6) in
Proposition 4.1 also holds for

vε = u∗(x)+
(−1

ln ε
W

(
x

ε

)
− 1

)
u∗(x)

which proves that (−1

ln ε
W

(
x

ε

)
− 1

)
u∗(x)

is a correcting term foruε . Nevertheless, as pointed out in [19], inεB the wavelength is very
short and eigenfunctions are expected to have a strongly oscillatory behaviour. Obviously, it is
necessary to introduce the microscopic variabley in order to see this behaviour.2
4.2. Local behaviour

We are interested in the behaviour of the eigenfunctions associated with the eigenvalues
of order O(1) inside the concentrated mass, hence, we perform the change of variabley = x/ε.
Througout the rest of the section we assume that the eigenfunctions{Uεi }∞i=1, are normalized in
the local variabley, that is to say:∥∥Uεi (y)∥∥V = ∥∥Uεi (y)∥∥2

L2(B)
+ ∥∥∇yUεi (y)∥∥2

L2(RN) = 1,(4.8)

V being the space defined in (2.6). We prove that the eigenfunctions associated with the
frequenciesλε = O(1) have a strongly oscillatory character inB as stated in the following
Theorem (compare with Theorems 6.1 and 6.2).

THEOREM 4.2. – Let λ a positive real number, and letλεi(ε) be a sequence of eigenvalues
of (2.2) converging towardsλ, as ε → 0. Then, the corresponding eigenfunctionsUεi(ε),
satisfying(4.8), verify:
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either Uεi(ε)(y)=
q(ε)∑
j=p(ε)

αεjUj + oε(1) in H 1(B),(4.9)

or
∥∥Uεi(ε)∥∥H1(B)

ε→0−−−−→ 0,

where αεj are the Fourier coefficients of the expansion ofUεi(ε)|B in Fourier series of the
eigenfunctions{Uj }∞j=1 of (2.4), and,p(ε), q(ε) are two functions converging to∞ asε→ 0.

Proof. –Let p be any fixed integer,p > 1; let {λεj }pj=1 be the firstp eigenvalues of

problem (2.2), and{Uεj }pj=1 the corresponding eigenfunctions. Lemma 2.1 allows us to assert
that, for each sequence there is a subsequence still denoted byε such that forj = 1,2, . . . , p

Uεj =Uj + rεj in L2(B),(4.10)

whererεj converges to 0 inL2(B), asε→ 0.
Because of estimates (2.3), forj = 1, . . . , p, λεj is different fromλεi(ε), and the orthogonality

of the eigenfunctionsUεj in H 1
0 (Ω) leads us to prove that

lim
ε→0

∫
B

Uεj U
ε
i(ε) dy = 0.

Besides,Uεi(ε)|B can be expanded in Fourier series of eigenfunctions of (2.4), that is to say,

Uεi(ε)

∣∣
B
=
∞∑
j=1

αεjUj in H 1(B), with αεj =
(
Uεi(ε)

∣∣
B
,Uj

)
1,(4.11)

where(U,V )1 is the scalar product associated with the norm (2.7); on account of‖Uεi(ε)‖V = 1,
theαεj are bounded by a constant independent ofε.

Thus, considering (4.10), we can write

0= lim
ε→0

p∑
j=1

αεj
(
Uεj ,U

ε
i(ε)

)
L2(B)

= lim
ε→0

p∑
j=1

αεj
(
Uj ,U

ε
i(ε)

)
L2(B)

+ lim
ε→0

p∑
j=1

αεj
(
rεj ,U

ε
i(ε)

)
L2(B)

.

Using (4.11) and the orthogonality of the eigenfunctionsUj in L2(B), we have

lim
ε→0

p∑
j=1

∣∣αεj ∣∣2‖Uj‖2L2(B)
=− lim

ε→0

p∑
j=1

αεj
(
rεj ,U

ε
i(ε)

)
L2(B)

.(4.12)

Hence, the convergence

p∑
j=1

∣∣αεj ∣∣2 ε→0−−−−→ 0,
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holds for each fixedp. Then, using a classic argument of diagonalization (see Section I.2 of [2]),
we can assert that there is a sequencep(ε) converging to∞ asε→ 0 such that∥∥∥∥∥Uεi(ε)∣∣B −

∞∑
j=p(ε)

αεjUj

∥∥∥∥∥
H1(B)

ε→0−−−−→ 0.

Therefore, the Theorem is proved.2
Remark4.3. – We note that the result of Theorem 4.2 also holds in the case where the

eigenfunctionsUεi(ε) are replaced by the functions̃uε arising in Propositions 4.1 and 4.2, with
minor modifications.

Remark4.4. – Taking limits in (2.2), once we have performed the change of variablex = yε
and multiplied the equation byεm−2, we easily prove that the eigenfunctionsUεi(ε) arising in

Theorem 4.2 converge towards 0 inL2(B), asε→ 0. Thus, Theorem 4.2 provides information
about the gradient of the eigenfunctions.

