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We consider a vibrating membrane occupying a domain Ω of R2, composed of two

materials, with very different densities. These materials fill two domains Ω1 and Ω2 of R2,
and Γ is the interface between them: Γ = ∂Ω1 ∩ ∂Ω2. We look at the associated spectral
problem. We prove that there are modes which concentrate in a small neighborhood of
Γ, the whispering gallery modes. We address the cases where Ω2, the part with negligible
mass, is either a bounded or unbounded domain (Ω2 = R2− Ω̄1), and the case where Ω1

is a concentrated mass: Ω1 = εB, with ε → 0, and the density in Ω1 very much higher
than elsewhere.
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1. Introduction and Statement of the Problems

This paper deals with the computation of the whispering gallery modes on inter-

faces for vibrating membranes having two components with very different densities;

i.e. eigenfunctions which are asymptotically zero except in a thin layer surrounding

the interface between the two components.

Let us recall that the existence of such a kind of eigenfunctions concentrat-

ing on the boundary of a homogeneous circular membrane was first discovered by

Rayleigh22 in order to explain the whispering gallery phenomenon in acoustics.

Whispering gallery modes are of obvious interest in the study of the vibrations of

coupled systems and the phenomena has been very well described in the literature:

see Secs. IV–VII of Ref. 3, Sec. III.3 of Ref. 8, Ref. 16 and Sec. XIV.287 of Ref. 23

for references as well as for historical notes; see Secs. V and VII of Ref. 3, Refs. 7

and 15 for techniques based on the geometrical theory of diffraction. The problems

and technique in this paper differ from those in the previous papers.
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As is well known, the study of the vibrations of certain mechanical systems

containing a part with negligible small mass leads us to the study of the spectral

problem:

Find λ and u 6= 0 such that
−∆u = λu in Ω1 ,

−∆u = 0 in Ω2 ,

[u] =

[
∂u

∂n

]
= 0 on Γ ,

(1.1)

u = 0 on Σ . (1.2)

Here, Ω1 and Ω2 are two open bounded domains of R2 with smooth boundaries, Γ

is the boundary of Ω1, Γ ∪ Σ is the boundary of Ω2, n̄ is the unit outward normal

to Γ and the brackets denote the jump across Γ of the enclosed quantities. We have

assumed that the part of the system with negligible mass fills the outer domain Ω2:

the density takes the value 1 in Ω1 and 0 in Ω2; Γ is the interface between the two

domains Ω1 and Ω2.

In the case where Ω2 is the outer domain of Ω1, Ω2 = R2 − Ω̄1, the condition

on Σ (1.2) becomes:

u(y)→ c as |y| → ∞ , (1.3)

where c is an unknown but well-determined constant.

We refer to Secs. IV.6 and IV.8 of Ref. 25 for the variational formulation of

problems (1.1)–(1.2) and (1.1)–(1.3) in H1(Ω1). Both problems can be written as

standard vibration problems with a discrete spectrum:

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn · · · n→∞−−−−→∞ ,

where the classical convection of repeated index is adopted; the corresponding

eigenfunctions form a basis of L2(Ω1) and H1(Ω1).

We observe that problem (1.1)–(1.2) appears, for example, in a natural way

when studying vibrating membranes containing a very heavy inclusion. On the other

hand, problem (1.1)–(1.3) appears as a microscopic or local problem when studying,

for example, vibrating membranes with concentrated masses; i.e. the vibrations of

membranes which have very heavy small inclusions (cf. (1.4)). More specifically,

(1.1)–(1.3) appears involved with the low frequency vibrations for these systems

with concentrated masses (see Refs. 9, 18 and Sec. VII.10 of Ref. 25). Nevertheless,

it has also been proved that a study of the eigenfunctions associated with very

large eigenvalues of (1.1)–(1.3) is essential in order to obtain information on the

high frequency vibrations for systems with concentrated masses (see Ref. 5).

The eigenfunctions of (1.1)–(1.2) and (1.1)–(1.3) that we deal with, in Secs. 2–4

of this paper, are associated with very large eigenvalues: we focus on obtaining

explicit asymptotic formulas for certain eigenvalues λ corresponding with vibrations

concentrating near Γ; i.e. the corresponding eigenfunctions are significant in a small
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neighborhood of Γ and they almost vanish outside. In fact, we show that they

are strongly oscillating functions in the direction s and decay exponentially at a

very short distance of Γ in the direction n, where (s, n) are orthogonal curvilinear

coordinates in a neighborhood of Γ and s is the arc. These eigenfunctions are

referred to as the whispering gallery eigenfunctions on the interface Γ. In Sec. 5,

we also show the connection of the whispering gallery eigenfunctions of (1.1)–(1.3)

with vibrating membranes with concentrated masses (see problem (1.4)). The main

results in this paper are in Secs. 3–5.

To be more precise, in Sec. 2 we compute explicitly the eigenvalues and eigen-

functions in the case where Ω2 is either a circle of radius R > 1 or an unbounded

domain; for simplicity, we consider the case where Γ is a circumference of radius 1

(see Remark 3.1). In Secs. 3 and 4 we compute the whispering gallery modes and

the corresponding frequencies of (1.1)–(1.3) and (1.1)–(1.2), respectively. By means

of asymptotic expansions we show that there are certain eigenvalues of (1.1)–(1.3)

((1.1)–(1.2), respectively) λ = O(n2), with n ∈ N, n → ∞ (cf. (3.1) and (4.1),

respectively), such that, inside B, the corresponding eigenfunctions oscillate in a

small neighborhood of Γ, of width O( 1
n2/3 ), and decay exponentially depending on

the distance to Γ out of this boundary layer of thickness O( 1
n2/3 ). Outside B the

exponential decay of the eigenfunctions also holds (cf. Eqs. (2.12), (3.8)–(3.11), and

Fig. 1).

Symbols o and O are the classical Landau order symbols. Also, Os,� and ∼, ap-

pearing throughout Secs. 2–4, are some classical order symbols used for asymptotic

expansions (cf. for example Sec. 1 of Refs. 4 and 8). In order to prove the previously

mentioned results within the asymptotic expansions theory, in Secs. 3 and 4, we
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Fig. 1. Graphic of Uk,n(r, θ), n = 50, k = 1, θ ∈ [0, π/2], r ∈ [0.75, 1.2].
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use a general idea: to examine the modes and identify those that can support waves

along the curve Γ. The computations are mainly based on the properties of the

Airy and Bessel functions, and on the asymptotic behavior of the Bessel functions

for large nearly equal argument and order (cf. Sec. 2.1 and Remark 3.1).

In Sec. 5 we show that there also exist eigenfunctions of the whispering gallery

type, concentrating in a neighborhood of the interface, for a model of vibrating

membrane with one single concentrated mass. The spectral problem being:{
−∆uε = λερεuε in Ω ,

uε = 0 on ∂Ω ,
(1.4)

where Ω is a bounded domain or R2 with a smooth boundary ∂Ω, ρε = ρε(x) is the

density function defined by

ρε(x) =


1

εm
if x ∈ Bε

1 if x ∈ Ω−Bε ,
(1.5)

with Bε = εΩ1, m is a parameter fixed, m > 2, and ε is a small positive parameter

(ε → 0). For simplicity, we shall assume that Ω1 is a circle of radius one centered

at the origin that we shall denote by B.

The asymptotic behavior, as ε → 0, of the eigenelements (λε, uε) of problem

(1.4) has been extensively studied by many authors using different techniques: see,

e.g. Refs. 5, 9, 18, 19 and 25 (see Refs. 10–12 and 14 dealing with homogenization

problems for vibrating systems with many concentrated masses). It is well known

that, for each fixed ε > 0, (1.4) is a standard eigenvalue problem with a discrete

spectrum

0 < λε1 ≤ λε2 ≤ · · · ≤ λεn ≤ · · ·
n→∞−−−−→∞ ,

where the classical convention of repeated eigenvalues has been adopted. Let

{uεi}∞i=1 be the corresponding eigenfunctions, which are assumed to be an orthonor-

mal basis in H1
0 (Ω), i.e. ‖∇uεi‖L2(Ω) = 1. The minimax principle gives the estimates:

Cεm−2| ln ε|−1 < λεi < Ciε
m−2 , for each fixed i = 1, 2, 3, . . . , (1.6)

where C,Ci are constants independent of ε and Ci →∞ when i→∞.

