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SUMMARY

We consider a set of Neumann (mixed, respectively) eigenvalue problems for the Laplace operator.
Each problem is posed in a bounded domain �R of Rn, with n = 2; 3, which contains a �xed bounded
domain B where the density takes the value 1 and 0 outside. �R has a diameter depending on a
parameter R, with R¿1, diam(�R)→ ∞ as R→ ∞ and the union of these sets is the whole space Rn
(the half space {x∈Rn= xn¡0}, respectively). Depending on the dimension of the space n, and on the
boundary conditions, we describe the asymptotic behaviour of the eigenelements as R→ ∞. We apply
these asymptotics in order to derive important spectral properties for vibrating systems with concentrated
masses. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper deals with the approach to spectral problems for the Laplace operator in unbounded
domains via problems in bounded domains. These kinds of spectral problems can appear in
di�erent �elds of mechanics. This is the case, for instance, of the study of local behaviours
of eigenmodes for vibrating systems containing either parts with negligible mass or concen-
trated masses. We also apply the approach in this paper to obtain certain remarkable spectral
properties for vibrating systems with concentrated masses.
As is well known, the study of the vibrations of certain mechanical systems containing a

part with negligible small mass leads us to the study of the spectral problem: Find � and
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u �=0 such that ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�u= �u in B

−�u=0 in !

[u] =
[
@u
@n

]
=0 on �

(1)

and

u=0 on �! (2)

or

@u
@n
=0 on �! (3)

Here, B and ! are two open bounded domains of Rn, with n=2; 3. B and ! have smooth
boundaries, � is the boundary of B, �∪�! is the boundary of !, �n is the unit outward normal
to � (�!, respectively), ��∩ ��!= ∅, and the brackets denote the jump across � of the enclosed
quantities. We have assumed that the part of the system with negligible mass �lls the outer
domain !: the density takes the value 1 in B and 0 in !; � is the interface between the two
domains B and !.
In the case where ! is the outer domain of B, that is, !=Rn − �B, condition (2) on �!

becomes

u(x)→ c as |x| → ∞ when n=2; and; u(x)→ 0 as |x| → ∞ when n=3 (4)

where c is an unknown but well determined constant.
As a matter of fact, problems (1), (2) and (1), (3) for n=2 (for n=3, respectively)

appear, for instance, in a natural way when studying vibrating membranes (bodies, respec-
tively) containing a very heavy inclusion. On the other hand, problem (1), (4) appears as
a microscopic or local problem when studying, for example, vibrating membranes (bodies)
with concentrated masses: that is, the vibrations of systems composed of a membrane (body)
which contains very heavy small inclusions, the concentrated masses (cf. problem (56)).
More speci�cally, (1), (4) is clearly involved with the low frequency vibrations for vibrating
systems with concentrated masses inside the domain. It is the so-called local problem for these
vibrating systems which have been studied by many authors over the last few decades: let us
mention, for instance, References [1–3], Section III.5 in Reference [4] and Section VII.10 in
Reference [5], and Reference [6] for an extensive bibliography on the subject.
We refer to Sections IV.6 and IV.8 in Reference [5] for the variational formulation of

problems (1),(2), (1),(3) and (1),(4) in H 1(B). All these problems are standard eigenvalue
problems with a discrete spectrum

06�16�26 · · ·6�n · · · n→ ∞−−−−−−→ ∞
where the classical convention of repeated eigenvalues is adopted; the corresponding eigen-
functions form a basis of L2(B) and of H 1(B). Obviously, the value 0 is the �rst eigenvalue
�1 of (1), (3) for n=2; 3 and of (1), (4) only for n=2.
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SPECTRAL CONVERGENCE FOR VIBRATING SYSTEMS 1175