5. Results for dimensionN = 1

Let us consider the eigenvalue problem (2.2) in relation to the vibrations of a string placed in
(−1,1) with the concentrated mass in(−ε, ε):

−d2uε

dx2
= λεuε in (−1,−ε)∪ (ε,1),

−d2uε

dx2 =
λε

εm
uε in (−ε, ε),

uε(−ε−)= uε(−ε+), uε(ε−)= uε(ε+),
duε

dx
(−ε−)= duε

dx
(−ε+), duε

dx
(ε−)= duε

dx
(ε+),

uε(−1)= 0, uε(1)= 0.

(5.1)

This problem was considered in [4] and Section VII.13 of [19] whenm = 1 and in [7] and
[14] whenm> 0. Here, we study the asymptotic behaviour of the large eigenvalues,λε =O(1),
whenm> 2, a case which has not been considered in any of the above mentioned papers.

In the present case, results in Section 4 can be improved because explicit computations
on the eigenvalues and eigenfunctions of (5.1) can be performed and the multiplicity of the
eigenvalues is equal to 1. In fact, all the results in this section can be obtained by means of explicit
calculations, without using the technique outlined in the previous sections. We only present the
main formulas in order to illustrate the previous results.

With the exception of the eigenvaluesλε , such that cos(
√
λεε1−m/2) = 0 (see Remark 5.2)

simple calculations show us that the eigenvaluesλε of (5.1) are theλ roots of the equation

tan
(√
λε1−m/2)= εm/2 cot

(√
λ(1− ε)),(5.2)

or of the equation

tan
(√
λε1−m/2)=−ε−m/2 tan

(√
λ(1− ε)).(5.3)
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In addition, the eigenfunctions associated with the eigenvaluesλε , root of the equation (5.2), are
the even functions

uε(x)=


Aεαε sin

(√
λε(1+ x)) if x ∈ (−1,−ε),

Aε cos
(√
λεε−m/2x

)
if x ∈ (−ε, ε),

Aεαε sin
(√
λε(1− x)) if x ∈ (ε,1),

(5.4)

and the eigenfunctions associated with the eigenvaluesλε , root of the equation (5.3), are the odd
functions

uε(x)=


Bεβε sin

(√
λε(1+ x)) if x ∈ (−1,−ε),

Bε sin
(√
λεε−m/2x

)
if x ∈ (−ε, ε),

−Bεβε sin
(√
λε(1− x)) if x ∈ (ε,1),

(5.5)

whereαε , βε, Aε andBε are constants such that

1∫
−1

∣∣∣∣duεdx
(x)

∣∣∣∣2 dx = 1.

We observe that forλε = O(1), the eigenfunctions (5.4) and (5.5) are strongly oscillating
functions in(−ε, ε). Moreover, if{λεi(ε)} is a sequence converging towards a positive numberλ,
then the coefficientsAεi(ε) andBεi(ε) converge to 0 asε→ 0. Thus, the eigenfunctions associated
with the high frequencies have a small amplitude in the concentrated mass.

The corresponding local problem is posed now in(−1,1),
−d2U

dy2 = µU in (−1,1),

dU

dy
(−1)= dU

dy
(1)= 0.

(5.6)

The eigenvalues of (5.6) areµ2k = (kπ)2, andµ2k+1 = ((2k + 1)π/2)2 wherek = 0,1,2, . . . ,
and the corresponding eigenfunctions (up to a constant) are:

U2k(y)= cos(kπy), U2k+1(y)= sin

(
(2k + 1)π

2
y

)
respectively, fory ∈ (−1,1).

The analogous problem to the Dirichlet problem (2.8) is:−
d2u

dx2 = λu in (−1,0)∪ (0,1),
u(−1)= u(0)= u(1)= 0.

(5.7)

We observe that, in this case, this limit problem is affected by the concentrated mass, as the
eigenfunctions satisfyu(0) = 0. The eigenvalues of (5.7) areλk = (kπ)2, k = 1,2, . . . , with
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multiplicity 2, and the corresponding eigenfunctions (up to a constant), an odd and an even one
respectively, are

uk,1(x)= sin(kπx) if x ∈ (−1,0)∪ (0,1),

uk,2(x)=
{
−sin(kπx) if x ∈ (−1,0),

sin(kπx) if x ∈ (0,1).
Theorem 3.1 allows us to assert that for eachλ > 0 there is a sequenceλεi(ε) of eigenvalues

of (5.1) converging towardsλ whenε→ 0.
By means of explicit calculations and using an argument of diagonalization (see Section I.2

in [2]), results for the eigenfunctions in Theorems 4.1 and 4.2 can now be stated in the following
way: for any sequenceλεi(ε)→ λ asε→ 0, with λ > 0, the corresponding eigenfunctions can be

approached inL2(−1,1), in thex variable, by the function:

