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ABSTRACT. — We consider the vibrations of a system consisting of the do®@aifi RN, N = 2, 3, that
contains a small region with diameter depending on a small parametée density is of order @)
in the small regionthe concentrated masand it is Q1) outside;m is a parametern > 2. We study the
asymptotic behaviour, as— 0, of the eigenvalues of order©, the high frequencieshenm > 2, and the
corresponding eigenfunctions of the associated spectral problem. We provide information on the structure of
these eigenfunctions. We also check theoretical results with explicit calculations for the dimevisiohs
andN = 2 and give correcting terms for the eigenfunctionsElsevier, Paris

1. Introduction

We study the high frequency vibrations of a body occupying a do2aad R" that contains
a small region of high density, the so-calle@hcentrated mas3he diameter of this regior B,
is O(e) while the density is @ ™) in ¢ B and Q1) outside;yn ande are two parameters; > 2
and we shall make go to 0. We consider the corresponding spectral problem for the Laplace
operator (see (2.1)). It should be pointed out that the results and techniques in this paper are very
different from those in the literature for systems with concentrated masses.

Many papers have been devoted to the study of the vibrations for systems with one single
concentrated mass using different techniques: let us mention [21] for the elasticity system, [6] for
rods and plates equations, and [7,8,14-16] and [18-20] for the Laplace operator. Very different
cases appear according to the operator, the dimenSi@f the space and the value of the
parametein > 0. Whenm > 2, only a few of the above mentioned papers consider the high
frequency vibrations, i.e., the vibrations associated with the eigenvatuetorder Q1); the
results are obtained in terms of asymptotic expansions or convergences of spectral families:
see [8] and [19-21]. See [9-11] for different results in systems with many concentrated masses.

Dealing with the low and high frequencies, whan> 2, a common fact which is clearly
described in the literature is that two kinds of vibrations applkemal vibrationsand global
vibrations

The local vibrations are those for which the corresponding eigenfunatioase significant
only in a region near the concentrated mass (i.e.|xfppe= O(¢e)) while they are very small at the

*This work has been partially supported by the DGICYT.
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distance @1) of the concentrated mass (the order of magnitud€ afepends on the dimension
N). The associated eigenvalues are of order"0?): the low frequencies

The global vibrations affect the whole body and the corresponding eigenfunctions are small in
a neighbourhood of the concentrated mass (i.e|xffpe O(e)). The corresponding eigenvalues
are of order @1): the high frequencies

On the basis of different approaches, the asymptotic behaviour of the low frequencies
have been widely studied in [8,14-16], and [19-21]. They accumulate at the origin: once the
frequencies are normalized, the valu28/s"—2) are approached by the eigenvalues ltheal
problem(see (2.4)). Here, we are not concerned with these frequencies; see Lemma 2.1 for
the main results that we shall use throughout this paper. To our knowledge, there is a lack
of information on the behaviour of the high frequencies, as well as for the corresponding
eigenfunctions, which we describe here below.

For the high frequencies, in Section VII.12 of [19], it is proved that eacho, is an
accumulation point of eigenvalues$; o, denotes the spectrum of the Dirichlet problem (2.8).
We notice that other converging sequences of eigenvalues of ofdec@uld also exist. On the
other hand, this result for the eigenvalues does not provide any information on the eigenfunctions,
as it is obtained in terms of a very poor convergence of certain spectral families. The only
information for the eigenfunctiong® associated with the eigenvalues~ 1°, for A% e 04, IS
obtained from the matching asymptotic techniques (see [8] when2 and Section VII.10 of
[19] whenN = 3): u® are approached through the eigenfunctions of the Dirichlet problem (2.8)
and it seems as if they are zerosiB (see Remark 4.2).

In this paper, we prove that the high frequencies accumulagb, iso) (see Section 3), and
we characterize the behaviour of the eigenfunctions associated with the frequencies according to
whether these frequencies are asymptotically near a point of not (see Sections 4 and 6).

In Section 4.1, we provide information about the structure of the eigenfunctions associated
with the high frequencies: only those associated with eigenvafuesnverging towards a point
of o,, ase — 0, are asymptotically non-null i2(£2). In addition, in Section 4.2 we prove that
all the eigenfunctions have an oscillatory characterBnin the local variabley = x /¢, they are
approached through eigenfunctions of the local problem (2.4) associated with large frequencies.

The oscillations of the eigenfunctions associated with= O(1) inside ¢B were already
glimpsed in Section VII.10 of [19]. Nevertheless, it should be emphasized that it could very
well occur that these eigenfunctions concentrate on a neighbourhood of the bouBdang
vanish inside: B, that is to say, some kind e@fhispering gallery phenomeneould happen (see
Remark 6.3). In Section 6, we prove this strongly oscillatory character on the wiBofer
certain eigenfunctions. Explicit computations, whgn= 2 andB is a circle, allow us to give
a correcting term for the eigenfunctions. In particular, we improve the convergence results in
Section 4 for certain sequencegs, whene; — 0.

In Section 5 we give the results for a vibrating strirlg £ 1), as we consider that they may
clarify the more general results of Section 4 (see [7] for a study of the low frequencies). We
observe a different behaviour for the eigenfunctions than that noted for the dimension of the
spaceN > 2: whenN = 1 all of them are strongly oscillating functions inside the concentrated
mass and no whispering gallery phenomena can occur.

Finally, in Section 7, we consider the cale= 2 andm = 2: we give convergence results for
the eigenelements.?, u®) of (2.2).

2. Statement of the problem

Let us consider2 an open bounded domain&f¥, N = 2 or 3, with a smooth boundans?.
Let B be an open bounded domain with a smooth boundary which we denate Bgr the
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EIGENFUNCTIONS ASSOCIATED WITH HIGH FREQUENCIES 843

sake of simplicity, we consider that bofh and B contain the origin. Let be a positive small
parameter that we shall make to go to 0. Let us congi#esinds I" the homothetics oB andI”
respectively with ratia, and we assume thaB is contained inf2. Letm bem > 2.

Let us consider the spectral problem:

—Aut = 2uf in 2 —¢B,
—Aut =2e¢"y® ineB,
2.1 ous
2.1) [ua]z[i}zo oner,
on
ut®=0 onas2,

wheren is the unit outward normal tel” and the brackets denote the jump acroEsof the
enclosed gquantities.

The variational formulation of problem (2.1) is:

Find A%, u® € H3(£2), u® # 0, satisfying:

1
(2.2) /Vus.Vvdxz)Ls[ / usvdx—i——/usvdx], VveHé(Q).
8’"

Q Q—-¢B eB

For each fixed > 0, (2.2) is a standard eigenvalue problem. Let us consider

0<)L€i<)hsé<“'<k2<“'ﬂ>00,

the sequence of eigenvalues, with the classical convention of repeated eigenvalye$} et
be the corresponding eigenfunctions, which are assumed to be an orthonormal tﬁ#ﬂ@m
ie.,

HV"‘S ”LZ(.Q) =1

Leto. denote the spectrum of (2.2); = {A{}72;.

An estimate for the eigenvalues can be obtained by using the minimax principle and the
coerciveness of the form on the left-hand side of (2.2) (see [9] and [11], for example, for the
technique). In fact, for each fixed=1, 2, 3, ... we have:

Ce"?|lng|™t < A < Cie" 2 for N=2,
(2.3)
Ce™ 2 <28 <Cig"? for N =3,

whereC, C; are constants independentcndC; — co wheni — oo.

Problem (2.2) has been studied by several authors using different techniques: the case when
N =2 s considered in [8,14,15,18,19], while the ca&e- 3 is studied in [14,16,18—20].