Bounds (1.6) allow us to assert that the low frequencies λεi are of order O(εm−2).

In addition, it has been proved (see Ref. 9), that these frequencies and the cor-

responding eigenfunctions, are approached through those of the local problem

(1.1)–(1.3).

The eigenvalues λεi(ε) of orderO(1) are referred to as the high frequencies of (1.4).

Their asymptotic behavior and the structure of the corresponding eigenfunctions

has also been addressed in Refs. 5 and 9. In this paper we complete and improve

results in the previous papers.
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As a matter of fact, in Ref. 5, two problems appear in a natural way associa-

ted with the high frequencies: the local problem (1.1)–(1.3) for Ω1 ≡ B, and the

Dirichlet problem: {
−∆u = λu in Ω ,

u = 0 on ∂Ω .
(1.7)

Roughly speaking, it has been shown that the high frequencies accumulate on the

whole positive real axis and only for the eigenvalues λε converging, as ε → 0,

towards an eigenvalue λ0 of (1.7), the corresponding eigenfunctions uε do not vanish

asymptotically in Ω; these eigenfunctions uε are approached in H1
0 (Ω) through an

eigenfunction of (1.7), u0, associated with λ0. Besides, all the eigenfunctions uε

associated with the high frequencies have an oscillatory character in εB: in the

local variable y = x/ε, they are approached through the eigenfunctions of the local

problem (1.1)–(1.3) associated with large frequencies.

In Sec. 5 we follow the idea in Ref. 5 to prove that the eigenfunctions, associated

with certain high frequencies of (1.4), concentrate in a neighborhood of the interface

Γε of thickness O(ε
m+1

3 ) and vanish asymptotically elsewhere. In this case, ε ranges

in subsequences converging towards 0 (cf. (5.1)) and the corresponding frequencies

λε converge towards positive values λ∗, where λ∗ is not an eigenvalue of (1.7) (see

Theorem 5.1 and Remark 5.1).

Finally, let us observe that whispering gallery modes, concentrating in a neigh-

borhood of the boundary, have been explicitly computed in Sec. VII.2 of Ref. 3, for

problem (1.7) when Ω is a circular domain of R2 (see Remark 3.1). The problems

considered in this paper, (1.1)–(1.2), (1.1)–(1.3) and (1.4), as well as the technique,

are different from those in Ref. 3. As regard (1.1)–(1.2) and (1.1)–(1.3) we obtain

explicit formulas for the whispering gallery eigenfunctions and the corresponding

eigenfrequencies. Instead, using these whispering gallery modes of the local problem

(1.1)–(1.3), we obtain quasimodes which concentrate near the interface for systems

with concentrated masses (1.4) (see Theorem 5.1 and Remarks 5.2 and 5.3).

2. The Eigenelements of (1.1) (1.3) and (1.1) (1.2)

We obtain explicit formulas for the eigenvalues and the eigenfunctions of (1.1)–(1.3)

and (1.1)–(1.2) in terms of the Bessel functions. Besides, for the sake of complete-

ness, in Sec. 2.1, we state certain known asymptotic formulas connected with the

Bessel functions (cf. Refs. 1, 4, 20, 21 and 26).

Let B (BR, respectively) denote the circle of radius 1 (R, respectively), centered

at the origin. For simplicity, we consider problem (1.1)–(1.2) in the particular case

where Ω1 and Ω2 are B and BR, with R > 1, respectively. Similarly, we consider

(1.1)–(1.3) in the case where Ω1 = B and Ω2 = R2 − B̄.

In order to obtain the formulas for the eigenvalues and eigenfunctions we con-

sider polar coordinates (r, θ): y1 = r cos θ, y2 = r sin θ. We write indifferently
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U(r, θ) or U(y). Problem (1.1)–(1.3) reads:

∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂2U

∂θ2
+ λU = 0 for 0 < r < 1, 0 ≤ θ < 2π ,

∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂2U

∂θ2
= 0 for r > 1, 0 ≤ θ < 2π ,

U |r=1− = U |r=1+ and
∂U

∂r

∣∣∣∣
r=1−

=
∂U

∂r

∣∣∣∣
r=1+

,

U(r, θ)→ K , as r →∞ .

(2.1)

Using separation of variables in (2.1), the eigenvalues and the eigenfunctions of

(2.1) have been found in Ref. 5 in terms of the Bessel functions of the first kind,

Jn for n = 0, 1, 2, . . . , and of the trigonometric functions. We just sketch here the

formulas.

The quantities

µk,n = ν2
k,n , n = 0, 1, 2, . . . , k = 1, 2, . . . , (2.2)

are the eigenvalues of (1.1)–(1.3), where νk,n, for each fixed n, are the roots of the

equation:

J ′0(ν) = 0 when n = 0 and νJ ′n(ν) + nJn(ν) = 0 when n > 0 . (2.3)

To each eigenvalue µk,0 there corresponds one eigenfunction (up to a constant):

Uk,0(r, θ) =

{
J0(νk,0r) if r ≤ 1 ,

J0(νk,0) if r ≥ 1 ,
(2.4)

and to each eigenvalue µk,n, n > 0, there correspond two eigenfunctions (up to a

constant):

Uk,n(r, θ) =

{
Jn(νk,nr) cos(nθ) if r ≤ 1 ,

Jn(νk,n)r−n cos(nθ) if r ≥ 1
(2.5)

and

Ũk,n(r, θ) =

{
Jn(νk,nr) sin(nθ) if r ≤ 1 ,

Jn(νk,n)r−n sin(nθ) if r ≥ 1 .
(2.6)

Besides, the system of the eigenfunctions of (1.1)–(1.3), {Uk,0, Uk,n, Ũk,n, k, n =

1, 2, . . .} is an orthogonal basis of L2(B) and H1(B).

As regard problems (1.1)–(1.2), we proceed here below as in Sec. VI of Ref. 5,

with minor modifications, to obtain the orthogonal basis {Vk,0, Vk,n, Ṽk,n, k, n =

1, 2, . . .} in L2(B) and H1(B) formed by the eigenfunctions of (1.1)–(1.2).

We write problem (1.1)–(1.2) in polar coordinates, and take into account the

properties of the Bessel functions and the completeness of the system of products
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(see Sec. IX of Ref. 1 and Sec. VII.2 of Ref. 17, respectively), to obtain the eigen-

values and eigenfunctions of (1.1)–(1.2) in terms of the Bessel functions of the first

kind, Jn for n = 0, 1, 2, . . . , and of the trigonometric functions.

Indeed, the quantities

µ̃k,n = ν̃2
k,n , n = 0, 1, 2, . . . , k = 1, 2, . . . , (2.7)

are the eigenvalues of (1.1)–(1.2), where ν̃k,n, for each fixed n, are the roots of the

equation:

νJ ′0(ν) +
1

lnR
J0(ν) = 0 when n = 0 ;

νJ ′n(ν) +
R2n + 1

R2n − 1
nJn(ν) = 0 when n > 0 .

(2.8)

To each eigenvalue µ̃k,0 there corresponds one eigenfunction (up to a constant):

Vk,0(r, θ) =


J0(ν̃k,0r) if r ≤ 1 ,

J0(ν̃k,0)

lnR
(lnR − ln r) if r ≥ 1 ,

(2.9)

and, to each eigenvalue µ̃k,n, n > 0, there correspond two eigenfunctions (up to a

constant):

Vk,n(r, θ) =


Jn(ν̃k,nr) cos(nθ) if r ≤ 1 ,

Jn(ν̃k,n)

1−R2n
(rn −R2nr−n) cos(nθ) if r ≥ 1

(2.10)

and

Ṽk,n(r, θ) =


Jn(ν̃k,nr) sin(nθ) if r ≤ 1 ,

Jn(ν̃k,n)

1−R2n
(rn −R2nr−n) sin(nθ) if r ≥ 1 .