ũεi(ε)(x)=



−aε sin(kπx) if x ∈ (−1,−ε),
∞∑

j=p(ε)
αεj cos

(
jπx

ε

)
if x ∈ (−ε, ε),

aε sin(kπx) if x ∈ (ε,1),

(5.8)

if the eigenfunction is even, or by the function

ũεi(ε)(x)=


aε sin(kπx) if x ∈ (−1,−ε)∪ (ε,1),
∞∑

j=p(ε)
βεj sin

(
(2j + 1)πx

2ε

)
if x ∈ (−ε, ε),(5.9)

if the eigenfunction is odd. In formulas (5.8) and (5.9),aε = Os(1) if λ = (kπ)2 for somek,
andaε = 0 otherwise,αεj andβεj are the coefficients of the expansion ofuεi(ε)|H1(−ε,ε) in Fourier
series of the eigenfunctions of the local problem (5.6):

αεj = 2Aε
√
λεεm/2−1 sin(ε1−m/2√λε)cos(jπ)

λε − π2j2εm−2
,

βεj = 8Bε
√
λεεm/2−1 cos(ε1−m/2√λε)cos(jπ)

−4λε + π2(2j + 1)2εm−2 ,

respectively andp(ε) is a function converging to∞ whenε→ 0. In fact, the approaches (5.8)
and (5.9) hold in the topology ofH 1 in the macroscopic (microscopic, respectively) variable in
(−1,−ε)∪ (ε,1) (in (−ε, ε), respectively).

Remark5.1. – We observe that (5.8) and (5.9) confirm the strongly oscillatory character of
all the eigenfunctions in(−ε, ε) whenε→ 0, already noted in (5.4) and (5.5). In addition, the
approach using the Fourier expansions is better than this by 0. Indeed, whenλεi(ε) converge

towards(kπ)2 (an eigenvalue of (5.7)), then∥∥uεi(ε)∥∥2
L2(−ε,ε) =O

(
εm
)
.
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Forε ranging in certain sequencesεn (for example,εn such that sin(
√
λεi(ε) ε

1−m/2)= 0) we can
prove: ∥∥uεi(ε)∥∥2

L2(−ε,ε) =O
(
εm+1), and

∥∥uεi(ε) − ũεi(ε)∥∥2
L2(−ε,ε) =O

(
ε

5m+2
4
)
.

Compare with Remark 4.2 and Theorem 6.1.

Remark5.2. – We observe that the possibleλ = λε such that cos(
√
λεε1−m/2) = 0 and

sin(
√
λε(1 − ε)) = 0 are excluded in the equation (5.2). Each one of these valuesλε =

(kπ/(1− ε))2 with k ∈ Z is an eigenvalue of (5.1) only for certain values ofε: those satisfying
the equation 2k/(2n+ 1)= εm/2−1

n (1− εn). In this case, the corresponding eigenfunctions are
the functions (5.4) whereλεn = (kπ/(1− εn))2, Aεn =O(εm/2n ), andαεn =±ε−m/2n (depending
on the values ofk andn). This result reaffirms approximation (5.8). Similars results are obtained
when cos(

√
λεε1−m/2)= 0 and cos(

√
λε(1−ε))= 0, excluded from (5.3). In this case,εn satisfy

(2k+1)/(2n+1)= εm/2−1
n (1−εn) and the corresponding eigenfunctions are the functions (5.5)

with

λεn =
(
(2k+ 1)π

2(1− εn)
)2

, Bεn =O
(
ε
m−1

2
n

)
, and βεn =±1

(depending on the values ofk andn).

6. Correcting terms for the eigenfunctions

In this section we obtain correcting terms for certain of the eigenfunctionsuε of (2.2)
associated with eigenvaluesλε = O(1). For the sake of simplicity we assume that the space
dimension isN = 2 andB is a circle, but calculations may be performed in other cases. We use
the method of matched asymptotic expansions to compute the correcting term and the Lemma 2.3
to obtain estimates.

We consider asymptotic expansions for the eigenfunctionsuε that take into account the
wavelength of the vibration inεB, different from that in [8] (see Remark 4.2). Here, we outline
the technique.

We postulate an asymptotic expansion of the eigenvaluesλε, λε = λ∗ + o(1); and of the
corresponding eigenfunctionsuε, an outer expansion forx ∈Ω − {0}:

uε(x)= u∗(x)+ o(1),

and a local expansion in a neighbourhood ofx = 0 in the local variabley = x/ε:

uε(y)= αV (y)+ o(1),

for α a certain constant.
Usual techniques of matched asymptotic expansions lead us to consider the composite

expansion of the eigenfunctionuε in Ω :

uε ≈ u∗(x)+
(
V ε
(
x

ε

)
− 1

)
u∗(x) whenu∗(0) 6= 0,(6.1)

uε ≈ u∗(x)+ V ε
(
x

ε

)
whenu∗(0)= 0 andu∗ 6≡ 0,(6.2)
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and

uε ≈ V ε
(
x

ε

)
whenu∗ ≡ 0,(6.3)

whereu∗ is an eigenfunction associated with the eigenvalueλ∗ of the Dirichlet problem (2.8)
in (6.1) and (6.2), andV ε(y) satisfies the equations:



−1yV = λ∗

εm−2
V in B,

−1yV = 0 inR2−B,

[V ] =
[
∂V

∂ny

]
= 0 onΓ,

V (y)→K, as|y| →∞,

(6.4)

with K = 0 for (6.2) and (6.3) and withK = 1 for (6.1).
Regarding the existence of a nontrivial solution of (6.4), we considerµ = λ∗/εm−2 in the

first equation; then, problem (6.4) coincides with the eigenvalue problem (2.4) for a certain
normalization of the eigenfunctionsU and it has nontrivial solution only for certain values ofε,
those values such thatµ is an eigenvalueµk of (2.4). Therefore, formulas (6.1), (6.2) and (6.3)
hold forε such thatλ∗/εm−2 is an eigenvalue of (2.4). We calculate explicitly these values in the
case whenB is a circle in Section 6.1 and justify formulas (6.1)–(6.3) in Section 6.2.