Regarding the low frequencies, a thorough study is performed in the above mentioned papers
and we do not add anything to what has already been said. We state here the main results, obtained
in these papers whel = 2, 3, which will be useful in Sections 4, 6 and 7.
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844 D. GOMEZ ET AL.

The change of variable = x /¢ leads us to the following eigenvallexal problem

—AU =plU in B,
~AU =0 inRY — B,
. 9
(2.4) [U]:[—U]zo onr,
on
U lyl>o0 |c IfN=2,
“10 ifN=3,

wherec is an unknown but well determined constant. This problem, posed in an unbounded
domain, has the variational formulation:
Findu andU €V, U # 0, satisfying:

(2.5) /VU.Vde:M/Ude, vV eV,

RN B

where the spac¥ is the completion oD(R") for the norm

1/2
/ \va(y)\zdy] :

RN

(2.6) WUy = [/ )Py +
B

Problem (2.5) has a discrete, non-negative spectrum (see Section V.8 of [19], for example).
Let us consider
0< << o Sty <o ——> 00,
the sequence of eigenvalues, with the classical convention of repeated eigenval|&s} et
be the corresponding eigenfunctions suitably normalized.
Let us denote by, - |1 the norm inH(B), equivalent to the usual norm,

(2.7) WUIE = 10125 + (TU U 12y vy

whereT denotes the trace operator @h(see Section V.8 of [19]). The following result is
proved in [8] whenV = 2 (Section VII.11 of [19] whenV = 3) and in [15] (Section III.5 of [16],
respectively) with other techniques of the Spectral Perturbation Theory.

LEMMA 2.1.—Letm bem > 2. Let)! be the eigenvalues ¢2.2)andU; the corresponding
eigenfunctions with norrhin V. For fixedi, the valuesnf/g’”—2 converge, when — 0, towards
the eigenvalues qR.4) with conservation of the multiplicity. For each sequence it is possible
to extract a subsequence, still denotedehysuch that the corresponding eigenfunctiots,
converge toward#/; in L2(B) whereU; is an eigenfunction associated with théh eigenvalue
of (2.4), and{U;}:2, form an orthonormal basis a7 1(B) for the scalar product associated with
the norm(2.7).

Note, that it is an essential fact, in order to obtain the result in Lemma 2.1, to consider the
microscopic variable. In the macroscopic variable, we observe thajf °°, is an orthonormal

basis och-}(.Q), for each fixedi, u? 209 weakly in H&(.Q) (see Proposition 4.3). This
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suggests that other asymptotically non null eigenfunctions should exist and obviously we must
look for these eigenfunctions among those associated with the high frequencies.

Dealing with the high frequencies, we outline here the main results obtained in [8,19,20].
Asymptotic expansions for the eigenvalues= A 4+ o(1) and for the eigenfunctiong® =
u + 0(1) lead to the Dirichlet problem:

2.8) —Au = Au In 2,
u=0 o0onas,

which ignores the concentrated mass. Let

O<ii< A< <A <o —25 0,

be the sequence of eigenvalues, with the classical convention of repeated eigenvalues. Let us
denoteo, the spectrum of (2.8)5, = {1;}72;.

The Fourier transform technique for time dependent problems provides the following result on
the spectral convergence (see Section VII.12 of [19] for the proof).

LEMMA 2.2.— For each); eigenvalue 0f2.8), there is a sequencéf(s) of eigenvalues of
(2.2)converging tox; ase — 0.

For convenience we introduce here a result from the Spectral Perturbation Theory that will
prove useful in Sections 4 and 6 (see [22] for its proof).

LEMMA 2.3.—LetA:H — H be alinear, self-adjoint, positive and compact operator on a
Hilbert spaceH. Letu € H, with ||u||g = 1andx, r > Osuch thatjAu — Au| g < r. Then, there
exists an eigenvaluk; of A satisfying|A — A;| < . Moreover, for any* > r there isu* € H
with ||u*|| g = 1 such that

” N 2r
u—u” < —
H I"*’

u* belonging to the eigenspace associated with all the eigenvalues of the op&iging on the
segmenfr — r*, A +r*].

3. Spectral concentration ofo in [0, c0)

As is well known, the classical Weyl numbers give an idea about how, for certain elliptic
problems, the large frequencies are distributed; actually, depending on the dimension of the
space, they can become closer and closer. A small parameafgearing in the problem could
enlarge the field of applications of these classical results allowing the densification of the
spectrum in[0, +00) to be guessed, as— 0 (see [5] and [12]). We prove here that this is
the case for the spectrusy of (2.2).

The main result in this section is stated in Theorem 3.1. We use the method of the Fourier
Transform for its proof (see [12] and Section V.13 in [19]). Note that this method is very general:
all ends up as a weak convergence of the corresponding spectral families operating on certain test
functions. This allows us to obtain spectral convergence results when the limit spectral family is
not a constant one (see [9,17], for very different cases).

THEOREM 3.1.— Foranyi* > 0, there is asequencxﬁ(s) of eigenvalues df2.2) converging
towardsr* ase — O.
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The proof of the theorem is based on Lemma 3.1 bellow. Let us first introduce some notations
which will prove to be useful for the proof. We dilate the space varialdg introducing a new
variable&, & = x/&"/2. We denote by2, = {€ e RV: £™/2 € 2}, 2, ={E e RN: ge™/2 ¢
2 —¢B), B, = {£ e RV: £¢"/2 € ¢ B}. We assume that the elementsi§(£2,) are extended to
R with the value 0. Let us consider problem (2.2) written in gheariable:

(3.1) /Vgue.ngdé;:AS[Sm/MSUd§+/M€Ud§:|, Vv € H(82:).

£2¢ ¢ Be

Let A* be the positive, self-adjoint, anticompact operatof-fnassociated with the form on
the left-hand side of (3.1), where By* we denote the spade?($2,) with the scalar product

(u,v)Hszam/uvdé—i—/uvdS, Yu,v e H¢,

2 B,
thenA® has a discrete spectrum, = {A7}72,. Let{ef}72; be the corresponding eigenfunctions
el e H%(Qg), which are assumed to be an orthonormal bastginLet 3¢ be B¢ = A° + I¢, I¢
the unitary operator ift{®.

Let us consider the operator oi.?(R") associated with the Laplacian operator. As is known
A is a non-negative, self-adjoint operatorliR(R") with continuous spectruna;(A) = [0, co)
(see, for example, Sections Il and V of [23]). LBtdenote the operatod + I where! is
the unitary operator ir.?(R"); in fact, B is the operator associated with the scalar product
in HYRY) ando (B) = [1, 00).

Let us consider the evolution problem associated with (3.1), in the s[baecasdHé(Qg), for
some initial data:

d?u®
(3.2) dr2 .

£0)=0, —(0) =

u”(0) ’dt() Je,

+ Bfuf =0,

where the index denotes the restriction of the functighin L2(RY) to £2,. Similarly, let the
evolution problem associated withbe:

d2 *
_uz + Bu* =0,
(3.3) dr

frn du* _
u*(0) =0, E(O)_f’

in the space£2(RV) and HL(RV).
Let us introduce a smooth functigsf which takes the value 1 ift| < 2e¥/2, and 0 in

g1 > /2
2
p° (&) = ¢<—81_|i|/2>,

wherep € C*[R), o(r) =1if r <lande()=0if r > 2.
We use the technique in [12] and Section VII.6 of [19], with minor modifications, to prove the
following result for the solutions of (3.2) and (3.3):
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LEMMA 3.1.— Letu®(r) be the solution of3.2) (u*(¢) that of (3.3)), with values inH%(QS)
(HY(RN) respectively, that we assume to be extendediig RV — 2,. We consideii® = u¢¢°.
Then,

~ e—0

0 —— u* in L(— o0, 0o; HY(RY)) weak?,
(34) dua 60 du*
= =
dr dr
From Lemma 3.1, we obtain the convergence of the corresponding spectral families associated
with A? and.A respectively:

in LOO( — 00, 00; LZ(RN)) weak?.