In fact, using the technique in Section VII.11 of Reference [5] and Section III.1 of
Reference [4], it can be proved that when the diameter of ! converges towards ∞, the
limit of the spectrum of problem (1), (2) is the spectrum of (1), (4). Also, the convergence
of the eigenfunctions holds in the suitable Hilbert spaces. We refer to Reference [7] in con-
nection with the structure of certain eigenfunctions associated with the high frequencies of
(1), (2) and (1), (4).
In contrast, as far as we know, no mention is made in the literature on what would be the

corresponding condition (3) when ! is the outer domain Rn − �B, and consequently, neither
the behaviour for the limit of the spectrum of (1), (3), when the diameter of ! converges
towards ∞, is known. In this paper (cf. Sections 2–4), we describe the limit behaviour of
the eigenelements of (1), (3) as diam(!)→ ∞. We also consider a di�erent geometry of
the domains ! and B, which involves the lower half space Rn−= {x∈Rn=xn¡0}, and by
prescribing mixed boundary conditions on {xn=0}, we analyze the limit for the spectrum of
the new problems and that of the associated eigenfunctions (see Section 5).
We show that the limit problem of (1), (3), as diam(!)→ ∞, is (1), (4) for the dimension

of the space n=2, while the limit problem is another di�erent eigenvalue problem for the
dimension n=3, namely, the equation in B in (1), (4), must be replaced by

−�u= �
(
u− 1

|B|
∫
B
u dx

)
in B (5)

(see (13) and Remark 6.4). We give convergence results on the eigenvalues and the corre-
sponding eigenfunctions in the way stated by Theorems 2.1–4.2.
In Section 2 we outline the di�erent problems arising throughout the paper and introduce

some notations and certain known auxiliary results from spectral perturbation theory that will
be used in the rest of the paper. In Section 2.1 we provide certain results of comparison for the
spectrum of (1), (3) and bounds as diam(!)→ ∞. In Sections 3 and 4 we give convergence
results and proofs for the case where n=2 and 3, respectively.
The technique and results in Sections 2.1 and 3 extend to the case where B and ! are

subdomains of the lower half space Rn− with a part of the boundary in contact with {xn=0},
the boundary conditions being a Dirichlet or Neumann condition on @B∩ {xn=0} and a
Neumann one outside. In the case where a Dirichlet condition is imposed on @B∩ {xn=0}
the eigenvalues are strictly positive numbers, and the convergence of the spectrum for these
mixed problems, as diam(!)→ ∞, is proved in Section 5.
It is also worth mentioning that the technique can be applied to the study of other spectral

problems for di�erent elliptic operators posed in domains with di�erent geometries such as
those appearing in vibrating elastic structures with corners. In this framework, we observe
that the interest in this kind of approaches in practical applications has been indicated in
Reference [8] for the case of stationary elliptic problems in certain unbounded domains with
Neumann conditions on the boundary (see also Section VIII in Reference [9]).
In our case, the above-mentioned mixed problems in Rn− are local problems for vibrating

systems with concentrated masses near the boundary. In Section 6 we provide a sample
which illustrates the interest of the results in Sections 5 in order to describe the asymptotic
behaviour of the spectrum of an eigenvalue problem associated with a vibrating system with
many concentrated masses. Let us mention References [6,10–14] in connection with these
vibrating systems (see also Reference [6] for more references).
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1176 E. P �EREZ

It should be noticed that an important fact which gives rise to this di�erent asymptotic
behaviour of the spectrum of (1), (3) for the dimensions n=2 and 3 of the space is that
harmonic functions with a bounded energy in an unbounded domain can converge towards a
constant at the in�nity. Consequently, they belong to the functional space where the eigen-
value problem (1), (4) is posed only for n=2 (cf. Theorems 2.1 and 4.2 and Remarks 2.1
and 4.2).
Also, we note that this di�erent asymptotic behaviour of the spectrum of (1), (3) for both

dimensions allows us to prove a di�erent behaviour of the spectrum of vibrating systems with
many concentrated masses for n=2 and 3. Additionally, we show that our results are sharp
(cf. Remarks 5.2 and 6.2). In particular, we make clear that the fact that the low frequencies
for vibrating systems with concentrated masses give rise only to local vibrations of the masses
is related with the fact that the �rst eigenvalues of problem (1), (2) and problem (1), (3)
converge, as diam(!)→ ∞, towards the same value which is the �rst eigenvalue of (1), (4)
(cf. Remarks 5.2, 6.1 and 6.5).
Finally, we emphasize that the limit spectra obtained in this paper are very di�erent de-