6.1. Eigenelements of the local problem

Let us consider problem (2.4) whenN = 2 andB the unit circle. In order to obtain the
formulas for the eigenvalues and eigenfunctions we consider polar coordinates(r, θ): y1 =
r cosθ , y2= r sinθ . We write indifferentlyU(r, θ) orU(y). (2.4) becomes:



∂2U

∂r2 +
1

r

∂U

∂r
+ 1

r2

∂2U

∂θ2 +µU = 0 for 0< r < 1, 06 θ < 2π,

∂2U

∂r2 +
1

r

∂U

∂r
+ 1

r2

∂2U

∂θ2 = 0 for r > 1, 06 θ < 2π,

U |r=1− =U |r=1+ and
∂U

∂r
|r=1− = ∂U

∂r
|r=1+,

U(r, θ)→K, asr→∞.

(6.5)

We use separation of variables in (6.5) and take into account the condition of boundedness
for the eigenfunctions at the pointr = 0 and at infinity. Then, we obtain the eigenvalues and the
eigenfunctions in terms of the Bessel functions of the first kind,Jn for n = 0,1,2, . . . , and the
trigonometric functions. See Section IX in [1] for an extensive exposition of properties for the
Bessel functions.

Formulas (6.5) lead to the conclusion that the quantities

µk,n = ν2
k,n, n= 0,1,2, . . . , k = 0,1,2, . . . ,(6.6)

are the eigenvalues of (2.4), whereνk,n, for each fixedn, are the roots of the equation:

J ′0(ν)= 0 whenn= 0, and νJ ′n(ν)+ nJn(ν)= 0 whenn > 0.(6.7)
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To each eigenvalueµk,0 there corresponds one eigenfunction (up to a constant):

Uk,0(r, θ)=
{
J0(νk,0r) if r 6 1,

J0(νk,0) if r > 1
(6.8)

and to each eigenvalueµk,n, n > 0, there correspond two eigenfunctions (up to a constant):

Uk,n(r, θ)=
{
Jn(νk,nr)cos(nθ) if r 6 1,

Jn(νk,n)r
−n cos(nθ) if r > 1

(6.9)

and

Ũk,n(r, θ)=
{
Jn(νk,nr)sin(nθ) if r 6 1,

Jn(νk,n)r
−n sin(nθ) if r > 1.

(6.10)

As the system of the eigenfunctions{Uk,0,Uk,n, Ũk,n, k, n= 1,2, . . .} is orthogonal inL2(B),
we prove that it is complete inL2(B) by using the results of completeness of the system of
products (see Section VII.2 in [13]).

Indeed, taking into account the change to polar coordinates, we observe that{1,cos(nθ),
sin(nθ)}∞n=1 form a basis in the set of functions ofL2(0,2π) with period 2π , and, for each fixed

n, the system{Jn(νk,nr)}∞k=1 is complete in the spaceLρ = {f ∈L2(0,1)/
∫ 1

0 f (ρ)
2ρ dρ <∞}.

This fact, is a consequence of the completeness inLρ of the eigenfunctions of the singular Sturm–
Liouville problem (for each fixedn):

d

dr

(
r

du

dr

)
− n

2

r
u+µru= 0 for 0< r < 1,

u,u′ bounded whenr < 1,

du

dr
(1)+ nu(1)= 0.

(6.11)

Simple computations allow us to prove that the whole eigenfunctions of (6.11) are{Jn(νk,nr)}∞k=1.
Therefore, the formulas (6.6) and (6.8)–(6.10) exhaust the totality of the eigenvalues and

eigenfunctions of the local problem (2.4). We observe that the only eigenfunctions converging
towards some constant different from zero, whenr→∞, are those associated with the Bessel
functions of order 0:Uk,0, ∀k.
6.2. Estimates for the eigenfunctions

Let us considerλε = λ∗ + o(1) for any λ∗ > 0. Let ε be ranging in the sequence{εk}∞k=1
defined by:

εk =
(
λ∗

µk,0

) 1
m−2

whenλ∗ ∈ σg,0(6.12)

and

εk =
(
λ∗

µk,n

) 1
m−2

whenλ∗ /∈ σg,0,(6.13)
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where σg,0 is the subset of the spectrum of the Dirichlet problem (2.8),σg , such that the
corresponding eigenfunctions do not vanish at 0;σg,0 is not empty. Obviously,εk→ 0 ask→∞.
In (6.13)n is fixed but it can take any valuen= 1,2, . . . .