(3.5)  (E(A% A)ve, wg)Hg _e=20, (EA Vv, w) in L*°(—o0, co) weakly,

L2(RN)

foranyv, w € L2(RV).

Proof of Theorem 3.1. We show that for any* > 0 and for anys > 0, there existg (¢) such
thatkj.(s) € (A* — 8,1 * + 8), for sufficiently smalle.
Taking into account the definition o4* and.4 respectively, foi. > 0, we have:

(3.6) (E(AS, A)vg, vg)Hg = ( Z (ef, vg)ngf, vg> = Z (ef vs)ilg, Yv e LZ(RN),
HS

AL A

({ef}72, being the eigenfunctions of (3.1)) and

(3.7) (E(A, A, U)LZ(]RN) = ||5(.A, A)v|| iZ(RN) = / |ﬁ(p)|2dp, Yv € LZ(RN),
IpI<VA

whered(p) is the Fourier transform af € L2(RV).
On account of (3.5), taking derivatives in (3.6) and (3.7), we obtain:

e—0 1 n2

(3.8) Z (ef, vg)siggo()hf) — < E)LT / ’ﬁ(ﬁr))‘zdn, ¢ >SR)xSR): V¢ € S(R),
Afgk SN-1

whereS¥~1 s the unit sphere ifR" . Then, takingy andgp € D(A* — 8, A* + 8), in such a way

that the right hand side of (3.8) be different from zero, we deduce that, for sufficiently small
¢, there arexj(e) such thatrp(kj(e)) #0, so thatxj.(e) e (\* — 68,1 +98), and Theorem 3.1 is
proved. O

4. On the structure of the eigenfunctions associated with the high frequencies

Convergence results for high frequencies are given in Lemma 2.2 and Theorem 3.1 in terms of
the convergence of certain spectral families. However, no information about the structure of the
corresponding eigenfunctions seems to be obtained from these results. Two different operators
are obtained: the first one (associated with the Dirichlet problem (2.8)) has a pure point spectrum,
o, While the second one has a continuous spectfQno) (see [12] for an analogous situation).

As o, C (0, 00), the eigenfunctions associated with eigenvahfessymptotically near the points
of o, should have a different behaviour from those associated with the rest of the eigenvalues.
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The aim of Section 4.1 is to differentiate this behaviour. In Section 4.2 we give information about
the structure of the eigenfunctions inside.

4.1. Global behaviour

The main result in this section is stated in the following theorem:

THEOREM 4.1. — Let) be any positive real number. L&t denote an intervala — 8¢, A 4 §°]

having eigenvaluesf(e) of (2.2), with 6°* — 0 ase — 0. Then,\ € o, if and only if there are

{8%}, and {if},, eachu® with norm1 in Hé(Q), belonging to the eigenspace associated with
all the eigenvalues iy and such that|i®|| 2,y > a > 0 for some constant independent of

€. Moreover, ifA € o, andu™ is an eigenfunction associated with«* with norm1in H(l)(fz),
then the sequendg converge towards™ in H(l)(fz).

The proof of the Theorem is a consequence of Propositions 4.1 and 4.2 below.

PROPOSITION4.1.— Let L eo,, and u* be an associated eigenfunction such that
Vu*|l 2¢o) = 1. Then, there is a sequen¢#’},, d* — 0 ase — 0, such thafr —d®, A + d°]

contains eigenvalues @R.2): Af(s),/\f(a)ﬂ, . ..,/\f(ng(a). Moreover, there islf(g) € Hé(fz),

with ||V:Zf(€) L2y =1, ﬁf(s) belonging to the eigenspace associated with the eigenvaf%\s

in [A —d¢, A+ df], such that
”"7{(8) HLZ(Q) >a>0,
for some constant > 0, andﬁf(s) converging towardg™ in Hé(fz) ase — 0.

Proof. —Let A? be the positive, compact and symmetric operatoHémQ) defined by:
(4.1) (Afu,v) = dx + 1 de, V HX($2)
. u,v Hol(ﬂ) = uv dx om uv dx, u,v e Hy .
2—¢B eB

The eigenvalues od® are 1/1%, A¢ being the eigenvalues of (2.2).
Let u* e H%(Q) be as the proposition states. For sufficiently smallve construct?® e
H}(£2) such that® =0 ineB and

(4.2) Ju* = HE (@) < Cp
whereC always denote some constant independentarid
(4.3) 0°=1|lng| Y2 whenN=2 and p®=¢Y? whenN =3.

In order to prove this result, it suffices to take:

u*(x) if x| > e,
eon ) ox, In(xl/e) —
(4.4) v)={u (x)m if e <|x|<e, FN=2,
0 if |x] <e,

andv® = u*y® if N =3, wherey*®(x) = ¥ (]x|/e) with v € C*[R), v(r) =1 if r > 2 and
v(r)=0ifr < 1.
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Taking into account the definition of?, the fact that® vanishes ire B and that(i, «*) is an
eigenelement of (2.8), we have:

1 1
<A€v€ — =", v> = / (vs —uMvdy — = / V(vs - u*).Vvdx, Yv e Hé(.Q).
A HE®2) A
2
We apply Schwarz and Poincaré inequalities to obtain:

1
’<Agvs — 2f, v>
S VA1)

Hence, from (4.2), fop® defined in (4.3), it is evident that converges towards* in H&(.Q)
ase — 0, and, taking® = v9/||v8||H01(9), for sufficiently smalle, we have:

<O = pao)IVlgay Yo € Ho(2).

1
(4.5) HAW — 25

. < Cp°.

H3(£2)

We apply Lemma 2.3 withd = A®, H = Hl(.Q) u =17 r =Cp° and, for example,
= 2,01/2 We deduce that there are elgenvalqegl(g)ﬂ) 1}']‘(8)1, of A in I, = [(1/A) —
1/2 , (/) + 2,01/2] Moreover, for eacls, there ISul(F) € Hé(.Q), with ||ﬁi(€)||H01(9) =1,
i(s) belonging to the eigenspace associated with all of the eigenvalugssnch that
- 1/2
(4.6) ) — HHl(.rz) < Cpe?.

On accountof® — u* in H3(£2) ase — 0, (4.6) leads us to assert thit,) — u* in Hi(92)
ase — 0. The fact thati, u*) is an eigenelement of (2.8) reads:

N 1
”"‘?(a) HLz(.Q) - W #0,

consequently, there exists a constant 0, independent of, such that]|12i(€)||Lz(m >a>0,
for sufficiently smalle. Then, we have proved that the statements in Proposition 4.1 hold for

=0(®. o

PROPOSITION 4 2.— Let us considei > 0, let {§°}, be any sequence such th&t— 0 as
e— 0, let {Al(s : 8)+1, ... )‘z(s)+k(s)} be all the eigenvalues ¢2.2)in [A — 8%, A + §¢], and
u® any function in the e|genspa{:zeg(s), HAYETRERS “f(s)+k(s)] with [[Vi® [l 2oy = 1.

(a) If there is some converging subsequeficé}, such that||i® |, 2 ;) > a > O, for some

constantz independent ofy, then(x, u™*) is an eigenelement ¢2.8), whereu™* is the limit
of #% in L2(§2) ase; — O.
(b) If A ¢ o, then
H ”LZ(.Q) ase — 0.