(2.11)

Therefore, we have obtained explicit formulas for the eigenfunctions of (1.1)–

(1.3) and (1.1)–(1.2).

Remark 2.1. We observe that in relation to (1.1)–(1.3), formulas (2.4)–(2.6), allow

us to assert that the only eigenfunctions converging towards some constant K dif-

ferent from zero, when r → ∞, are those associated with the Bessel functions of

order 0 : Uk,0,∀ k. For n > 0, from (2.5) and (2.6), we also observe that, for fixed

θ, the eigenfunctions decrease exponentially in the radial direction r. The same

behavior holds for n > 0 and the eigenfunctions of problem (1.1)–(1.2) in formulas

(2.10) and (2.11): it suffices to write

rn −R2nr−n

1−R2n
= e−n ln rR

2n − r2n

R2n − 1
for 1 < r < R , (2.12)

to obtain this exponential decay.
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Remark 2.2. Formulas (2.5) and (2.6) lead us to the conclusion that, outside B,

the oscillations of the eigenfunctions only occur in the direction of the arc θ and

not in the radial direction; an exponential decay of the eigenfunctions occurs in

the radial direction (see Remark 2.1). Instead, inside B, if we consider fixed n and

νk,n sufficiently large, νk,n being the zeros of Eq. (2.3), the properties of the Bessel

functions Jn(ν) for fixed n, and ν →∞ (see Sec. IX.2 of Ref. 1) allow us to assert

that the eigenfunctions Uk,n(x) and Ũk,n(x) are strongly oscillating functions in the

radial direction. On the other hand, if n tends to ∞, one may think that the roots

νk,n of (2.3) could be sufficiently small in such a way that the eigenfunctions do

not exhibit any concentration in the radial direction.

Thus, in order to obtain eigenfunctions which concentrate their support in a

neighborhood of Γ, we have to look for both n and νk,n converging towards ∞. In

fact, as in the case of zeros of a Bessel function or its derivative (see Sec. VII of

Ref. 21 and Sec. XV.3 of Ref. 26), in Sec. 3, we prove that when n→∞, for fixed

k, the zeros νk,n of (2.3) are already of order O(n), and they give rise to vibrations

of the whispering gallery type.

The same properties hold for Vk,n(x) and Ṽk,n(x) in formulas (2.10) and (2.11)

and the zeros ν̃k,n of Eq. (2.8) respectively (see Sec. 4).

In the following Secs. 3 and 4, we are concerned with the whispering gallery

modes of (1.1)–(1.3) and (1.1)–(1.2), respectively. Therefore, among all the eigen-

functions (2.4)–(2.6) ((2.9)–(2.11), respectively) we shall look for those associated

with νk,n (ν̃k,n, respectively), roots of Eq. (2.3) ((2.8), respectively), such that the

corresponding Bessel function Jn(νk,nr) exhibits an exponential decay at a small

distance from the boundary Γ, i.e. an exponential decay for r < 1, and r near r = 1,

since, on account of Remark 2.1, this decay already occurs for r > 1. According to

Remark 2.2, asymptotics of the Bessel functions for large order and arguments, that

we sketch in Sec. 2.1 below, are used in order to find these eigenfunctions and the

corresponding νk,n (ν̃k,n, respectively).

2.1. Auxiliary asymptotic formulas

It proves to be useful for the rest of the paper to gather in this section some known

properties of the Bessel functions and, consequently, of the Airy function.

In particular, in order to be self-contained, we introduce the expansions of the

Bessel functions, for large orders and arguments, in terms of the Airy function Ai

and its derivative Ai′ (see Sec. IX.3 of Ref. 1 and Sec. IV of Ref. 21):

Jn(nz) ∼
(

4ξ

1− z2

)1/4
(

Ai(n2/3ξ)

n1/3

∞∑
s=0

as(ξ)

n2s
+

Ai′(n2/3ξ)

n5/3

∞∑
s=0

bs(ξ)

n2s

)
, (2.13)

where a0(ξ) ≡ 1, as(ξ), bs(ξ), for s = 0, 1, . . . , are regular functions of ξ (in a certain

region of the complex plane), defined by certain integrals, and z and ξ are complex
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variables related by

2

3
ξ3/2 = ln

(
1 +
√

1− z2

z

)
−
√

1− z2 . (2.14)

ξ in (2.14) is chosen to be real for positive z, and, as n→∞, the expansion (2.13)

is uniform with respect to z in

| arg(z)| ≤ π − δ , ∀ δ with δ > 0 , z 6= 0 .

Besides, for z in a small neighborhood of z = 1, ξ is in a small neighborhood of

ξ = 0 and we have the asymptotic expansions:

z(ξ) = 1− ξ

21/3
+

3

10

(
ξ

21/3

)2

+O(ξ3) , (2.15)

that can be found in Sec. IV of Ref. 21, and

ξ(z) = 21/3(1− z) +
3

5

1

22/3
(1− z)2 +O(1− z)3 , (2.16)

obtained by means of simple computations.

Similarly to (2.13), we have the asymptotic expansions for the derivatives

J ′n(nz):

J ′n(nz) ∼ −2

z

(
4ξ

1− z2

)−1/4
(

Ai(n2/3ξ)

n4/3

∞∑
s=0

cs(ξ)

n2s
+

Ai′(n2/3ξ)

n2/3

∞∑
s=0

ds(ξ)

n2s

)
, (2.17)

where the same notations as in (2.13) are considered, and d0(ξ) ≡ a0(ξ) ≡ 1.

The Airy function in (2.13) and (2.17) is a well-known solution of

d2Ai

dt2
= tAi . (2.18)

Its zeros, denoted by ak, k = 1, 2, 3, . . . (Ai(ak) = 0), are strictly negative real

numbers, ak → −∞ as k →∞.

As regards to the positive zeros ν̂k,n of the Bessel functions Jn(ν), as n → ∞,

we have the asymptotics:

ν̂k,n = n

(
1− ak

21/3n(2/3)
+O

(
1

n4/3

))
, k = 1, 2, 3, . . . , (2.19)

where ak is the kth zero of the Airy function. Besides, the asymptotics for J ′n in

the zeros of Jn, for large n, gives:

J ′n(ν̂k,n) = Os(n
−(2/3)) . (2.20)

See Secs. IV and VII of Ref. 21 and Sec. IX.5 of Ref. 1 for (2.19) and (2.20).

For convenience, we introduce here the estimates for the Airy function and its

derivative:

|Ai(z)| ≤ C(1 + |z|1/4)−1|e−(2/3)z3/2 | and |Ai′(z)| ≤ C(1 + |z|1/4)|e−(2/3)z3/2 | ,
(2.21)
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where C is some positive constant and | arg(z)| ≤ π. We also introduce the asymp-

totic expansions of the Airy function and its derivative for large positive arguments

Ai(t) =
1

2
π−1/2t−1/4e−(2/3)t3/2

(1 +O(t−3/2)) , for t→ +∞ , (2.22)

Ai′(t) = −1

2
π−1/2t1/4e−(2/3)t3/2

(1 +O(t−3/2)) , for t→ +∞ , (2.23)

and, for large negative arguments

Ai(−t) = π−1/2t−1/4

(
cos

(
2

3
t3/2 − 1

4
π

)
+O(t−3/2)

)
, for t→ +∞ , (2.24)

Ai′(−t) = π−1/2t1/4
(

cos

(
2

3
t3/2 − 3

4
π

)
+O(t−3/2)

)
, for t→ +∞ . (2.25)

We refer, e.g., to Sec. X.4 of Ref. 1, Sec. IV.6 of Ref. 4 and Sec. VI.4 of Ref. 26 for

the definition of the Airy function, its properties and its connection with the Bessel

functions. We refer to Secs. IX.3 and X.4 of Ref. 1, Sec. IV of Ref. 20 and Appendix

in Ref. 21 for the more specific properties of the Airy function (2.21)–(2.25).