For fixed k, when λ∗ ∈ σg,0, let εk be given by (6.12); we considerVk(y) = V εk (y) the
solution of (6.4) that converges towards 1 whenr →∞: Vk(y) = Uk,0(y)/J0(µk,0) (in fact
Vk ≡ 1 outsideB). We denote byTx the change of the variable fromy to x, x = yεk:
TxVk(x)= Vk(x/εk).

When λ∗ /∈ σg,0, let εk be given by (6.13); we considerWk(y) = V εk(y) the solution of
(6.4) that converges towards 0 whenr →∞: Wk(y) = Uk,n(y) or Wk(y) = Ũk,n(y). TxWk is
the functionTxWk(x) = Wk(x/εk). We denote byψ any smooth function taking the value 1
for |x| < R1 and 0 for |x| > R2, R1 andR2 are two fixed constants such thatR1 < R2 and
B(0,R2)⊂Ω .

The properties of the Bessel functions (see Sections IX and XI in [1]), the fact that, for fixed
n, νk,n→∞ whenk→∞, and cumbersome calculations in polar coordinates lead us to the
following estimates that will prove useful in the proofs of Theorems 6.1 and 6.2 respectively:

‖∇yVk‖L2(B) =
√
πνk,0

k→∞−−−−→∞,(6.14)

‖∇yWk‖L2(B(0,R2/εk)−B(0,R1/εk))
6 C1(n)ε

n
k Jn(νk,n),(6.15)

‖Wk‖L2(B(0,R2/εk)−B) 6 C2(n)
Jn(νk,n)√

εk
,(6.16)

and, forνk,n large enough,

‖∇yWk‖L2(B) > C3(n),(6.17)

whereCi(n), i = 1,2,3, are constants independent ofk.
We prove formula (6.1) ((6.3) and (6.2) respectively) forε = εk as stated in Theorem 6.1

(Theorem 6.2 and Remark 6.2 respectively).

THEOREM 6.1. – Let λ∗ ∈ σg andu∗ an eigenfunction of(2.8) associated withλ∗, u∗ with
norm 1 in H 1

0 (Ω) andu∗(0) 6= 0. Let {εk}∞k=1 be defined by(6.12).Then, there is a sequence
δεk , δεk→ 0 ask→∞, such that the interval[λ∗ − δεk , λ∗ + δεk ] contains eigenvalues of(2.2).
Moreover, there isuεk , uεk with norm1 in H 1

0 (Ω), u
εk belonging to the eigenspace associated

with the eigenvaluesλεk in [λ∗ − δεk , λ∗ + δεk ] such that∥∥uεk − αεk (u∗ + (TxVk − 1)u∗
)∥∥
H1

0 (Ω)
6 C

(
εk
√| lnεk|)β,(6.18)

whereC andβ are constants independent ofεk, 0< β < 1, andαεk = 1/‖(TxVk)u∗‖H1
0 (Ω)

.

Proof. –The technique is the same as in Proposition 4.1. Here, we only outline the main steps.
Let us considerAεk to be the operator associated with (2.8) defined by (4.1). In order to apply

Lemma 2.3, it suffices to prove estimates (4.5) forρεk = εk√| ln εk| andṽεk = vεk /‖vεk‖H1
0 (Ω)

,

beingvεk (x)= u∗(x)+ (Vk(x/ε)− 1)u∗(x)= Vk(x/ε)u∗(x). Then, the result in the Theorem
will be satisfied forδεk =O((εk

√| lnεk|)1−β) andαεk = 1/‖vεk‖H1
0 (Ω)

.
We observe that (4.5) holds, provided that there are constantsC1 and C2 such that for

sufficiently smallεk :∣∣∣∣〈Aεkvεk − 1

λ∗
vεk , v

〉
H1

0 (Ω)

∣∣∣∣6 C1R
εk‖v‖H1

0 (Ω)
, ∀v ∈H 1

0 (Ω),(6.19)
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whereRεk satisfies:

Rεk

‖vεk‖H1
0 (Ω)

6 C2ρ
εk .(6.20)

Subsequently, we prove estimates (6.19) and (6.20).
The definitions ofAεk andvεk allow us to write:〈

Aεkvεk − 1

λ∗
vεk , v

〉
H1

0 (Ω)

=
∫

Ω−εkB
u∗v dx − 1

λ∗

∫
Ω−εkB

∇u∗.∇v dx

+ 1

εm

∫
εkB

u∗ (TxVk) v dx − 1

λ∗

∫
εkB

∇(u∗ TxVk).∇v dx, ∀v ∈H 1
0 (Ω).(6.21)

When dealing with the estimates for the integrals onεkB arising in (6.21), on account ofVk(y)
satisfies (6.4) inB and a Neumann condition on∂B (see (6.8)), we apply the Green formula; we
also use the inequality (see Lemma 3.2 in [15]):

‖v‖2
L2(εkB)

6 C3ε
2
k | lnεk| ‖v‖2H1

0 (Ω)
, ∀v ∈H 1

0 (Ω).(6.22)

Hence, from (6.21), (6.22), the fact that(λ∗, u∗) is an eigenelement (2.8) and the Poincaré and
Schwarz inequalities, we deduce (6.19) for

Rεk = εk +
(
ε
m
2
k + εk

√| ln εk|)‖∇TxVk‖L2(εkB)
.