Proof. —We prove assertion (b) by contradiction. Let us supposeihatnot an eigenvalue
of (2.8), and the sequendgi®|| 2., does not converge to zero as— 0. Because of the
boundedness af in Hé(Q) we can assert that there is a subsequéiné; converging weakly
in Hé(Q) towards some function*, ase — 0, with u* # 0.
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Let us considei® = Z‘;g “1i )4 fOr certaing’; on account of relation (2.2) for each

Jli(e)+j
eigenelementis,,, . u5, , ), j =1 ....k(e), we obtainvv H($2):

k(e)
/Vﬁs.Vvdxzk / ﬁsvdx—i-—/u vdx—i-z z(s)+] 2) B / Uy AX
2 2—¢B 2—¢B
k(e)
mZ i)~ 8/ (g4 Ax.

eB

Takingv € H&(Q) vanishing in a neighbourhood of the origin, we obtain, for sufficiently small
the relation

k(e)

4.7) /Vﬁg.Vvdx:A/u vdx—f-z Z(F)H 8/ Uy U AX.

2 2 2

Then, on account o[kl(ak)ﬂ — Al < 6% and Zk(” (ﬂ )2 =1, we take limits in (4.7) when

&r — 0, to obtain thai* satisfies:

/Vu*.Vvdx:k/u*vdx.

2 2

Now, as the set of the functionslm&(fz) vanishing in a neighbourhood of the origin is dense in
Hé(fz), andu™ # 0, we obtain that is an eigenvalue of (2.8) which contradicts the hypothesis.
Therefore, result (b) holds. It is evident that the proof of assertion (a) is contained in the previous
demonstration. O

COROLLARY 4.1. - Let be a positive real numbek, ¢ o,, and Iet{kf(e)}g be any sequence
of eigenvalues of2.2) converging towards. ase — 0. Then, the corresponding eigenfunctions
uf ., converge towards in L?(£2), ase — 0.

Remark4.1. — In the proof of Proposition 4.1 we have obtalned Hat O(,ol/z) In fact, it
can bed® = O((p*)1 #)for0< B <1, and||ul(s) v ||H1(9) C,og instead of (4.6). If there
is only one elgenvaluexl )’ in [A —d®, A + df], with multlpI|C|ty 1, then, the functlomf(s)
is the corresponding eigenfunction. Moreover, in this case, Proposition 4.1 and Corollary 4.1
characterize the eigenfunctions associated with eigenvafues.: if A € o, thenuf(s) — u*in

Hé(Q), whereu™ is the eigenfunction associated wittwith norm 1 in Hé(Q); if A ¢ o, then

uf(s — 0in L2(£2). That is to say, the eigenfunctions are asymptotically different from zero if
and only if the corresponding eigenvalues converge towards an eigenvalue of (2.8).

In addition to the result in Corollary 4.1, in the following proposition, we prove that the
only converging sequences/s* giving rise to global vibrations of the whole body are those
associated with the eigenvalues of order 1 that converge towards an eigenvalue of the Dirichlet
problem (2.8).

PROPOSITION 4.3. — Let us assume thaﬁ )}s is any sequence of eigenvalueg2f)such
that As( ,/€% converge towards some=# 0, aSe — 0, forsomea, 0O <a <m—2o0ra <0.

Then, the corresponding eigenfunctio:jgs) converge toward® in L2(£2), ase — 0.
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Proof. -We suppose that there is a sequengg) such that/\f(a)/g“ Lom* and the

e—0

corresponding eigenfunctions satisfg/(s) ——— u™ # 0 weakly in Hé(:z). Then, on account
that the set of the functions 0‘9%(52) vanishing in a neighbourhood of the origin is dense

in Hé(Q), we pass to the limit in the equation (2.2) and we obtain tHat 0, which is a
contradiction. O

Remark4.2. — We observe that the eigenfunctioss with norm 1 in Hé(:z), associated
with eigenvalues.? converging towarda £ 0 satisfy||u8||i2(83) <Ce" e, ufll2p — 0
whene — 0. This result agrees with the result obtained in [8] and Section VII.10 of [19] using
the method of matched asymptotic expansions. In particula¥fer 2, B the unit circle and
(A, u™) an eigenelement of (2.8) (see [8]):

-1 X
uf ~u*(x) + <—W(—> — l)u*(x),
Ine £
-1 X "

takes the value-u™(x) in e B and(—1/Ing)In|x/elu*(x) outside. In addition, estimate (4.6) in
Proposition 4.1 also holds for

-1 X
Ve =u*(x) + <—W<—) — l>u*(x)
Ing &
-1 X N
(e () -0

is a correcting term for®. Nevertheless, as pointed out in [19],d8 the wavelength is very
short and eigenfunctions are expected to have a strongly oscillatory behaviour. Obviously, it is
necessary to introduce the microscopic varigbie order to see this behaviourt

where

which proves that

4.2. Local behaviour

We are interested in the behaviour of the eigenfunctions associated with the eigenvalues
of order 1) inside the concentrated mass, hence, we perform the change of variablge.
Througout the rest of the section we assume that the eigenfun¢tign®,, are normalized in
the local variabley, that is to say:

(4.8) |07 Oy =107 02 + 195U 0 [ Fogeny = 1.

V being the space defined in (2.6). We prove that the eigenfunctions associated with the
frequenciesi®* = O(1) have a strongly oscillatory character b as stated in the following
Theorem (compare with Theorems 6.1 and 6.2).

THEOREM 4.2. — Let A a positive real number, and Ie‘\lf(s) be a sequence of eigenvalues
of (2.2) converging towardsi, as ¢ — 0. Then, the corresponding eigenfunctiob’ﬁg),
satisfying(4.8), verify:.
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q(&)
(4.9) either U, (y) = Z a5Uj+0:(1) in H(B),
Jj=p(e)
e—0
or ”Uf(a)HHl(B) >0,

where aj are the Fourier coefficients of the expansion L@)‘(s)|3 in Fourier series of the
eigenfunctionswj}?‘;1 of (2.4), and, p(¢), ¢ (¢) are two functions converging t& ase — 0.

Proof. —Let p be any fixed integerp > 1; let {Aj}le be the first p eigenvalues of

problem (2.2), anc{U}?}j’:1 the corresponding eigenfunctions. Lemma 2.1 allows us to assert
that, for each sequence there is a subsequence still denoteslioh that forj =1,2,..., p

(4.10) US=U;+r% inL*B),

wherer?, converges to 0 ii2(B), ase — O.
Because of estimates (2.3), fpr=1, ..., p, A% is different fromaf ), and the orthogonality

i(e)?
of the eigenfunctions/j. in H(}(Q) leads us to prove that

: errE _
!IEIO/UJ- Uf(e)dy=0.

B

Besidesuf(g) | can be expanded in Fourier series of eigenfunctions of (2.4), that is to say,

o0
(4.11) Uil =D _e5U; in HY(B), with o, = (U,
j=1

B’Uj)l’

where(U, V)1 is the scalar product associated with the norm (2.7); on accoulmflfpéf) ly=1,
thea? are bounded by a constant independent of
Thus, considering (4.10), we can write

P P P
0= "mozai- (U5 Ufie) 2 = ”mozai- (U} Uite)) 12 + j@ozai (5 Uie) 2oy
j=1 j=1

J:l E—>

Using (4.11) and the orthogonality of the eigenfunctiéhsn L?(B), we have

14 p
: e2 2 _ f e (& e
(4.12) !@02 ’O‘j’ 1U; ||L2(B) - 8"2’02“; (rj’ Ui(a))Lz(B)'
j=1 Jj=1
Hence, the convergence
? 2 0
c—>
2" —=0,
j=1
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holds for each fixegh. Then, using a classic argument of diagonalization (see Section 1.2 of [2]),
we can assert that there is a sequep@e converging taco ase — 0 such that

e—0

o0
UZ€(€)|B_ Z O[‘;-Uj 0.