pending on the geometry of the domains, on the dimension of the space and on the parameter-
dependent problems. The minimax principle, extension operators and certain results on spec-
tral perturbation theory and potential theory prove to be important tools throughout the paper.
Nevertheless, it should also be pointed out that the results and techniques in this paper are
di�erent from those in the literature on vibrating systems.

2. STATEMENT OF THE PROBLEMS AND PRELIMINARIES

Let us consider B and �1 two open bounded domains of Rn, n=2; 3, such that �B⊂�1. Let �R
be a sequence of domains such that, �B⊂�R, ��1 ⊂�R and ��R ⊂�R′ for 1¡R¡R′. In addition,
we assume that diam(�R)→ ∞ as R→ ∞ and, for su�ciently large R, �R contains any �xed
domain of Rn. We assume that B and �R have smooth boundaries; � is the boundary of B
and �R is the boundary of �R for R¿1. For instance, this situation holds in the particular
case where �R is homothetic of �1 of radius R, i.e. �R=R�1, but more general situations
can also hold (cf. Remark 4.3).
For �xed R¿1, we consider the eigenvalue problem (1), (3) where we set !≡�R − �B.

That is, the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�u= �u in B

−�u=0 in �R − �B

[u] =
[
@u
@n

]
=0 on �

@u
@nR

=0 on �R

(6)

where �n ( �nR, respectively) is the unit outward normal to � (�R, respectively).
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SPECTRAL CONVERGENCE FOR VIBRATING SYSTEMS 1177

As is well known, (6) has the variational formulation: Find � and u �=0, u∈H 1(�R), such
that ∫

�R
∇u · ∇v dx +

∫
B
uv dx=(�+ 1)

∫
B
uv dx; ∀v∈H 1(�R) (7)

For �xed R, let {�Ri }∞
i=1 be the sequence of eigenvalues of (6), converging to ∞ as i→ ∞,

with the classical convention of repeated eigenvalues, and let {uRi }∞
i=1 be the corresponding

eigenfunctions which are assumed to be a basis of H 1(�R). Obviously, �R1 = 0 and the cor-
responding eigenfunctions are the constants. The rest of eigenfunctions are a basis in the
functional space

WR=
{
u∈H 1(�R)

/∫
B
u dx=0

}
(8)

they are orthogonal in L2(B), and we assume that they satisfy the normalization condition:

‖∇uRi ‖2(L2(�R))n + ‖uRi ‖2L2(B) = 1 (9)

Let us denote by VR the space H 1(�R) equipped with the norm

‖∇u‖2(L2(�R))n + ‖u‖2L2(B) (10)

equivalent to the usual norm in H 1(�R), and by WR the subspace (8) of VR.
On the other hand, let us consider the eigenvalue problem (1), (4) for !=Rn − �B, which

reads ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�yu = �u in B

−�u = 0 in Rn − �B

[u] =
[
@u
@n

]
=0 on �

u(x)→ c; as |x| → ∞ when n=2

u(x)→ 0; as |x| → ∞ when n=3

(11)

It has the variational formulation: Find �, u∈V, u �=0, such that:∫
R n

∇u · ∇v dx +
∫
B
uv dx=(�+ 1)

∫
B
uv dx; ∀v∈V (12)

where V is the space completion of D(Rn) for the norm ‖∇u‖(L2(R n))n + ‖u‖L2(B).
As is well known (cf., for instance, Section III.5 of Reference [4] and Section IV.8 of