3. Whispering Gallery Eigenelements of (1.1) (1.3)

In this section we provide asymptotic expansions for whispering gallery eigenfunc-

tions on the interface Γ and for the corresponding frequencies of problem (1.1)–(1.3).

First, we obtain asymptotics (3.1) for the eigenvalues µk,n = ν2
k,n; then, in Sec. 3.1,

we obtain asymptotics (3.9)–(3.11) for the eigenfunctions which allow us to assert

that, inside B, the eigenfunctions associated with νk,n in (3.1) decay exponentially

out of a boundary layer of width O( 1
n2/3 ). Finally, in Sec. 3.2, we obtain some energy

estimates.

Throughout the sections, we consider that n tends to∞. Moreover, if there is no

possibility of error, we use the symbol O as follows: for f and g functions depending

on n→∞ (similarly, ξ → 0), f = O(g) when f = gC+ o(g), with C some constant

different from zero.

In the following lemma, we obtain the asymptotics for the eigenvalues of

(1.1)–(1.3). For the sake of completeness of this section, here below, we use the

asymptotics (2.19) to prove Lemma 3.1. This lemma can also be deduced from the

more general result in Proposition 4.2 of Sec. 4 (see Remark 4.1).

Lemma 3.1. Let νk,n be the zeros of (2.3). Then, for k = 1, 2, 3, . . . , the expansion

νk,n = n

(
1− ak

21/3n2/3
− 1

n
+O

(
1

n4/3

))
(3.1)

holds, as n→∞, where ak is the kth zero of the Airy function Ai in (2.18).

Proof. Expansion (3.1) is obtained as a consequence of (2.3), of the recurrence

relations for the Bessel functions (cf., e.g., Sec. III.13 of Ref. 26 and Sec. IX.1 of
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Ref. 1)

nJn(ν) + νJ ′n(ν) = νJn−1(ν) , (3.2)

and of (2.19); we already have

νk,n = ν̂k,n−1 = (n−1)

(
1− ak

21/3(n− 1)2/3
+O

(
1

(n− 1)4/3

))
, k = 1, 2, 3, . . . ,

and then, we have proved (3.1).

3.1. On the whispering gallery eigenfunctions

We prove that inside B the eigenfunctions Uk,n(r, θ) and Ũk,n(r, θ) associated with

the eigenvalues µk,n = ν2
k,n, νk,n in (3.1), and k fixed (k = 1, 2, 3, . . .), oscillate for

1−O( 1
n2/3 ) < r < 1 and decrease exponentially, depending on the distance to the

interface Γ, out of this layer (see (3.9)–(3.11)). As a consequence of the exponential

decay of these eigenfunctions when n→∞ for r > 1 (see Remark 2.1), we can assert

that, asymptotically, they concentrate their support in a thin layer of width O( 1
n2/3 )

near Γ (cf. Fig. 1). Also, the energy estimates in Sec. 3.2 lead us to the conclusion

that most of the energy, of these whispering gallery eigenfunctions, concentrates in

the neighborhood Γ of width O( 1
n2/3 ) (see Remark 3.2).

Considering (2.5) and (2.6) (see Remarks 2.1 and 2.2), we focus on obtaining

the exponential decay as r < 1 for the Bessel functions Jn(νk,nr): for νk,n given by

(3.1), we prove formulas (3.9)–(3.11) at the end of this section.

For fixed k = 1, 2, 3, . . . , let us denote

νk,n = n(1 + ν∗(n))

where, on account of (3.1),

ν∗(n) = − ak

21/3n2/3
− 1

n
+O

(
1

n4/3

)
, (3.3)

is a positive number for n sufficiently large.

Considering

z =
νk,n

n
r , (3.4)

(3.1) and (3.3), we have

z = (1 + ν∗(n))r , with ν∗(n) = Os(n
−2/3) and ν∗(n) > 0 . (3.5)

Thus, when r is in a small neighborhood of 1, z and ξ are in a small neighborhood

of 1 and 0 respectively, and (2.16) reads:

ξ(z) = 21/3(1− (1 + ν∗(n))r) +O((1 − (1 + ν∗(n))r)2) . (3.6)

Besides, for 0 < r < 1, z is positive and ξ is real.

Now, on account of (2.13), (2.15), (2.16) and (2.21) (cf., also, Sec. IX.3 of Ref. 1,

Sec. IV.8 of Ref. 4 and Ref. 20), it is easy to check that, for r ∈ (α, 1) with α any
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fixed constant 0 < α < 1, the asymptotic behavior of Jn(νk,nr) = Jn(nz) comes

out from the asymptotic behavior of the leading term in (2.13):(
4ξ

1− z2

)1/4
Ai(n2/3ξ)

n1/3
.

For r near 1, since ( 4ξ
1−z2 )1/4 = O(1) (cf. (2.15) and (2.16)), we have to analyze

the behavior of the Airy function Ai(n2/3ξ), which depends on the sign of the

argument n2/3ξ.

As a matter of fact, for ξ, z and ν∗(n) given by (3.6), (3.5) and (3.3) respectively,

we have:

Ai(n2/3ξ) = Ai(n2/321/3(1− (1 + ν∗(n))r)(1 +O(1− (1 + ν∗(n))r)) ,

where we observe that the argument n2/3ξ is negative provided that r near 1 and

(1−(1+ν∗(n))r) < 0. Indeed, (1−(1+ν∗(n))r) is sufficiently small if r = 1−O(n−β),

where to be more precise,

r = 1−O(n−β) means r = 1−Kn−β + o(n−β) , for K > 0 and β > 0 , (3.7)

and we obtain (1− (1 + ν∗(n))r) = O(sup(ν∗(n), n−β)).

Therefore, on account of the behavior of Ai(n2/3ξ) for positive and negative

arguments (cf. (2.22)–(2.25)), in a small neighborhood of r = 1 the Airy function

Ai(n2/3ξ) decays exponentially for r < 1 − ν∗(n) + O(ν∗(n)2) and oscillates for

1− ν∗(n) +O(ν∗(n)2) < r < 1.

For the Bessel functions, we consider (2.13), (2.15), (2.16) and (3.4)–(3.6), we

use (2.21)–(2.23), and then, by writing Jn(nz) ≡ Jn(νk,nr), we obtain

Jn(νk,nr) =

(
4ξ

1− z2

)1/4
Ai(n2/3ξ)

n1/3
+O(n−3/2(1− r)1/4)e−(2/3)

√
2n(1−r)3/2αn ,

for r � 1−O(n−2/3) , (3.8)

where 1 − O(n−2/3) is as in (3.7), r � 1 − O(n−2/3) means (1 − r)n2/3 n→∞−−−−→∞
for 1− r = o(1) and αn = αn(r) is a well-determined sequence, αn

n→∞−−−−→ 1; we also

obtain

Jn(νk,nr) =

(
4ξ

1− z2

)1/4
Ai(n2/3ξ)

n1/3
+O(n−4/3) , for 1−O(n−2/3) ≤ r < 1 , (3.9)

which holds uniformly with respect to r.

Thus, considering (3.5) and (3.6), from (3.8) and (2.22)–(2.23), for t = n2/3ξ,

we obtain:

Jn(νk,nr) = O(n−1/2+β/4)e−(2/3)
√

2n(1−r)3/2βn , for r = 1−O(n−β) , (3.10)

where β is a constant, 0 < β < 2
3 , βn = 1−O(nβ−2/3), and O(n−β) and O(nβ−2/3)

are positive order functions as in (3.7).

In the same way, considering (2.13), (2.14), (3.5) and (2.22)–(2.23), we have:

Jn(νk,nr) = O(n−1/2)e−nfn(r) , for 0 < α1 < r < α2 < 1 , (3.11)
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where α1 and α2 are any fixed constants 0 < α1 < α2 < 1, the O-symbol is uniform

with respect to r, and

0 < fn(r) = ln

(
1 +

√
1− (1 + ν∗(n))2r2

(1 + ν∗(n))r

)
−
√

1− (1 + ν∗(n))2r2 = O(1) .