J=p()

H(B)

Therefore, the Theorem is provedn

Remark4.3. — We note that the result of Theorem 4.2 also holds in the case where the
eigenfunctiond]{"(g) are replaced by the functioms arising in Propositions 4.1 and 4.2, with
minor modifications.

Remark4.4. — Taking limits in (2.2), once we have performed the change of variables
and multiplied the equation by”—2, we easily prove that the eigenfunctioUﬁ(S) arising in

Theorem 4.2 converge towards 04R(B), ase — 0. Thus, Theorem 4.2 provides information
about the gradient of the eigenfunctions.
5. Results for dimensionN =1

Let us consider the eigenvalue problem (2.2) in relation to the vibrations of a string placed in
(=1, 1) with the concentrated mass(n-¢, ¢):

2,6
_Z:Z =2u® in(=1,—¢e)U (e D),
du  af
_W = —MS in (_87 8)7
X 81‘"
(5.1) ut(—e7 ) =u(—e"), ut(e™) =uf(e™),
du’® _ _dus by G _dus +
a(—e )—a(—g ), E(g )= dx (M),
u*(=1) =0, u*(1) =0.

This problem was considered in [4] and Section VII.13 of [19] wher- 1 and in [7] and
[14] whenm > 0. Here, we study the asymptotic behaviour of the large eigenvaltiesQ(1),
whenm > 2, a case which has not been considered in any of the above mentioned papers.

In the present case, results in Section 4 can be improved because explicit computations
on the eigenvalues and eigenfunctions of (5.1) can be performed and the multiplicity of the
eigenvaluesis equal to 1. In fact, all the results in this section can be obtained by means of explicit
calculations, without using the technique outlined in the previous sections. We only present the
main formulas in order to illustrate the previous results.

With the exception of the eigenvalug§, such that cas/A¢e1/2) = 0 (see Remark 5.2)
simple calculations show us that the eigenvalfesf (5.1) are the. roots of the equation

(5.2) tan(v/x et ™/2) = e™/2 cot(Va(1 - ¢)),

or of the equation
(5.3) tan(vael™/2) = —e~"/2tan(vA(1 - ¢)).
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In addition, the eigenfunctions associated with the eigenvalug®ot of the equation (5.2), are
the even functions

Afasin(vAs(L+x)) if x € (—1, —e),
(5.4) ut(x) =\ Acos(Vate ™/2x) i x € (—e,¢),

Afafsin(VaE(1—x)) if x e (e, 1),

and the eigenfunctions associated with the eigenvaltig®ot of the equation (5.3), are the odd
functions

BfBfsin(VaE(l+x))  if x e (—1 —e),
(5.5) u®(x) =1 B®sin( Ass_’"/zx) if x€(—s¢,¢),
—BfBEsin(Vas(1—x)) if x € (e, 1),
wherea?, B¢, A® and B® are constants such that
1
/

2

£
d ol =1

dx

We observe that fok® = O(1), the eigenfunctions (5.4) and (5.5) are strongly oscillating
functions in(—e¢, €). Moreover, if{/\f(g)} is a sequence converging towards a positive number
then the coefficientd; o) andBf(s) converge to 0 as — 0. Thus, the eigenfunctions associated
with the high frequencies have a small amplitude in the concentrated mass.

The corresponding local problem is posed now-ii, 1),

d’U

dy2
du du
— (1) =— (@ =0.
dy( ) dy( )

—uU in(=1,1),
(5.6)

The eigenvalues of (5.6) agey = (k7)?, and o1 = ((2k + 1)7/2)% wherek =0, 1,2, ...,
and the corresponding eigenfunctions (up to a constant) are:

2k +Dm

5 y) respectively, foy € (-1, 1).

U (y) =coskny), Uzi1(y) = Sin<

The analogous problem to the Dirichlet problem (2.8) is:

__—)u n _|7” “7' s
(5.;) d,f

u(=1)=u0)=u(l)=0.

We observe that, in this case, this limit problem is affected by the concentrated mass, as the
eigenfunctions satisfy(0) = 0. The eigenvalues of (5.7) aig = (k)2 k =1,2,..., with
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multiplicity 2, and the corresponding eigenfunctions (up to a constant), an odd and an even one
respectively, are

up1(x) =sintkrx) if x € (—=1,0)U (0, 1),

—sintkmrx) if x € (-1, 0),

uk,Z(x) = { sin(kJTX) if xe (O, 1)

Theorem 3.1 allows us to assert that for each O there is a sequendé(e) of eigenvalues
of (5.1) converging towards whene — 0.

By means of explicit calculations and using an argument of diagonalization (see Section 1.2
in [2]), results for the eigenfunctions in Theorems 4.1 and 4.2 can now be stated in the following
way: for any sequenc)e;?(g) — A ase — 0, with A > 0, the corresponding eigenfunctions can be

approached ii?(—1, 1), in thex variable, by the function:

—a® sin(km x) if xe (=1, —¢),
o0 .
~ c JTTX .
(5.8) U (g (x) = Z of COS(T) if x€(—¢,¢),
j=p(e)
a® sin(kmwx) if xe(el),

if the eigenfunction is even, or by the function

a® sin(kmx) if xe(=1, —e)U(e, 1),
5.9 ™ = 0 i
(5.9) Mz(s)(x) ‘X(:)ﬂjSin((ZJ —;;I.)nx) if xe(—e.e).

j=p(e

if the eigenfunction is odd. In formulas (5.8) and (5.8),= O, (1) if A = (kxr)? for somek,
anda® = 0 otherwiseq’; andg; are the coefficients of the expansiongf, | ;1. ., in Fourier
series of the eigenfunctions of the local problem (5.6):

reem/2=Lgin(e1-m/2/x€) cos(j)
AE — 7.[2]'28m72

g __ £
ozj_ZA

bl

reem/2=1cos(elm/2 /1) cos(jr)
—4)\E + 7T2(2j + 1)2gm—2
respectively angb(¢) is a function converging teo whene — 0. In fact, the approaches (5.8)

and (5.9) hold in the topology df! in the macroscopic (microscopic, respectively) variable in
(=1, —e)U (e, 1) (in (—¢, g), respectively).

Bs =8B

’

Remark5.1. — We observe that (5.8) and (5.9) confirm the strongly oscillatory character of
all the eigenfunctions ii—e¢, ¢) whene — 0, already noted in (5.4) and (5.5). In addition, the
approach using the Fourier expansions is better than this by 0. Indeed,wgenonverge

towards(kr)? (an eigenvalue of (5.7)), then

2
” M?(s) HLZ(—s,s) = O(Sm)'
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Fore ranging in certain sequences(for exampleg, such that siq /27, ¢'~"/?) = 0) we can
prove:

2 e 12 5mt2
””f(s) HLZ(—s,s) = O(8m+l)’ and ||Mf(s) - M?(s) HLZ(—s,s) = 0(8 4 )

Compare with Remark 4.2 and Theorem 6.1.

Remark5.2. — We observe that the possible= A¢ such that cos/A¢e1~/2) = 0 and
sin(vA¢(1 — €)) = 0 are excluded in the equation (5.2). Each one of these valties
(kr /(1 — ¢))? with k € Z is an eigenvalue of (5.1) only for certain valuescothose satisfying

the equation 2/(2n + 1) = sf’,’/z_l(l — &,). In this case, the corresponding eigenfunctions are

the functions (5.4) wherg = (kr/(1 — ,))2, A% = O(e"/?), anda® = +e, ™' (depending
on the values ot andr). This result reaffirms approximation (5.8). Similars results are obtained
when co$v/A¢¢17/2) = 0 and cosy/A¢ (1—¢)) = 0, excluded from (5.3). In this cass, satisfy
2k+1)/2n+1)= 8;:,/2—1(1 — ¢&,) and the corresponding eigenfunctions are the functions (5.5)
with
2k + D)z \? =1
2 = <7(2(klt 81’;) . B*"=0(e,% ), and g =+1

(depending on the values bfandn).