Reference [5]), on account of the dense and compact imbedding V⊂L2(B), problem (12)
has a discrete spectrum. Let {�0i }∞

i=1 be the sequence of eigenvalues with the convention of
repeated eigenvalues; the corresponding eigenfunctions {U 0

i }∞
i=1 are an orthogonal basis in V

and in L2(B). For n=2, �01 = 0 and the associated eigenfunctions are the constants; the rest
of the eigenfunctions belong to space WR in (8) for all R¿1.
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In the case where n=3, we also consider the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�U = �
(
U − 1

|B|
∫
B
U dx

)
in B

−�U = 0 in R3 − �B

[U ] =
[
@U
@n

]
=0 on �

U (x)→ 0; as |x| → ∞

(13)

We verify that problem (13) has a discrete real non-negative spectrum {	∗
i }∞
i=1, with the

convention of repeated eigenvalues. The set of eigenfunctions {U ∗
i }∞

i=1 is orthogonal in V̂,
where V̂ is the space completion of D(R3) for the norm ‖∇u‖(L2(R3))3 (cf., for instance, Section
I.1 in Reference [15]). As is known, V̂⊂L2(B) with a dense and compact imbedding.
Indeed, (13) can be written as an eigenvalue problem for a non-negative, self-adjoint,

compact operator A in the space V̂ as follows: Find � (�=1=�) and U ∈ V̂, U �=0 such
that AU =�U , where A is the operator de�ned by

〈AU;V 〉=
∫
B
UV dx − 1

|B|
∫
B
U dx

∫
B
V dx; ∀U;V ∈ V̂

�=0 is an eigenvalue of A and the associated eigenspace is Ker(A)={U ∈V̂=U is a constant
in B}. As a matter of fact, for V ∈ V̂, AV is an eigenelement of the dual space V̂

′
that

we identify with V̂ by the Riesz Theorem. Therefore, the integral formulation of (13) reads:
Find �, U ∈ V̂, U �=0, such that∫

R n
∇U · ∇V dx= �

(∫
B
UV dx − 1

|B|
∫
B
U dx

∫
B
V dx

)
; ∀V ∈ V̂ (14)

In Section 2.1 we obtain a �rst relation between the eigenvalues of (6) and those of (11)
which proves to be stronger for the dimension of the space n=2 as we show in Section 3.
In contrast, for n=3, in Section 4 we prove that the limit eigenvalue problem of (6) is (13).
For the sake of completeness, we introduce here two known results of spectral perturbation

theory which prove to be useful in Sections 3–5. The �rst one provides spectral convergence
for positive, self-adjoint and compact operators de�ned on Hilbert spaces depending on a
parameter. The second one is a weaker result on the approach to the spectrum of a positive,
self-adjoint and compact operator, but operating under weaker hypothesis too. We refer to
Section III.1 in Reference [4] for their proofs.

Lemma 2.1
Let HR and H0 be two separable Hilbert spaces with the scalar products (·; ·)R and (·; ·)0,
respectively. Let AR ∈L(HR) and A0 ∈L(H0). Let V be a linear subspace of H0 such that
{v=v=A0u with u∈H0} ⊂V . We assume that the following properties are satis�ed:
(C1) There exists RR a linear operator RR ∈L(H0; HR) such that (RRf;RRf)HR converge

towards �0(f;f)H0 , as R→ ∞, for all f∈V and a certain positive constant �0.
(C2) The operators AR and A0 are positive, compact and self-adjoint. Moreover, ‖AR‖L(HR)

are bounded by a constant independent of R.

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:1173–1200



SPECTRAL CONVERGENCE FOR VIBRATING SYSTEMS 1179

(C3) For any f∈V , ‖ARRRf − RRA0f‖HR → 0 as R→ ∞.
(C4) The family of operators AR is uniformly compact, i.e. for any sequence {fR}R¿1,

fR ∈HR, such that supR ‖fR‖HR is bounded by a constant independent of R, we can
extract a subsequence fR′ verifying