In order to prove (6.20), we take into account that‖u∗‖H1
0 (Ω)
= 1 and thatvεk (x) = u∗(x)

whenx ∈Ω − εkB andvεk (x)= u∗(x)Vk(x/εk) whenx ∈ εkB; we have:∥∥vεk∥∥2
H1

0 (Ω)
= 1− ∥∥∇u∗∥∥2

L2(εkB)
+ ∥∥∇(u∗TxVk)∥∥2

L2(εkB)
.(6.23)

ConsideringRεk/‖vεk‖2
H1

0 (Ω)
, on account of (6.23), (6.14) andu∗(0) 6= 0 we obtain (6.20) and

the Theorem is proved.2
THEOREM 6.2. – Let λ∗ be any positive number,λ /∈ σg . Let {εk}∞k=1 be defined by(6.13)

for fixedn. Then, there is a sequenceδεk , δεk → 0 as k→∞, such that the interval[λ∗ −
δεk , λ∗ + δεk ] contains eigenvalues of(2.2). Moreover, there isuεk , uεk with norm1 in H 1

0 (Ω),
uεk belonging to the eigenspace associated with all the eigenvaluesλεk in [λ∗ − δεk , λ∗ + δεk ]
such that: ∥∥uεk − αεk (TxWkψ)

∥∥
H1

0 (Ω)
6 C(n)√εk,(6.24)

whereC(n) is a constant independent ofεk andαεk = 1/‖(TxWkψ)‖H1
0 (Ω)

.

Proof. –The proof is analogous to that of Theorem 6.1. On account of‖∇xu‖L2(Ω) =
‖∇yu‖L2(ε−1

k Ω)
, we perform the calculations in the local variabley = x/εk.

Let Aε be the positive, compact and symmetric operator onH 1
0 (ε
−1Ω) defined by:

〈
AεU,V

〉
H1

0 (ε
−1Ω)
= 1

εm−2

∫
B

UV dy + ε2
∫

ε−1Ω−B
UV dy, ∀U,V ∈H 1

0

(
ε−1Ω

)
.
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Making the change of variable fromx to y in (2.2), we obtain that the eigenvalues ofAε are
1/λε.

Let us considerWεk (y)=Wk(y)ψ
εk (y), with Wk = Uk,n(y) defined by (6.9) andψεk (y) =

ψ(εkx) (nothing changes ifWk is defined by (6.10)).
Let us definẽWεk =Wεk/‖Wεk‖

H1
0 (ε
−1
k Ω)

. Let us admit for the time being that

∥∥∥∥AεkW̃ εk − 1

λ∗
W̃εk

∥∥∥∥
H1

0 (ε
−1
k Ω)

6 C(n)ρεk ,(6.25)

whereρεk =√εkJn(νk,n). Then, as in Proposition 4.1, we apply Lemma 2.3 withA= Aεk and
H = H 1

0 (ε
−1
k Ω) and, with minor modifications, we obtain the result in the statement of the

Theorem.
In order to obtain (6.25), we prove:∥∥Wεk

∥∥
H1

0 (ε
−1
k Ω)

> C4(n)(6.26)

and ∣∣∣∣〈AεkWεk − 1

λ∗
Wεk ,V

〉
H1

0 (ε
−1
k Ω)

∣∣∣∣6 C5(n)ρ
εk‖V ‖

H1
0 (ε
−1
k Ω)

, ∀V ∈H 1
0

(
ε−1
k Ω

)
,(6.27)

for some constantsC4(n),C5(n) independent ofεk.
Formula (6.26) is a consequence of the definition ofWεk , which takes the value (6.9) inB,

and of (6.17).
In relation to (6.27), the definitions ofAεk andWεk allow us to write:〈

AεkWεk − 1

λ∗
Wεk ,V

〉
H1

0 (ε
−1
k Ω)

= 1

εm−2
k

∫
B

WkV dy − 1

λ∗

∫
R2

∇yWk.∇yV dy

+ 1

λ∗

∫
R2−B(0,R1/εk)

∇yWk.∇yV dy − 1

λ∗

∫
B(0,R2/εk)−B(0,R1/εk)

∇y
(
Wkψ

εk
)
.∇yV dy

+ ε2
k

∫
B(0,R1/εk)−B

WkV dy + ε2
k

∫
B(0,R2/εk)−B(0,R1/εk)

Wkψ
εkV dy,

for any V ∈ H 1
0 (ε
−1
k Ω). We take into account thatWk satisfies (6.4) withK = 0; so that

formula (2.5) forµ= λ∗/εm−2
k leads us to cancel the first two integrals. For the other integrals,

we apply the Schwarz and Poincaré inequalities, we take into account the boundedness ofψεk

and its derivatives, and relations (6.15) and (6.16), and then we obtain (6.27). Therefore, the
Theorem is proved.2