6. Correcting terms for the eigenfunctions

In this section we obtain correcting terms for certain of the eigenfunctidnef (2.2)
associated with eigenvalue$ = O(1). For the sake of simplicity we assume that the space
dimension isN = 2 andB is a circle, but calculations may be performed in other cases. We use
the method of matched asymptotic expansions to compute the correcting term and the Lemma 2.3
to obtain estimates.

We consider asymptotic expansions for the eigenfunctiohshat take into account the
wavelength of the vibration iaB, different from that in [8] (see Remark 4.2). Here, we outline
the technique.

We postulate an asymptotic expansion of the eigenvaliea® = A* + o(1); and of the
corresponding eigenfunction$, an outer expansion fare 2 — {0}:

u®(x) =u*(x) +0(1),

and a local expansion in a neighbourhood ef 0 in the local variable = x /¢:
u(y) =aV(y) +0(),

for « a certain constant.

Usual techniques of matched asymptotic expansions lead us to consider the composite
expansion of the eigenfunctiosi in £2:

(6.1) u® ~u*(x) + (V€<§> — 1)u*(x) whenu*(0) # 0,

(6.2) ut ~u*(x)+ Ve~ <£> whenu*(0) = 0 andu™ # 0,
&€
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and
& &€ X *
(6.3) u®*~ Vel —\| whenu*=0,

whereu* is an eigenfunction associated with the eigenvalti®f the Dirichlet problem (2.8)
in (6.1) and (6.2), and’ ¢ (y) satisfies the equations:

A* .

—AYV =5V inB,

~AV=0 inR? — B,
6.4
(6.4) av

[V]= =0 onr,

ony
V(y)— K, as|y| — oo,

with K = 0 for (6.2) and (6.3) and witlk = 1 for (6.1).

Regarding the existence of a nontrivial solution of (6.4), we consider 1*/¢"~2 in the
first equation; then, problem (6.4) coincides with the eigenvalue problem (2.4) for a certain
normalization of the eigenfunctioris and it has nontrivial solution only for certain valuessof
those values such thatis an eigenvalue; of (2.4). Therefore, formulas (6.1), (6.2) and (6.3)
hold fore such that* /¢” 2 is an eigenvalue of (2.4). We calculate explicitly these values in the
case wherB is a circle in Section 6.1 and justify formulas (6.1)—(6.3) in Section 6.2.

6.1. Eigenelements of the local problem

Let us consider problem (2.4) whe¥i = 2 and B the unit circle. In order to obtain the
formulas for the eigenvalues and eigenfunctions we consider polar coordimades y1 =
rcosh, y2 = r sind. We write indifferentlyU (r, 6) or U(y). (2.4) becomes:

92U 19U 192U
ar2 r or  r2 962
92U 19U 192U

4+uU=0 forO<r<1, 0<6 <2,

2L - 0 for 1, 0<6 < 2nm,
(6.5) 972 +r o7 +r2 502 r> <27
aU oUu
Uljz1- =Ul,—1+ and —|,_;- = — |1+,
or or

U@,0)— K, asr— oo.

We use separation of variables in (6.5) and take into account the condition of boundedness
for the eigenfunctions at the point= 0 and at infinity. Then, we obtain the eigenvalues and the
eigenfunctions in terms of the Bessel functions of the first kihdfor n =0, 1, 2, ..., and the
trigonometric functions. See Section IX in [1] for an extensive exposition of properties for the
Bessel functions.

Formulas (6.5) lead to the conclusion that the quantities

(6.6) fen=VE, n=012..,k=012...,
are the eigenvalues of (2.4), wherg,, for each fixed:, are the roots of the equation:

. Jo(v) = whenn =0, and vJ (v)+nJ,(v)= whenn > 0.
(6.7) 6) 0 h 0] d (V) v)=0 h 0
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To each eigenvalugy o there corresponds one eigenfunction (up to a constant):

Jo(vgor) ifr

<
(6.8) Ur,o(r,0) = .
Jo(vg,0)  ifr>

and to each eigenvalye. ,, n > 0, there correspond two eigenfunctions (up to a constant):

if r <
(69) Uk,n(r, 9) — Jn(”k,nr) COS(n@) If r < l,
Jo (g p)r~"cognd) ifr>=1
and
(6.10) Tin(r,6) = In(,nr) sm@) ff r<l,
T )r~ " sinmd) if r > 1.

As the system of the eigenfunctiofi$ o, Uk, l7k,,,, k,n=1,2,...}is orthogonal inL2(B),
we prove that it is complete il2(B) by using the results of completeness of the system of
products (see Section VII.2 in [13]).

Indeed, taking into account the change to polar coordinates, we observglthafno),
sin(n6)}2 , form a basis in the set of functions b (0, 27r) with period 2r, and, for each fixed
n, the systenJ, (v ,1)}72 4 is complete in the spade, = { f € L2(0, 1)/]0l f(p)2pdp < o0}
This fact, is a consequence of the completeness iaf the eigenfunctions of the singular Sturm—
Liouville problem (for each fixed):

d/d 2
d—(rd—u> - n—u—i—uru:O forO<r <1,
r r r
(6.11) u,u’ bounded when < 1,

d—M(l) +nu(l) =0.
dr

Simple computations allow us to prove that the whole eigenfunctions of (6. 1{L}A& )} ;.

Therefore, the formulas (6.6) and (6.8)—(6.10) exhaust the totality of the eigenvalues and
eigenfunctions of the local problem (2.4). We observe that the only eigenfunctions converging
towards some constant different from zero, when oo, are those associated with the Bessel
functions of order OUy o, Vk.

6.2. Estimates for the eigenfunctions

Let us considen® = A* + o(1) for any A* > 0. Lete be ranging in the sequendey}?> ;
defined by:

1

)\‘* m—2
(6.12) &k = <M ) wheni* € o, 0
k,0
and
O\
(6.13) = (M ) wheni* ¢ o, 0,
k,n
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where o, o is the subset of the spectrum of the Dirichlet problem (248), such that the
corresponding eigenfunctions do not vanish atg; is not empty. Obviously, — 0 ask — oo.
In (6.13)n is fixed but it can take any value=1,2, ... ..

For fixed k, when A* € 0,0, let e, be given by (6.12); we considér,(y) = V% (y) the
solution of (6.4) that converges towards 1 whenr> oo: Vi(y) = Uk.0(y)/Jo(k,0) (in fact
Vi = 1 outside B). We denote byZ, the change of the variable from to x, x = yeg:
T Vi(x) = Vi(x /ex).

When A* ¢ 0,0, let e be given by (6.13); we considé¥,(y) = V% (y) the solution of
(6.4) that converges towards 0 wher> oco: Wi(y) = Ui n(y) of Wi (y) = ﬁk,n(y). T Wy is
the functionZ, Wy (x) = Wi (x/ex). We denote by any smooth function taking the value 1
for |x] < R1 and O for|x| > Rz, R1 and R, are two fixed constants such thAf < R> and
B(0, Ry) C £2.