‖AR′fR′ − RR′v0‖HR′ → 0

as R′ → ∞; for a certain v0 ∈H0.
Let {�Ri }∞

i=1 and {�0i }∞
i=1 be the sequences of the eigenvalues of AR and A0, respectively, with

the classical convention of repeated eigenvalues. Let {wRi }∞
i=1 ({w0i }∞

i=1, respectively) be the
corresponding eigenfunctions in HR, which are assumed to be orthonormal (H0, respectively).
Then, for each k=1; 2; : : : ; �Rk →�0k as R→ ∞.
In addition, if �0k has multiplicity s (�

0
k =�

0
k+1 = · · · =�0k+s−1), then for any w eigenfunction

associated with �0k , with ‖w‖H0 = 1, there exists a linear combination wR of eigenfunctions of
AR, {wRj }j= k+s−1j= k associated with {�Rj }j= k+s−1j= k such that

‖wR − RRw‖HR → 0 as R→ ∞
Lemma 2.2
Let A : H −→H be a linear, self-adjoint, positive and compact operator on a Hilbert space
H . Let u∈H , with ‖u‖H =1 and �; r¿0 such that ‖Au − �u‖H¡r. Then, there exists an
eigenvalue �i of A satisfying |�− �i|¡r.

2.1. Comparison of the spectra as R→ ∞.
The following theorem provides bounds and certain convergence results for the eigenvalues
of (6) when R→ ∞.
Theorem 2.1
For each �xed i, i=1; 2; 3; : : : ; the sequence of eigenvalues of (7) {�Ri }R¿1 is an increasing
sequence, bounded by �0i the ith eigenvalue of (12) and, consequently, there is a limit point
�∗
i , �

∗
i satisfying �

∗
i6�

0
i . In addition, in the case where n=2, these limit points {�∗

i }∞
i=1 are

eigenvalues of (12).

Proof
Since �R′ ⊂�R for R′¡R, and V⊂H 1

loc(Rn), we can assert that V⊂VR ⊂VR′ . Then, for the
ith eigenvalue of (7), the minimax principle allows us to write

�R
′
i + 1= min

VR′ ; i ⊂VR′
max

u∈VR′ ; i ; u �=0

∫
�R′ |∇u|2 dx + ∫B u2 dx∫

B u
2 dx

where the minimum is taken over the set of subspaces VR′ ; i of VR′ with dimension
dim(VR′ ; i)= i. Then, by considering the particular space V̂R; i=[uR1 ; u

R
2 ; : : : ; u

R
i ], {uRj }ij=1 be-

ing the eigenfunctions associated with the ith �rst eigenvalues of (7), we have that the
restriction of these functions to �R′ form a subspace of VR′ of dimension i, and,

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:1173–1200



1180 E. P �EREZ

therefore,

�R
′
i + 16 max

u∈V̂R; i ; u �=0

∫
�R′ |∇u|2 dx + ∫B u2 dx∫

B u
2 dx

6 max
u∈V̂R; i ; u �=0

∫
�R

|∇u|2 dx + ∫B u2 dx∫
B u

2 dx
= �Ri + 1

In the same way we prove �Ri6�
0
i , ∀R¿1. Consequently, the sequence {�Ri }R¿1 increases

with R and it is bounded by �0i . Therefore, for �xed i, we have the convergence �
R
i → �∗

i
as R→ ∞ for a certain �∗

i with �
R
i6�

∗
i6�

0
i , and the �rst assertion in the statement of the

theorem holds.
In what follows, we prove that, in the case where n=2, �∗

i coincides with an eigenvalue
of (12) and, speci�cally �∗

1 = �
0
1, while this can be false in the case where n=3.