Formulas (3.10) and (3.11) show that for fixed k = 1, 2, . . . , and n → ∞, the

Bessel function Jn(νk,nr) decays exponentially, depending on the distance to r = 1,

for 0 < r � 1 − O(n−2/3): we observe that, for fixed n, fn(r) is a decreasing

function in r ∈ (0, 1
1+ν∗(n) ), and, because of (3.6), fn(r) reads 2

3

√
2(1 − r)3/2βn

when r = 1−O(n−β).

We conclude that the results above for Jn(νk,nr) hold for the corresponding

eigenfunctions Un,k(r, θ) and Ũn,k(r, θ): the thickness of the boundary layer, where

they are significant and strongly oscillating functions in the arc direction, is

O(n−2/3) (cf. Fig. 1). Therefore, the proof of the existence of eigenfunctions of

(1.1)–(1.3), of the whispering gallery type, associated with the eigenvalues (3.1) is

complete and we have proved the following result:

Proposition 3.1. Let νk,n be the zeros of (2.3) which have the asymptotics (3.1).

Then, for θ ∈ [0, 2π), as n→∞, the asymptotic behavior of the corresponding eigen-

functions Un,k(r, θ) (Ũn,k(r, θ), respectively) is given by (2.5) ((2.6), respectively)

and (3.9)–(3.11).

Remark 3.1. It should be mentioned that the existence of whispering gallery

modes, concentrating in a neighborhood of the boundary, has been obtained using

different techniques (see, e.g. Secs. V and VII of Ref. 3) in connection with the

Hemholtz equation in Diffraction Theory:

∆u+
ω2

c(x)2
u = 0 in Ω ,

where Ω is a bounded domain of R2, the density c(x) is a smooth function in Ω and

a Dirichlet (Neumann or mixed) condition on the boundary ∂Ω is prescribed.

Explicit computations of the whispering gallery eigenfunctions and the corres-

ponding eigenvalues, based on the properties of the Bessel functions, appear in

Sec. VII.2 of Ref. 3 when Ω is a circle and c(x) a constant; i.e. for the Dirichlet

problem (1.7) in a circle. Previous results for this problem, (1.7) in a circle, based

on the examination of the eigenmodes were in Ref. 22. For more general domains,

explicit computations of the eigenelements become very difficult and, in general,

it is only possible to construct the so-called quasimodes (see Ref. 2, Sec. VII.6 of

Ref. 3 and Sec. XIV.4 of Ref. 24).

On the other hand, see Ref. 15 to derive the existence of whispering gallery

waves traveling on interfaces of circular domains, for a different problem from those

in this paper, and also for a different technique, as well as for further references.
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3.2. On the integral energy

The aim of this section is to obtain certain estimates in the L2 norm for the whis-

pering gallery eigenfunctions Uk,n, Ũk,n associated with νk,n in (3.1), and for their

derivatives. These estimates will be useful in Sec. 5. They allow us to guess that

the whispering gallery modes computed in this paper have most of their energy

concentrated in a small neighborhood of the interface between the two components

(see Remark 3.2).

For W = Un,k and W = Ũn,k in formulas (2.5) and (2.6), νk,n in (3.1), we

consider polar coordinates, and we easily prove the estimates:

‖∇yW‖L2(R2−B̄) ≤ C1

√
n|Jn(νk,n)| (3.12)

and

‖W‖L2(R2−B̄) ≤ C2
|Jn(νk,n)|√

n− 1
, (3.13)

where C1 and C2 are constants independent of n.

Now, for k = 1, 2, 3, . . . , we show that the right-hand side of (3.12) and (3.13)

converge towards zero, as n→∞, by proving that Jn(νk,n) = Os(n
−2/3).

From the recurrence relations for the Bessel functions (cf., e.g. Sec. III.13 of

Ref. 26 and Sec. IX.1 of Ref. 1)

νJn(ν) = (n− 1)Jn−1(ν) − νJ ′n−1(ν) , (3.14)

and the recurrence relation (3.2), when ν is a root of (2.3), ν = νk,n, we have

Jn−1(νk,n) = 0 and Jn(νk,n) = −J ′n−1(νk,n). Now, considering the fact that νk,n =

ν̂k,n−1 , where ν̂k,n has the expansion (2.19), we use (2.20), and we obtain:

Jn(νk,n) = Os(n
−2/3) , (3.15)

as previously outlined.

Besides, again using polar coordinates, for νk,n in (3.1), we prove the estimate:

‖∇yW‖L2(B) ≥ C3n
1/3 , (3.16)

for n sufficiently large and C3 a constant independent of n. Indeed, (3.16) is obtained

by considering

‖∇yW‖2L2(B) = K1ν
2
k,n

∫ 1

0

(J ′n(νk,nr))
2rdr +K2n

2

∫ 1

0

(Jn(νk,nr))
2 1

r
dr , (3.17)

where K1,K2 are constants independent of k and n. Then, we have

‖∇yW‖2L2(B) ≥ K2n
2

∫ 1

1
1+ν∗(n)

(Jn(νk,nr))
2dr ≥ K3n

2/3 ,

where ν∗(n) is defined in (3.3), K3 is a constant independent of n, and the last

inequality is obtained as a consequence of (3.3)–(3.5), (2.15), (2.16), expansion

(3.9) which holds uniformly in r, and of the fact that Ai(t)2 is strictly positive in

any interval which does not contain any zero of Ai. Therefore, (3.16) holds.
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Remark 3.2. We observe that (3.12) and (3.15) prove that the energy integral in

R2 − B̄ of the eigenfunctions associated with the roots (3.1) is of order O(n−1/6).

Moreover, (3.16) proves that this energy is at most concentrated in B.

Now, in order to ensure that the eigenfunctions (2.5) and (2.6) associated with

the eigenvalues (3.1) have their energy concentrated in a boundary layer of thickness

O(n−2/3), we have to prove that the order of magnitude of ‖∇yW‖2L2(B(0,α2)) is

smaller than the order of magnitude of ‖∇yW‖2
L2(B−B(0,1/(1+ν∗(n))))

, for any fixed

α2 such that 0 < α2 < 1. On account of (3.17), this fact likely comes out from

the asymptotic expansion (3.11) and a similar one for the derivative J ′n(νk,nr)

(cf. (2.17)), when 0 < α1 < r < α2 < 1, and from expansions for Jn and J ′n for

large orders and fixed arguments when rνk,n = O(1) (see Sec. IX.2 of Ref. 1).

Remark 3.3. We observe that bound (3.15) can also be obtained by considering

(2.13) and the Taylor expansion of the Airy function in a neighborhood of the

zero ak (cf. Sec. 4) instead of the recurrence relations (3.2) and (3.14); thus, the

results and bounds in this section can be extended for the more general case of

roots of (2.8).

Remark 3.4. For problem (1.1)–(1.2), since Eq. (2.3) ((2.4), (2.5), (2.6), respec-

tively) is similar to (2.8) ((2.9), (2.10), (2.11), respectively), for n > 0 and R > 1,

we expect the same behavior for the corresponding eigenvalues and eigenfunctions

as in the case of the unbounded domain in Sec. 3. Nevertheless, it should be no-

ticed that the above proof of (3.1) does not apply to obtain asymptotic expansions

for the zeros of (2.8), since the recurrence relations (3.2) have been used. Thus, in

Sec. 4, we provide another more general proof which extend the previous one and

gives the same asymptotic expansion (3.1) for the roots ν̃k,n of (2.8). The behav-

ior of the corresponding eigenfunctions is obtained from (2.12) and the results in

Sec. 3.1.