The properties of the Bessel functions (see Sections IX and Xl in [1]), the fact that, for fixed
n, vk, — 00 whenk — oo, and cumbersome calculations in polar coordinates lead us to the
following estimates that will prove useful in the proofs of Theorems 6.1 and 6.2 respectively:

k—
(6.14) IV Vil L2cp) = /T Vk,0 —— 00,
(6.15) Vy Wk”LZ(B(O,Rz/Sk),m) < C]_(n)SZ Jn(Wen),
Jn(vk,n)
(616) [ Wk”LZ(B(O,Rz/ak)—E) < Ca2(n) \/a ,

and, fory_, large enough,
(6-17) ||Vy Wk”LZ(B) = C3(n),
whereC; (n), i =1, 2, 3, are constants independentof

We prove formula (6.1) ((6.3) and (6.2) respectively) for ¢; as stated in Theorem 6.1
(Theorem 6.2 and Remark 6.2 respectively).

THEOREM 6.1. — LetA* € o, andu™ an eigenfunction of2.8) associated withh*, »* with
norm1in H(}(.Q) andu*(0) # 0. Let {&};2; be defined by6.12).Then, there is a sequence
8%, 8% — Q0 ask — oo, such that the intervdlh* — 5%, A* + §°¢] contains eigenvalues (2.2).
Moreover, there is«®, u® with norm1 in Hol(Q), ut belonging to the eigenspace associated
with the eigenvalues®® in [A* — 8%, A* + §%] such that

(6.18) 1t — @ (u + (T Vi = D) | ) < C(erey/ i)’

whereC and g are constants independentgf 0 < 8 < 1, anda® = 1/|(7Z; Vk)“*”Hg(:z)-

Proof. —The technique is the same as in Proposition 4.1. Here, we only outline the main steps.

Let us consider® to be the operator associated with (2.8) defined by (4.1). In order to apply
Lemma 2.3, it suffices to prove estimates (4.5) §6r = /[N | and vk = vk /|| vek ||H01(9),
beingv® (x) = u*(x) + (Vk(x/e) — Du*(x) = Vk(x/e)u*(x). Then, the result in the Theorem
will be satisfied forse = O((gx /[N ex|)Y#) andass = 1/||ve* ||H01(:z)-

We observe that (4.5) holds, provided that there are constgntand C2 such that for
sufficiently smalley:

SCLR* vl paig). Vv € Hy(R),

1
(6.19) ‘<A8kv8k — —v, v>
A* 1
HY(2)
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whereR®« satisfies:

Rk
(6.20) — < Cop%.
[|vek “[—[(:)'-(Q)

Subsequently, we prove estimates (6.19) and (6.20).
The definitions ofA® andv®* allow us to write:

1 1
AfkpfE — — Bk = / uwfvdx — — / Vu*.Vudx

2—erB 2—er B
1 1
(6.21) —i—g—m / u* (T Vi)vdx — e / V(u*’]}Vk).Vv dx, Vv eHol(.Q).
B & B

When dealing with the estimates for the integralspA arising in (6.21), on account df;(y)
satisfies (6.4) ilB and a Neumann condition @B (see (6.8)), we apply the Green formula; we
also use the inequality (see Lemma& & [15]):

(6.22) 100z 2, 5 < Caefl Mexl 017 ) Vo € HG(82).

Hence, from (6.21), (6.22), the fact th@t*, u*) is an eigenelement (2.8) and the Poincaré and
Schwarz inequalities, we deduce (6.19) for

R — gp + (s,? + e/l |nsk|)||v7; Vell 2o, 5)-

In order to prove (6.20), we take into account tI11af||H&(m =1 and thatv® (x) = u™*(x)
whenx € 2 — g B andv®* (x) = u*(x) Vi (x/ex) whenx € g B; we have:

2 2 2
(6.23) Hvek ”H&(Q) =1- Hvu*”Lz(skB) + ”V("‘*%Vk) H L2(eB)"

ConsideringR® /|| v ||f{1(9), on account of (6.23), (6.14) and (0) # 0 we obtain (6.20) and
0

the Theorem is proved.O

THEOREM 6.2. — Let A* be any positive numbex, ¢ o,. Let {e;}2; be defined by6.13)
for fixedn. Then, there is a sequené&, §% — 0 ask — oo, such that the intervalA* —
8%, A* 4 §%] contains eigenvalues ¢2.2). Moreover, there ig®*, u® with norm1in Hol(fz),
ut belonging to the eigenspace associated with all the eigenvalida [A* — 8%, A* + §°]
such that

whereC (n) is a constant independent f anda®* = 1/|(7Z; Wkw)HH&(.Q)'

Proof. —The proof is analogous to that of Theorem 6.1. On accounfi¥ofull;2 ;) =
||Vyu||L2(8_1m, we perform the calculations in the local variable- x /&.
k

Let A¢ be the positive, compact and symmetric operatoHélos—lfz) defined by:

3 1 2 1/.-1
(AFU,V)H&(g_lg):W/Ude+s / UVdy, VU.VeH;(e 1)

B e 1Q-B
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Making the change of variable fromto y in (2.2), we obtain that the eigenvaluesAf are
1/8.

Let us consideW?®  (y) = Wi (y)¥% (y), with W, = U ,(y) defined by (6.9) and/®* (y) =
¥ (exx) (nothing changes iW;, is defined by (6.10)).

Let us defineW et = WEk /|| W ek ”Hg(a—lm- Let us admit for the time being that
k

< C(n)p®,

~ 1 ~
(6.25) HA” Wek — — e
A Hi )

wherep®* =, /exJ, (vi.n). Then, as in Proposition 4.1, we apply Lemma 2.3 with- A®* and
H = Hol(e,jlm and, with minor modifications, we obtain the result in the statement of the
Theorem.

In order to obtain (6.25), we prove:

(6.26) | wer Hng;lm > Ca(n)
and

1
(6.27) ’<A“‘ W — W, V> S Cs@p™IVllg1 i), YV E Hy (' 92),

Hi(e 1)

for some constant§,(n), Cs(n) independent ofy.

Formula (6.26) is a consequence of the definitioct, which takes the value (6.9) iB,
and of (6.17).

In relation to (6.27), the definitions @&f** and W¢+ allow us to write:

1 1 1
A‘C’kW‘g"——*W‘c’k,V =— Wkay——* V, WiV, Vdy
A 1,,.-1 m—2 A
HO (Sk ) 8k %

Rz
1 1 o
+o3 VyWe.VyVdy — = Vy (Wiey™).Vy,V dy
R2—B(0,R1/51) B(0,Ry/e;)—B(0,R1/e1)

+62 / WiV dy + &2 / WitV dy,
B(O,R1/ex)—B B(0,Rz/ex)—B(0,R1/ex)

for any V € Hol(e,:lQ). We take into account thal, satisfies (6.4) withKk = 0; so that
formula (2.5) foru = A*/s}j"z leads us to cancel the first two integrals. For the other integrals,
we apply the Schwarz and Poincaré inequalities, we take into account the boundedpé&ss of
and its derivatives, and relations (6.15) and (6.16), and then we obtain (6.27). Therefore, the
Theorem is proved. O

Remark6.1.— The result in Theorem 6.1 (6.2, respectively) allows us to assert that
(V& (x/ex) — Du™(x), e defined by (6.12) ¥¥¢, &, defined by (6.13), respectively) provides
a correcting term for certain eigenfunctiom$* of (2.2), which are approached by the
eigenfunctions of the Dirichlet problem (by 0, respectively) whiéne o, o, i.€., wheni*
is an eigenvalue of (2.8) and the corresponding eigenfunction satisfi@ # 0 (A* ¢ oy,
respectively). In particular, estimates (6.18) and (6.24) improve the results in Theorems 4.1
and 4.2 (see also Proposition 4.1 and Remark 4.2).
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Remark6.2. — In the case when* € o, and the corresponding eigenfunction satisfies
u*(0) = 0, we can prove (6.2) in a similar way to that in Theorems 6.1 and 6.2 with a suitable
modification ofV¢. For example, it can be easily proved:

(6.2 Jut = (0% + ToWi) | gy < C (VTR

whereC andg are constants independentspf 0 < 8 < 1, a® = 1/||v® + 7}Wkw||H&(9), Vo

is the function defined in (4.4) an@;y the same as in Theorem 6.2. Nevertheless, we also
observe that the bound (6.28) does not improve that in Proposition 4.1 (see also Remarks 4.1
and 4.2).