Indeed, let us �x j and denote by �∗= limR→∞ �Rj and by �
R= �Rj . Let us consider (7) for

�= �R and u=UR: �R and UR ∈VR, UR �=0, UR of norm 1 in L2(B) and satisfying

(�R + 1)
∫
B
URV dx=

∫
�R

∇UR · ∇V dx +
∫
B
URV dx; ∀V ∈VR (15)

Let us consider this sequence of eigenfunctions of (15) {UR}R associated with {�R}R. From
(15) and the boundedness of the sequence {�R}R we have

‖∇UR‖(L2(�R))n + ‖UR‖L2(B)6C (16)

where C is a constant independent of R. Therefore, when n=2, we can extract a sub-
sequence, still denoted by R, such that for i=1; 2 (i=1; 2; 3 when n=3, respectively),
(@UR=@yi)X�R →fi weakly in L2(Rn), as R→ ∞, where X�R is the characteristic function
of �R, and fi is a certain function fi ∈L2(Rn).
Taking into account that for any �xed K¿1 and for su�ciently large R, B(0; K)⊂�R,

VR ⊂H 1(B(0; K)) and

‖UR‖H 1(B(0; K))6C(K)
where C(K) is a constant depending on K , we can identify the vector function (f1; f2)
((f1; f2; f3) when n=3, respectively) with the gradient of a distribution U ∗:

U ∗ ∈H 1
loc(Rn); ‖U ∗‖L2(B) = 1; U ∗ ∈V1 and ∇U ∗ ∈ (L2(Rn))n (17)

Thus, considering (15) for any �xed V ≡’∈D(Rn) and R su�ciently large, and then taking
limits as R→ ∞, we obtain

(�∗ + 1)
∫
B
U ∗’ dx=

∫
Rn

∇U ∗ · ∇’ dx +
∫
B
U ∗’ dx (18)

To conclude the proof of the theorem what remains is to prove that U ∗ ∈V.
Since each eigenfunction U 0

i of (12) belongs to V, U 0
i being associated with an eigenvalue

�0i , it can be obtained as the limit in V of smooth functions. Therefore, we can pass to the

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:1173–1200
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limit in (18), as ’ converge towards U 0
i in V, to obtain:

(�∗ + 1)
∫
B
U ∗U 0

i dx=
∫
Rn

∇U ∗ · ∇U 0
i dx +

∫
B
U ∗U 0

i dx (19)

On the other hand, for the eigenelements (�0i ; U
0
i ) of problem (11) we can write

(�0i + 1)
∫
B
U 0
i V dx=

∫
B
∇U 0

i · ∇V dx +
∫
B
U 0
i V dx +¡TU 0

i ; V¿�; ∀V ∈H 1(B) (20)

where T is the Dirichlet–Neumann operator, a linear bounded operator from H 1=2(�) in
H−1=2(�) (see References [1,2] and Section IV.8 in Reference [5]). In particular, by
writing (20) for V =U ∗ ∈H 1(B), we have

〈TU 0
i ; U

∗〉� =
∫
Rn−− �B

∇UU∗ · ∇U 0
i dx (21)

where UU∗
is the solution of the problem⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−�U = 0 in Rn − �B

U = U ∗ on �

U (x)→ c; as |x| → ∞ when n=2

U (x)→ 0; as |x| → ∞ when n=3

(22)

Now, because of (18), the function Ũ ∗ de�ned as Ũ ∗=U ∗ − UU∗
, is a harmonic func-

tion in Rn − �B, vanishing on � and with a gradient bounded in L2(Rn − �B). Then, the be-
haviour at in�nity of this function is given by Ũ ∗= c+O( 1|y|) when n=2; 3 (see Sections 2.II
and 2.III in Reference [9]).
For the dimension n=2 of the space, we apply the Kelvin transform,

x′=
x

|x|2 ; x=
x′

|x′|2 (23)

to obtain a function Ũ ′∗, which is a harmonic function inside the domain B′ and vanishes on
the boundary �′, where �′ is the transformed curve of � by (23), B′ is the region enclosed
by �′ and the function Ũ ′∗ is de�ned by

Ũ ′∗(x′)= Ũ ∗(x)

(see, for instance, Section IV.8 in Reference [5] and Section II.H in Reference [16]). By the
uniqueness of the solution of the homogeneous Dirichlet problem in B′, Ũ ′∗=0 in B′, and
therefore Ũ ∗=0 and U ∗ ≡UU∗

in R2 − �B.
Then, on account of (20) for V =U ∗, and (21), U ∗ satis�es

(�0i + 1)
∫
B
U ∗U 0

i dx=
∫
R2

∇U ∗ · ∇U 0
i dx +

∫
B
U ∗U 0

i dx (24)
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and, considering the di�erence of (24) and (19) we have