4. Whispering Gallery Eigenelements of (1.1) (1.2)

In this section we provide asymptotic expansions for the frequencies associated with

the whispering gallery eigenfunctions of problem (1.1)–(1.2). Once asymptotics of

the type (3.1) have been obtained for the eigenvalues µ̃k,n = ν̃2
k,n, the asymptotics

for the eigenfunctions Vk,n, Ṽk,n near Γ hold as in Sec. 3.1, with minor modifications:

see Proposition 3.1, and formulas (2.7), (2.8), (2.10)–(2.12) and (3.8)–(3.11).

The following results state the asymptotics for the eigenelements of (1.1)–(1.2).

Lemma 4.1. Let ν̃k,n be the zeros of (2.8). Then, for k = 1, 2, 3, . . . , the expansion

ν̃k,n = n

(
1− ak

21/3n2/3
− 1

n
+O

(
1

n4/3

))
(4.1)

holds, as n→∞, where ak is the kth zero of the Airy function Ai in (2.18).
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Proposition 4.1. Let ν̃k,n be the zeros of (2.8) which have the asymptotics (4.1).

Then, for θ ∈ [0, 2π), as n→∞, the asymptotic behavior of the corresponding eigen-

functions Vn,k(r, θ) (Ṽn,k(r, θ), respectively) is given by (2.10) ((2.11), respectively)

and (3.9)–(3.11).

The proof of Proposition 4.1 is that of Proposition 3.1 in Sec. 3.1, with minor

modifications. The proof of Lemma 4.1 is a consequence of Proposition 4.2, as we

outline here below.

Since the method used to prove (3.1) for the zeros of (2.3), when n → ∞,

does not apply to obtain the asymptotic expansion (4.1) for the zeros of Eq. (2.8)

(see Remark 3.4), in this section, we state a more general procedure to obtain the

asymptotic expansions for the zeros of more general equations than (2.3) and (2.8).

Then, (4.1) will be obtained as a particular case of these asymptotics.

More precisely, we look for asymptotic expansions of the roots of the equation:

νJ ′n(ν) + RnnJn(ν) = 0 , (4.2)

where Rn is a sequence of positive numbers that converges, as n → ∞, towards

some constant R̃ > 0 : Rn = R̃+ β(n), β(n) being β(n) = o(n−γ) for any γ, γ > 0

(see Remark 4.1).

As a consequence of the properties of separation of the zeros of Jn and J ′n (cf.,

e.g. Sec. XV of Ref. 26), Eq. (4.2) has a countable infinity of positive roots ν̃, that

we shall denote by ν̃k,n, k = 1, 2, 3, . . . . We have the following result:

Proposition 4.2. For the zeros ν̃k,n of (4.2), as n → ∞, we have the asymptotic

expansions:

ν̃k,n = n

(
1− ak

21/3n2/3
− 1

R̃n
+O

(
1

n4/3

))
, k = 1, 2, 3, . . . , (4.3)

where ak is the kth zero of the Airy function Ai in (2.18).

Proof. To start with, we prove that, for n → ∞, there are zeros of (4.2) of the

form ν̃ = n(1 + ν̃∗(n)) for ν̃∗(n) = Os(n
−2/3). In order to obtain this result, it

suffices to consider two roots ν̂1,n and ν̂2,n of Jn(ν) = 0 having asymptotics (2.19)

for two consecutive zeros, a1 and a2 for example, of the Airy function; then, we

take into account that J ′n(ν) changes the sign once between ν̂1,n and ν̂2,n, and so

does nRnJn(ν) + νJ ′n(ν); therefore, there is one zero of Eq. (4.2) between ν̂1,n and

ν̂2,n. This fact allows us to assert that there is

ν̃∗(n) = − a(n)

21/3n2/3
+O(n−4/3) (4.4)

for a certain constant a(n) = Os(1), a(n) between a1 and a2. In what follows, we

prove that ν̃∗(n) has the asymptotic expansion:

ν̃∗(n) = − ak

21/3n2/3
− 1

R̃n
+O

(
1

n4/3

)
, (4.5)



January 24, 2003 11:9 WSPC/103-M3AS 00239

Whispering Gallery Modes on Interfaces of Membranes 91

for ak any fixed zero of the Airy function, k = 1, 2, 3, . . . ; and this gives (4.3) and

(4.1) for R̃ = 1 (see Remark 4.1). We perform the proof in three steps.

First, let us observe that to look for zeros of (4.2) of the form

ν̃ = n(1 + ν̃∗(n)) , ν̃∗(n) > 0 , ν̃∗(n) = O(n−2/3) , (4.6)

amounts to looking for ν̃∗(n) = O(n−2/3) > 0 satisfying:

n(1 + ν̃∗(n))J ′n(n(1 + ν̃∗(n))) +RnnJn(n(1 + ν̃∗(n))) = 0 . (4.7)

Step 1: The perturbed equation of (4.2)

Let us admit, for the time being, that we have ν̃∗(n) satisfying (4.7). Then, we

prove that

ξ = −ν̃∗(n)21/3 +O(ν̃∗(n)2) (4.8)

satisfies

22/3Ai(n2/3ξ)− 2

Rnn1/3
Ai′(n2/3ξ) +O

(
1

n

)
= 0 . (4.9)

Indeed, we take into account (2.15) and (2.16) for z = ν̃
n

, ν̃ in (4.6), to obtain

that ξ has the asymptotics (4.8), and(
4ξ

1− z2

)1/4

= 21/3 +O(ν̃∗(n)) . (4.10)

Then, we write the expansion (2.13) for Jn(nz) when z = 1 + ν̃∗(n), and (2.17) for

the derivative J ′n(nz), where we observe that for ν̃∗(n) = O(n−2/3), the argument

of the Airy function (n2/3ξ) is of order O(1). The asymptotics and estimates of

the Bessel functions in terms of the Airy function and of the exponential function

(2.13)–(2.21) (cf., also, Secs. IV and V of Ref. 20 and Secs. IV–VII of Ref. 21) allow

us to assert that the zeros of (4.2), ν̃ = n(1 + ν̃∗(n)) satisfying (4.7), verify

22/3RnAi(n2/3ξ)− 2n−1/3Ai′(n2/3ξ) +O(n−1) = 0 , (4.11)

which reads (4.9). Thus, for ξ in (4.8) to satisfy (4.9) is a necessary condition for ν̃

in (4.6) to be a zero of (4.2).

Therefore, we proceed as follows: we look for asymptotic expansions of ν̃∗(n)

and ξ satisfying (4.9) and then we prove that the corresponding expansion for ν̃ in

(4.6) is in fact an expansion of a true zero of (4.2).

Step 2: The zeros of the perturbed equation (4.9)

We look for ξ such that n2/3ξ = O(1) satisfies (4.9). On account of 2R−1
n n−1/3 → 0,

as n → ∞, n2/3ξ is expected to be near a zero of the Airy function. Hence, we

perform the change of variable: n2/3ξ = τ + as, for as any fixed zero of the Airy

function (Ai(as) = 0, as < 0) and then, we expand Ai and Ai′ in Taylor series in a

neighborhood of as to obtain τ such that the corresponding ξ satisfies Eq. (4.9).
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In fact, considering (4.9), we can write:

22/3Ai(as + τ) − 2

Rnn1/3
Ai′(as + τ) +O

(
1

n

)

= 22/3

(
Ai(as) + τAi′(as) +

τ2

2
Ai′′(as) +

τ3

6
Ai′′′(as) + · · ·

)

− 2

Rnn1/3

(
Ai′(as) + Ai′′(as)τ +

τ2

2
Ai′′′(as) + · · ·

)
+O

(
1

n

)
= 0 .

On account of (2.18) and Ai(as) = 0, Ai′′(as) also vanishes, and we have(
22/3τ − 2

Rnn1/3

)
Ai′(as)−

(
22/3 τ

6
− 2

Rnn1/3

1

2

)
τ2Ai′′′(as) + · · ·+O(n−1) = 0 .