Remark6.1. – The result in Theorem 6.1 (6.2, respectively) allows us to assert that
(V εk (x/εk) − 1)u∗(x), εk defined by (6.12) (V εk , εk defined by (6.13), respectively) provides
a correcting term for certain eigenfunctionsuεk of (2.2), which are approached by the
eigenfunctions of the Dirichlet problem (by 0, respectively) whenλ∗ ∈ σg,0, i.e., whenλ∗
is an eigenvalue of (2.8) and the corresponding eigenfunction satisfiesu∗(0) 6= 0 (λ∗ /∈ σg ,
respectively). In particular, estimates (6.18) and (6.24) improve the results in Theorems 4.1
and 4.2 (see also Proposition 4.1 and Remark 4.2).
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Remark6.2. – In the case whenλ∗ ∈ σg and the corresponding eigenfunction satisfies
u∗(0)= 0, we can prove (6.2) in a similar way to that in Theorems 6.1 and 6.2 with a suitable
modification ofV ε. For example, it can be easily proved:∥∥uεk − αεk (vεk + TxWkψ

)∥∥
H1

0 (Ω)
6 C

(√| lnεk| )β,(6.28)

whereC andβ are constants independent ofεk, 0< β < 1, αεk = 1/‖vεk + TxWkψ‖H1
0 (Ω)

, vεk

is the function defined in (4.4) andWkψ the same as in Theorem 6.2. Nevertheless, we also
observe that the bound (6.28) does not improve that in Proposition 4.1 (see also Remarks 4.1
and 4.2).

Remark6.3. – It should be noted that the results in Theorems 6.1 and 6.2 prove that certain
of the eigenfunctions of (2.2) are strongly oscillating inεkB, as is the case forJ0(νk,0r) and
Jn(νk,nr) for fixedn. It could also occur that the eigenfunctionsuε of (2.2) only concentrate on
the boundary ofεB. In this case, in order to obtain a correcting term foruε , it will likely become
essential to look for the so calledwhispering gallery eigenfunctionsof (2.4) (see Section VII
of [3] for this effect in bounded domains).

7. The casem= 2 andN = 2

In this section we study the asymptotic behaviour of the eigenelements of (2.2) whenm= 2
andN = 2. As estimates (2.3) still hold form= 2, the two sequences of eigenvalues associated
with the global and local vibration are the same order of magnitude O(1). Formal asymptotic
expansions for the eigenelements have been considered in [8,15,18]; we justify here the results
in these papers (see Section III.5 of [16] for another different technique whenN = 3).

Let us consider the problem (2.2) whenm= N = 2. Let the eigenvalues be{λεi }∞i=1. Let the
corresponding eigenfunctions be{uεi }∞i=1, satisfying:∫

Ω−εB
uεi u

ε
j dx + 1

ε2

∫
εB

uεi u
ε
j dx = δij ,(7.1)

whereδij is the Kronecker symbol. We prove here that the eigenvalues and eigenfunctions are
approached, whenε→ 0, by those of problems (2.4) and (2.8). We gather the eigenelements of
both problems as the eigenelements of problem:−1xu=Λu, u ∈H 1

0(Ω),

−1yU =ΛχB(y)U, U ∈ V,
(7.2)

whereχB is the characteristic function ofB.
Problem (7.2) is a standard eigenvalue problem in the Hilbert spaceL2(Ω) × L2(B) (its

elements being pairs of functions(u(x),U(y))); it has an equivalent variational formulation:
FindΛ, (u,U) ∈H 1

0(Ω)× V , (u,U) 6= 0, satisfying

∫
Ω

∇xu.∇xv dx +
∫
R2

∇yU.∇yV dy =Λ
[∫
Ω

uv dx +
∫
B

UV dy

]
, ∀(v,V ) ∈H 1

0(Ω)× V,

whereV is the space defined in (2.6).
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Let us consider

0=Λ16Λ26 · · ·6Λn 6 · · · n→∞−−−−→∞,
the sequence of eigenvalues, with the classical convention of repeated eigenvalues and let
{(ui,Ui)}∞i=1 be the corresponding sequence of eigenfunctions, forming an orthonormal basis
of L2(Ω)×L2(B).

THEOREM 7.1. – For each i, thei-th eigenvalue of problem(2.2), λεi , converges when
ε→ 0 towards thei-th eigenvalue of(7.2), Λi . Thus, the eigenvaluesΛ of (7.2) are the only
accumulation points of{λε}ε and there is conservation of the total multiplicity forε sufficiently
small.

Proof. –Taking into account (2.3), the orthonormality condition (7.1), and the fact that(λεi , u
ε
i )

is an eigenelement of (2.2), we can extract a subsequence (still denoted byε) such that for each
i = 1,2, . . . , (λεi , u

ε
i ) satisfies:

λεi
ε→0−−−−→ Λ̃i, and

(
uεi ,U

ε
i

) ε→0−−−−→ (
ũi , Ũi

)
, weakly inH 1

0 (Ω)× V,

whereUεi (y)= uεi (εy). Moreover, (7.1) allows us to assert that{(ũi, Ũi)}∞i=1 are orthonormal in
L2(Ω)×L2(B). We prove that(Λ̃i , (ũi , Ũi )) is an eigenelement of (7.2).