(�0i − �∗)
∫
B
U ∗U 0

i dx=0 (25)

That is, if we assume that �∗ is not an eigenvalue of (12), then, the function U ∗ is orthogonal
in L2(B) to the set of eigenfunctions {U 0

i }∞
i=1 of (12). But, since these eigenfunctions {U 0

i }∞
i=1

are a basis of L2(B), U ∗ is zero in B, which is in contradiction with the fact that it has norm
1 in L2(B). Therefore, �∗ coincides with an eigenvalue of the set {�0i }∞

i=1, and U
∗ is an

associated eigenfunction U ∗ ∈V, with norm 1 in L2(B). In this way, the statements of the
theorem hold.

Remark 2.1
Let us note that the limit points �∗

i in the statement of Theorem 2.1 satisfy (18) with a certain
U ∗=U ∗

i satisfying (17). On the other hand, for the proof of the last part of Theorem 2.1
(see from (23) to (25)) it is essential that n=2. Indeed, for the dimension n=3 of the
space, the harmonic functions in R3 − �B, which belong to H 1

loc(R3) and have a bounded
gradient in L2(R3) can converge towards some non-null constant C (cf. Sections II.2 and
II.3 in Reference [9]) and Section I.1 in Reference [15]). Therefore, the eigenvalue problem
satis�ed by (�∗; U ∗) could be posed in a wider space that contains V (see (17), (18)) and,
consequently, to have other eigenvalues di�erent from �0i (cf. Section I.7 in Reference [5] for
the comparison theorem).

Remark 2.2
It should be pointed out that in the statement of Theorem 2.1, for the sequence of problems
(6) and for the dimension n=2 of the space, it is a trivial fact that �R1 → �01 as R→ ∞; as
a matter of fact, �01 = �

R
1 = 0 (see Theorem 5.1 to compare). Nevertheless, Theorem 2.1 does

not ensure that for n=2 all the eigenvalues of (12) are limit points of eigenvalues of (6);
this is proved in Theorem 3.1.

3. SPECTRAL CONVERGENCE FOR n=2

In this section we consider the case where the dimension of the space is n=2 and prove
that the asymptotic behaviour of the eigenelements of (6) as R→ ∞ is described by the
eigenelements of (11) as stated in the following theorem.

Theorem 3.1
Let n be n=2. Let �Ri be the eigenvalues of (7) and u

R
i the corresponding eigenfunctions,

uRi with norm 1 in VR. For each �xed i, the sequence {�Ri }R¿1 converges towards the ith
eigenvalue �0i of (12), as R→ ∞, and there is conservation of the multiplicity. In addition,
for each sequence it is possible to extract a subsequence, still denoted by R, such that the cor-
responding eigenfunctions, uRi , converge towards Ui in L

2(B) (also in H 1(B)-weak), where Ui
is an eigenfunction associated with the ith eigenvalue of (12), and {Ui}∞

i=1 form an orthogonal
basis of L2(B).

Proof
The proof of the theorem holds once that we show that (�Ri + 1)

−1 ((�0i + 1)
−1, respec-

tively) are the eigenvalues of an operator AR (A0, respectively) acting on a Hilbert space HR
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(H0, respectively), AR ∈L(HR) (A0 ∈L(H0), respectively), satisfying the following properties
C1–C4 in Lemma 2.1.
Indeed, we consider HR=H0 =L2(B), V =H 1(B), AR and A0 the linear operators on L2(B)

de�ned as follows: For f∈L2(B), uRf =ARf if uRf ∈H 1(�R) is the unique solution of the
problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�u+ u=f in B;

−�u=0 in �R − �B

[u] =
[
@u
@n

]
=0 on �

@u
@nR

=0 on �R

(26)

In the same way, uf=A0f if uf ∈V is the unique solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�U +U = f in B

−�U = 0 in R2 − �B

[U ] =
[
@U
@n

]
=0 on �

U (x)→ c; as |x| → ∞

(27)

Obviously, the eigenvalues of AR are {(�Ri + 1)−1}∞
i=1, where {�Ri }∞

i=1 are the eigenvalues of
(7), and the eigenvalues of A0 are {(�0i +1)−1}∞

i=1, where {�0i }∞
i=1 are the eigenvalues of (12).