(4.12)

By choosing

τ =
2

Rnn1/322/3
,

the term accompanying Ai′′′(as) in (4.12) is already of order O(n−1), and Eq. (4.9)

is satisfied for this value of τ . Thus, we take ξ such that

n2/3ξ = as +
2

Rnn1/322/3
,

or equivalently, in terms of ν̃∗(n),

ν̃∗(n)(1 +O(ν̃∗(n)2)) = − as

21/3n2/3
− 2

Rnn1/322/321/3n2/3
.

Then, we solve this equation in ν∗(n), i.e.

Knn
2/3ν̃∗(n)2 + n2/3ν̃∗(n) +

as

21/3
+

1

n1/3Rn
= 0 ,

where constant Kn = K + O(ν̃∗(n)) converge towards some constant K different

from zero, and we obtain formula (4.5) for ν̃∗(n) being ak ≡ as. Taking into account

that Rn−R̃ = O(n−γ) for any positive γ, the asymptotic expansion (4.5) also reads

ν̃∗(n) = − ak

21/3n2/3
− 1

Rnn
+O

(
1

n4/3

)
.

Thus, we have proved that ξ in (4.8) and ν̃∗(n) in (4.5) satisfy (4.9).

Step 3: The true zeros of (4.2)

Considering (4.6), we denote by νper the ν̃ corresponding to the ν̃∗(n) above

νper = n

(
1− ak

21/3n2/3
− 1

Rnn
+O

(
1

n4/3

))
. (4.13)

In what follows, we prove that νper is in fact a small perturbation of the zeros of

(4.2) and, more precisely, that there are zeros νex of (4.2) of the form νex = νper +

O(n−1/3); i.e. there are zeros of (4.2), which have the asymptotic expansion (4.13).
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In order to perform this proof, we first observe that, on account of (4.11) (again

because of (2.13)–(2.21) and (4.10)), νper in (4.13) satisfies the equation:

νperJ
′
n(νper) +RnnJn(νper) +O(n−1/3) = 0 . (4.14)

We denote by νex an exact zero of (4.7) near νper and by F (ν, n) the function

F (ν, n) ≡ nRnJn(ν) + νJ ′n(ν). Obviously, from (4.7) and (4.14), F (νex, n) = 0 and

F (νper, n) = O(n−1/3). Then, the Taylor expansion in a neighborhood of νex gives

the existence of ν̂ between νex and νper such that:

F (νper, n) = F (νex, n) +
dF

dν
(ν̂, n)(νper − νex) .

Thus,

|νper − νex| ≤
∣∣∣∣∣O(n−1/3)
dF
dν

(ν̂, n)

∣∣∣∣∣ , (4.15)

and we prove that |dF
dν

(ν̂, n)| ≥ C, for C a certain constant, C > 0, which gives the

existence of the true zero of (4.2) νex at a distance less than or equal to O(n−1/3)

from νper. Indeed, we have

dF

dν
(ν, n) = nRnJ

′
n(ν) + J ′n(ν) + νJ ′′n(ν) ,

where, on account of equation satisfied by Jn(ν),

J ′n(ν) + νJ ′′n (ν) = −
(
ν − n2

ν

)
Jn(ν) ,

we verify ∣∣∣∣∣O(n−1/3)
dF
dν (ν̂, n)

∣∣∣∣∣ =

∣∣∣∣∣ O(n−4/3)

RnJ ′n(ν̂)−
(
ν̂
n −

n
ν̂

)
Jn(ν̂)

∣∣∣∣∣ ≤ O
(

1

n1/3

)
. (4.16)

The inequality in (4.16) is obtained from the fact that ν̂ is already of the form

ν̂ = n(1 + ν̂∗(n)) for some small ν̂∗(n) = O(n−2/3) (see (4.4), (4.6) and (4.13));

then, (2.13) and (2.17) hold for ξn2/3 of order O(1) and the dominant term in the

denominator of the left-hand side of (4.16) is of the order greater than or equal to

O(n−1).

Inequalities (4.15), (4.13) and (4.16) ensure:

νex = n

(
1− ak

21/3n2/3
− 1

Rnn
+O

(
1

n4/3

))
, (4.17)

as outlined previously, and the proposition is proved.

Remark 4.1. In order to obtain (3.1) and (4.1) from Proposition 4.2, it is worthy

observing that Eq. (4.2) is (2.3) when Rn = 1 and (2.8) when Rn = R2n+1
R2n−1 . In this
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case, Rn converge towards 1 as n → ∞, and, Rn = 1 + o(n−γ) for any positive

γ, since

Rn =
R2n + 1

R2n − 1
= 1 +

2

R2n
+

2

R4n
+ · · · . (4.18)

We observe that in the case where Rn = 1, (4.17) coincides with (3.1), and the

proof of (4.17) extends that performed to obtain (3.1).

Remark 4.2. It should be mentioned that (3.1) (and (4.1), (4.3) or (4.17)) differs

from the asymptotics for the zeros of the Bessel functions (2.19), obtained in Refs. 3

and 21, in the terms of order O(1).

We also note that, in fact, formula (4.4) already ensures the existence of eigen-

functions of the whispering gallery type, but (4.1) provides asymptotic expansions

for the corresponding eigenvalues up to the order O(1).

5. On a Vibrating Membrane with One Single Concentrated Mass

We address the asymptotic behavior of the eigenfunctions associated with certain

high frequencies λε of (1.4), as ε → 0. Throughout this section we consider λε =

λεi(ε) = O(1), λε converging towards some positive λ∗.

The asymptotic expansions in Ref. 5 show that the eigenfunctions associated

with the high frequencies of (1.1)–(1.3), λ = λ∗

εm−2 for small ε, provide correcting

terms for certain eigenfunctions associated with the high frequencies of (1.4). Using

this idea and the whispering gallery eigenfunctions in Sec. 3.1, in this section, we

prove that there are eigenfunctions of (1.4) associated with λε = O(1) which concen-

trate in a neighborhood of Γε, and almost vanish outside, as stated in Theorem 5.1.

The results in this section extend and improve those in Sec. VI of Ref. 5.

It is known5 that the eigenfunctions uε of (1.4), uε associated with λε, converge

weakly in H1
0 (Ω) either towards u0 6= 0, u0 being an eigenfunction of (1.7) corres-

ponding with the eigenvalue λ∗ = λ0, or towards 0 when λ∗ is not an eigenvalue

of (1.7). In addition, it has been proved that certain of these eigenfunctions uε are

strongly oscillating functions inside εB and, for particular subsequences {εk}∞k=1,

some correcting terms which improve the convergence of uε in H1
0 (Ω) have been

provided.5 More precisely, the correcting terms have been constructed in the case

where λ∗ = λ0 is an eigenvalue of (1.7), with the corresponding eigenfunction u0

satisfying u0(0) 6= 0, and in the case where λ∗ is not an eigenvalue of (1.7). These

correctors allow us to assert that the structure of uε is deeply involved with the

sequence εk considered (see Remark 6.2 of Ref. 5 and Remark 5.4 below for the

case where u0(0) = 0).

The following theorem also provides the sequence ε in order to obtain whispering

gallery modes of (1.4) concentrating on the interface Γε (see Remarks 5.1 and 5.2).
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Theorem 5.1. Let λ∗ be any positive number, λ∗ not eigenvalue of (1.7). For fixed

k = 1, 2, . . . , let ε be ranging in the sequence {εn}∞n=1 defined by:

εn =

(
λ∗

µk,n

) 1
m−2

, (5.1)

where µk,n = ν2
k,n, νk,n defined in (3.1). Then, there is a sequence δεn , δεn → 0

as n→∞, such that the interval [λ∗ − δεn , λ∗ + δεn ] contains eigenvalues of (1.4).