Indeed, for each fixedi, provided that̃ui 6= 0, we take limits in (2.2), asε→ 0, and we obtain
that(Λ̃i , ũi) is an eigenelement of (2.8). Moreover, if we write (2.2) in they variable and we take
limits whenε→ 0, we obtain that(Λ̃i , Ũi) satisfies (2.5). Hence, as(ũi, Ũi ) 6= (0,0), (ũi, Ũi) is
an eigenfunction of (7.2) associated with the eigenvalueΛ̃i .

In this way, we have{Λ̃i : i ∈N} ⊂ {Λi : i ∈N} and, since the multiplicity of each eigenvalue
is finite, we deduce that̃Λi →∞ as i→∞. In what follows, we prove by induction that for
eachi, Λ̃i =Λi , which shows the conservation of the multiplicity.

First, let us prove the result fori = 1. For eachε > 0, let us considerφε ∈H 1
0(Ω) the solution

of ∫
Ω

∇φε.∇v dx +
∫

Ω−εB
φεv dx + 1

ε2

∫
εB

φεv dx

= (Λ1+ 1)

[ ∫
Ω−εB

u1v dx + 1

ε2

∫
εB

U1

(
x

ε

)
v(x)dx

]
, ∀v ∈H 1

0(Ω),(7.3)

and letΦε be the functionΦε(y)= φε(εy). Since(u1,U1) has norm equal 1 inL2(Ω)×L2(B),
the sequence(φε,Φε) is bounded inH 1

0 (Ω)×V and we can extract a subsequence that converges
weakly inH 1

0 (Ω)× V . Taking limits in (7.3), we obtain thatφε converge towardsu1 in L2(Ω)

asε→ 0. On the other hand, we can write (7.3) in they variable and pass to the limit when
ε→ 0 to obtain thatΦε converge towardsU1 in L2(B) asε→ 0. Hence, denoting byRε(v) the
Rayleigh quotient:

Rε(v)=
∫
Ω |∇xv|2 dx + ∫Ω−εB |v|2 dx + ε−2

∫
εB |v|2 dx∫

Ω−εB |v|2 dx + ε−2
∫
εB
|v|2 dx

,

we haveRε(φε) ε→0−−−−→Λ1+1. The minimax principle allows us to writeλε1+16Rε(φε) and,
taking limits,Λ̃1+ 16Λ1+ 1. Thus, the result̃Λi =Λi, holds fori = 1.
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Let us assume that̃Λi = Λi , holds for i 6 j . Taking into account that the eigenfunctions
{(ũi, Ũi)}j+1

i=1 , associated with{Λ̃i}j+1
i=1 , are orthonormal inL2(Ω)×L2(B), we obtainΛ̃j+1>

Λj+1. In order to provẽΛj+16Λj+1 we use a process of orthogonalization (see Section III.9.1
of [2], for example, for the technique):

Let us considerφε ∈H 1
0(Ω) the solution of (7.3) withΛ1, u1 andU1 replaced byΛj+1, u

∗
j+1

andU∗j+1 respectively, where(u∗j+1,U
∗
j+1) is an eigenfunction of (7.2) associated withΛj+1,

with norm 1 inL2(Ω)×L2(B), and such that it is orthogonal to(ũi, Ũi) in L2(Ω)×L2(B) for
16 i 6 j . We use the same argument as in (7.3) to prove that

(
φε,Φε

) ε→0−−−−→ (
u∗j+1,U

∗
j+1

)
in L2(Ω)×L2(B)

and

Rε
(
φε
) ε→0−−−−→Λj+1+ 1.

Now, let us define

ψε = φε −
j∑
k=1

(
φε,uεk

)
ε
uεk, Ψ ε(y)=ψε(εy),

where(u, v)ε denotes the scalar product inL2(Ω):

(u, v)ε =
∫

Ω−εB
uv dx + ε−2

∫
εB

uv dx.

Then, it can be easily proved the convergences

(
ψε − φε,ψε − φε)

ε

ε→0−−−−→0 and
∥∥∇x(ψε − φε)∥∥L2(Ω)

ε→0−−−−→0.

Therefore, (
ψε,Ψ ε

) ε→0−−−−→ (
u∗j+1,U

∗
j+1

)
in L2(Ω)×L2(B)

and

Rε
(
ψε
) ε→0−−−−→Λj+1+ 1.

Besides, as(ψε,uεk)ε = 0, for 16 k 6 j , the minimax principle reads:λεj+1 + 16 Rε(ψε).
Taking limits whenε→ 0 we obtainΛ̃j+1 + 16 Λj+1 + 1, and the result̃Λi = Λi holds for
anyi = 1,2, . . . .

We have proved the result stated in the Theorem on the eigenvalues for a certain subsequenceε,
but, taking into account that for any sequence it is possible to extract a subsequence satisfying
the same result, the Theorem is proved.2
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