Remark6.3. — It should be noted that the results in Theorems 6.1 and 6.2 prove that certain
of the eigenfunctions of (2.2) are strongly oscillatingsiB, as is the case fafo(v or) and
Jn(vi 1) for fixed n. It could also occur that the eigenfunctiarfsof (2.2) only concentrate on
the boundary of B. In this case, in order to obtain a correcting term:foyit will likely become
essential to look for the so calledhispering gallery eigenfunctiors (2.4) (see Section VII
of [3] for this effect in bounded domains).

7. Thecasen=2and N =2

In this section we study the asymptotic behaviour of the eigenelements of (2.2)mvkeh
andN = 2. As estimates (2.3) still hold for = 2, the two sequences of eigenvalues associated
with the global and local vibration are the same order of magnitude.®ormal asymptotic
expansions for the eigenelements have been considered in [8,15,18]; we justify here the results
in these papers (see Section I11.5 of [16] for another different technique Wher3).

Let us consider the problem (2.2) when= N = 2. Let the eigenvalues be;}°,. Let the
corresponding eigenfunctions be& }°,, satisfying:

1
(7.1) / ufuj dx—}—;/ufuj. dx = §;j,

2-¢B eB

whereé;; is the Kronecker symbol. We prove here that the eigenvalues and eigenfunctions are
approached, when— 0, by those of problems (2.4) and (2.8). We gather the eigenelements of
both problems as the eigenelements of problem:

—Ayu = Au, uEH(l)(.Q),
(7.2)
AU =Axp()U, UeV,

whereyp is the characteristic function df.
Problem (7.2) is a standard eigenvalue problem in the Hilbert spa¢€) x L2(B) (its
elements being pairs of functios(x), U(y))); it has an equivalent variational formulation:
Find A, (u, U) € H§(2) x V, (u, U) # 0, satisfying

/vxu.vxvdx+/va.Vdey=A[/uvdx+/Ude], V(v,V) e H}(2) x V,
2 R2 2 B

whereV is the space defined in (2.6).
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Let us consider
0=A1< A< <A, < 22 0,
the sequence of eigenvalues, with the classical convention of repeated eigenvalues and let
{(u;, U}, be the corresponding sequence of eigenfunctions, forming an orthonormal basis
of L2(£2) x L?(B).

THEOREM 7.1.— For each i, thei-th eigenvalue of problen2.2), A7, converges when
& — 0 towards thei-th eigenvalue of7.2), A;. Thus, the eigenvalues of (7.2) are the only
accumulation points ofa®}, and there is conservation of the total multiplicity fosufficiently
small.

Proof. —Taking into account (2.3), the orthonormality condition (7.1), and the factifiat?)
is an eigenelement of (2.2), we can extract a subsequence (still denatedumh that for each
i=12 ..., (A,u}) satisfies:

a0 A and (uf, Uf

1 1’ 1

) =% (i, Ti),  weakly in HE(€2) x V.,

whereU; (y) = u? (ey). Moreover, (7.1) allows us to assert thaf;, Ul)}°°1 are orthonormal in
L2(2) x L2(B). We prove that A;, (ii;, U;)) is an eigenelement of (7.2).

Indeed, for each fixed provided thafi; £ 0, we take limits in (2.2), as — 0, and we obtain
that(A;, ii;) is an eigenelement of (2.8). Moreover, if we write (2.2) in theariable and we take
limits whens — 0, we obtain thatA;, U;) satisfies (2.5). Hence, &&;, U;) # (0, 0), (ii;, U;) is
an eigenfunction of (7.2) associated with the eigenvaﬁue

In this way, we havéA;: i € N} C {A;: i € N} and, since the multiplicity of each eigenvalue
is finite, we deduce thati; — oo asi — co. In what follows, we prove by induction that for
eachi, A; = A;, which shows the conservation of the multiplicity.

First, let us prove the result fér= 1. For eacle > 0, let us considep® € H}(£2) the solution

of
1
/qug.Vvdx—i— / qbgvdx—f—?/(bsvdx
Q2 2—¢B eB
(7.3) :(A1+1)|: / ulvdx—i—g—lZ/Ul(g)v(x) dxj|, VvEH(l)(.Q),

2—¢B eB

and let®? be the functionb? (y) = ¢ (ey). Since(u1, U1) has norm equal 1 i2(£2) x L2(B),

the sequencepg &%) is bounded irH(}(Q) x V and we can extract a subsequence that converges
weakly |nH (£2) x V. Taking limits in (7.3), we obtain that® converge towards in L?(£2)

ase — 0. On the other hand, we can write (7.3) in thevariable and pass to the limit when

e — 0 to obtain thatb? converge toward#; in L2(B) ase — 0. Hence, denoting bR¢ (v) the
Rayleigh quotient:

Jo IVxv2dx + [ zlvIPdx +e72 [ 5 v]?dx

R (v) = ,
© Jo g 0i2dx +e-2 ], [oP2d

we haveR* (¢°) LnaN A1+ 1. The minimax principle allows us to writg + 1 < Rf(¢°) and,
taking limits, A1+ 1< A1+ 1. Thus, the resulii; = A;, holds fori = 1.
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Let us assume thati; = A;, holds fori < j. Taking into account that the eigenfunctions
(i, U}/ 17, associated withA;}/ 11, are orthonormal if.2(2) x L2(B), we obtainA ;1 >
Ajq1. Inorderto prove/Tj+1 < Ajy1 we use a process of orthogonalization (see Section 111.9.1
of [2], for example, for the technique):

Let us consides® € Hé(Q) the solution of (7.3) with41, u1 andU; replaced byA 4, ujf+1
and UJ’FJrl respectively, Whereuj;rl, U]*fH) is an eigenfunction of (~7.2) associated with 1,
with norm 1inL?(§2) x L?(B), and such that it is orthogonal td;, U;) in L?(£2) x L?(B) for
1<i < j. We use the same argument as in (7.3) to prove that

(¢°, @) == (ut,1, UT,y)  in LA(2) x L2(B)
and
RE(¢°) —=2 Aj41 + 1.
Now, let us define
j
YE =0t =) (6%, up)up,  WE() =yfey),

k=1

where(u, v), denotes the scalar productirf(£2):

(u,v)e = / uvdx—i—s_Z/uvdx.

2—¢eB eB
Then, it can be easily proved the convergences

e e & e ¢—>0 3 3 —)s—>0
(v —¢° v°—9¢°),——0 and |V.(v _¢)HL2(Q) 0.
Therefore,

e—0

(V5. ¥F) — (u%,1.U},q1) in L?(2) x L*(B)
and
RE(YF) =% Ajya + 1.
Besides, agy®, u;). =0, for 1< k < j, the minimax principle readS*cj.+1 + 1< RE(WE).
Taking limits whens — 0 we obtain/TjH +1< Aj41+1, and the resulti; = A; holds for
anyi=1,2,....
We have proved the result stated in the Theorem on the eigenvalues for a certain subsgquence

but, taking into account that for any sequence it is possible to extract a subsequence satisfying
the same result, the Theorem is proved
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