Moreover, there is uεn , uεn with norm 1 in H1
0 (Ω), uεn belonging to the eigenspace

associated with all the eigenvalues λεn in [λ∗ − δεn , λ∗ + δεn ] such that :

‖uεn − αεn(TxWnψ)‖H1
0 (Ω) ≤ C(k)εα0

n , (5.2)

where α0 is a fixed constant α0 ∈ (0, 1), C(k) is a constant independent of εn, α
εn

is the constant αεn = 1/‖(TxWnψ)‖H1
0 (Ω), Wn(y) is the solution of (2.1), Wn(y) =

Uk,n(y) or Wn(y) = Ũk,n(y), y is the variable y = x
εn

(the local variable), TxWn is

the function TxWn(x) = Wn( x
εn

), and ψ is any smooth function taking value 1 for

|x| < R1 and 0 for |x| > R2, 0 ≤ ψ ≤ 1, R1 and R2 being two fixed constants such

that R1 < R2 and B(0, R2) ⊂ Ω.

Proof. By performing computations in polar coordinates, the fact that, for fixed

k, νk,n is given by (3.1), νk,n → ∞ as n → ∞, and formulas (3.12), (3.13) and

(3.16), lead us to obtain the following estimates:

‖∇yWn‖
L2(B(0,

R2
εn

)−B(0,
R1
εn

))
≤ C1ε

n
n

√
n

Rn1
|Jn(νk,n)| , (5.3)

‖Wn‖L2(B(0,
R2
εn

)−B̄)
≤ C2

|Jn(νk,n)|√
n

(5.4)

and

‖∇yWn‖L2(B) ≥ C3 , (5.5)

where Ci, i = 1, 2, 3, are constants independent of n. Moreover, on account of (3.15),

we can assert that the constants depending on n accompanying C1 and C2, on the

right-hand side of (5.3) and (5.4) respectively, converge towards zero as n→∞.

Then, we prove estimate (5.2) by rewriting the proof of Theorem 6.2 of Ref. 5,

with minor modifications, for δεn = ε1−α0
n . We outline here the proof.

On account of ‖∇xu‖L2(Ω) = ‖∇yu‖L2(ε−1
n Ω), we perform the calculations in the

local variable y = x
εn

.

Let Aε be the positive, compact and symmetric operator on H1
0 (ε−1Ω) defined

by:

〈AεU, V 〉H1
0 (ε−1Ω) =

1

εm−2

∫
B

UV dy + ε2

∫
ε−1Ω−B̄

UV dy , ∀U, V ∈ H1
0 (ε−1Ω) .
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Making the change of variable from x to y in (1.4), we obtain that the eigenvalues

of Aε are 1/λε.

Let us consider W εn(y) = Wn(y)ψεn(y), with Wn = Uk,n(y) defined in (2.5)

and ψεn(y) = ψ(εny) (nothing changes if Wn is defined in (2.6)), Wn and ψ as in

the statement of the theorem.

Let us define W̃ εn = Wεn

‖Wεn‖
H1

0(ε
−1
n Ω)

. Let us admit, for the time being, that∥∥∥∥AεnW̃ εn − 1

λ∗
W̃ εn

∥∥∥∥
H1

0 (ε−1
n Ω)

≤ C(k)βεn , (5.6)

where βεn = εn|Jn(νk,n)|. Then, we apply Lemma 1.1 in Sec. III.1 of Ref. 19 to the

operator A = Aεn and the Hilbert space H = H1
0 (ε−1

n Ω), and we obtain the result

in the statement of the theorem.

In order to obtain (5.6), we prove:

‖W εn‖H1
0(ε−1

n Ω) ≥ C4(k) (5.7)

and ∣∣∣∣∣
〈

AεnW εn − 1

λ∗
W εn , V

〉
H1

0 (ε−1
n Ω)

∣∣∣∣∣
≤ C5(k)βεn‖V ‖H1

0 (ε−1
n Ω) , ∀V ∈ H1

0 (ε−1
n Ω) , (5.8)

for some constants C4(k), C5(k) independent of εn.

Formula (5.7) is a consequence of the definition of W εn , which takes the value

(2.5) in B, and of (5.5).

In relation to (5.8), the definitions of Aεn and W εn allow us to write:〈
AεnW εn − 1

λ∗
W εn , V

〉
H1

0 (ε−1
n Ω)

=
1

εm−2
n

∫
B

WnV dy−
1

λ∗

∫
R2

∇yWn · ∇yV dy

+
1

λ∗

∫
R2−B(0,

R1
εn

)

∇yWn · ∇yV dy−
1

λ∗

∫
B(0,

R2
εn

)−B(0,
R1
εn

)

∇y(Wnψ
εn) · ∇yV dy

+ ε2
n

∫
B(0,

R1
εn

)−B̄
WnV dy + ε2

n

∫
B(0,

R2
εn

)−B(0,
R1
εn

)

Wnψ
εnV dy ,

for any V ∈ H1
0 (ε−1

n Ω). We take into account that Wn satisfies (2.1) with K = 0; so

that the variational formulation of (1.1)–(1.3) for λ = λ∗

εm−2
n

leads us to cancel the

first two integrals. For the other integrals, we apply the Schwarz and Poincaré

inequalities, we take into account the boundedness of ψεn and its derivatives,

and relations (5.3) and (5.4), and then we obtain (5.8). Therefore, the theorem is

proved.

Remark 5.1. It should be mentioned that the result in Theorem 5.1 here, along

with results in Theorem 4.1 and Propositions 4.1–4.3 of Ref. 5, allow us to assert

that αεn(TxWnψ) behaves as a corrector for certain eigenfunctions uεn which con-

verge towards zero in H1
0 (Ω)-weak. On the other hand, the above-mentioned results
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also allow us to show the approach to these eigenfunctions uεn through functions

which concentrate their support in the neighborhood of Γεn of width O(n−2/3εn).

Thus, on account of (5.1), the thickness of the boundary layer is O(n−
2(m+1)
3(m−2) ) in

terms of n, and O(ε
m+1

3
n ) in terms of ε = εn.

Remark 5.2. Since we do not know the distance between two consecutive eigen-

values of (1.4), it is clear that when justifying computations in Theorem 5.1 we

cannot ensure that αεn(TxWnψ) approaches only one eigenfunction uεn . This fact

has already been pointed out in Ref. 5 (see also Ref. 13, for a different problem).

Besides, we have obtained quasimodes of (1.4) instead of true modes. True modes

for (1.4) are likely to be obtained, in the case where both Ω and B are circles, using

the technique in Secs. 2–4.

On the other hand, it is clear that the technique used to prove Theorem 5.1

can also be applied to different problems: let us mention, for example, the case of

vibrating plates with concentrated masses (cf. Ref. 6), the case where the mass εB

is of order O(1), i.e. εB is replaced by Ω2, or the case where this part Ω2 is very

stiff instead of very heavy (cf. Ref. 13).

Remark 5.3. We observe that in the case where Ω is a circle, using the results

in Sec. VII.2 of Ref. 3 for problem (1.7) and the technique to prove Theorem 5.1

(see also Ref. 5), it is also possible to find whispering gallery eigenfunctions of

(1.4) concentrating in a thin layer near ∂Ω. Indeed, since the eigenelements of

(1.7) approach certain eigenelements of (1.4) associated with the high frequencies

λε = O(1), and the whispering gallery eigenfunctions of (1.7) are associated with

very large eigenvalues of (1.7), the whispering gallery eigenfunctions of (1.4) con-

centrating in a neighborhood of the boundary of Ω are likely to be associated with

frequencies higher than λε = O(1).

Remark 5.4. From Remark 6.2 of Ref. 5, it is clear that when (λ0, u0) is an

eigenelement of (1.7) and u0(0) = 0, and λε
ε→0−−−→λ0, the approach of uε through 0

inside εB is as good as the approach through an oscillating function. As a matter

of fact, it should be noted that in order to improve this convergence we have the

problem of matching a smooth function with a very strongly oscillating function.

Acknowledgment

This work has been partially supported by DGES: BFM2001-1266.

References

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables (Dover, 1972).

2. V. I. Arnold, Modes and Quasimodes, Funct. Anal. Appl. 6 (1972) 94–101.
3. V. M. Babich and V. S. Buldyrev, Short-Wavelength Diffraction Theory. Asymptotic

Methods (Springer-Verlag, 1991).
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