Now, considering RR the identity operator, �0 = 1, and taking into account that the norms
‖∇u‖(L2(�R))2 + ‖u‖L2(B) and ‖∇u‖(L2(�R))2 + ‖u‖L2(�R) are equivalent in H 1(�R), properties C1
and C2 hold.
As regards property C4, for fR ∈L2(B), with ‖fR‖L2(B)6C, for C a certain constant inde-

pendent of R, we consider, the sequence uRfR de�ned by u
R
fR =ARfR. As known, u

R
fR satis�es

the equation ∫
�R

∇uRfR · ∇v dx +
∫
B
uRfRv dx=

∫
B
fRv dx; ∀v∈H 1(�R) (28)

Taking v= uRfR in (28), we have the bound∫
�R

|∇uRfR |2 dx +
∫
B
(uRfR)

2 dx6C

where C is a constant independent of R. Then we proceed as in Theorem 2.1 to assert that
there is a subsequence, still denoted by R, such that uRfR converge in H

1(B)-weak, as R→ ∞,
towards the function uf0 de�ned by uf0 =A0f0, where f0 ∈L2(B) is the weak limit in L2(B)
of fR.
Indeed, arguing as in (16)–(18) we obtain a subsequence, still denoted by R, and functions

f0 ∈L2(B) and u∗ ∈H 1
loc(R2) with ∇u∗ ∈ (L2(R2))2, such that fR →f0 in L2(B)-weak, uRfR → u∗
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in H 1(B)-weak, X�R∇uRfR → ∇u∗ in (L2(R2))2-weak as R→ ∞. Hence, considering (28) for
any �xed V ≡’∈D(Rn), and for R su�ciently large, and then taking limits as R→ ∞, we
obtain ∫

Rn
∇u∗ · ∇’ dx +

∫
B
u∗’ dx=

∫
B
f0’ dx (29)

Therefore, rewriting the reasoning in (19)–(24), with minor modi�cations, we obtain that u∗

is the unique solution of (22), where we set U ∗ ≡ u∗ and n=2. In addition, we can write
u∗ ∈V and ∫

B
∇u∗ · ∇v dx +

∫
B
u∗v dx + 〈Tu∗; v〉� =

∫
B
f0v dx; ∀v∈H 1(B) (30)

which is the equation satis�ed by the function uf0 =A0f0. Thus, by the uniqueness of solution
of (30), u∗= uf0 and the weak convergence of the subsequence towards uf0 in H

1(B)-weak
holds; hence property C4 is proved.
The above reasoning also applies to obtain property C3: it su�ces to take fR=f, with

f∈H 1(B). Because of the uniqueness of the limits (f0 ≡f, and u0 the solution of (30)) we
obtain the convergence of the whole sequence uRfR and the convergence in property C3

‖ARf − A0f‖L2(B) → 0 as R→ ∞

is also true.
In this way, the convergence of the eigenvalues of AR towards those of A0 with conservation

of the multiplicity holds as well as the convergence of the eigenfunctions stated in Lemma 2.1.
Namely, for each eigenfunction u0 associated with the eigenvalue �0 of A0, �0 of multiplicity
m0 and ‖u0‖L2(B) = 1, there is ũR, ũR being a linear combination of the m0 eigenfunctions uR
associated with the m0 eigenvalues �R converging towards �0, as R→ ∞, such that

‖ũR − u0‖L2(B) → 0 as R→ ∞

As regards the result for the convergence of the subsequence of eigenfunctions uRi in the
statement of the theorem, it is obtained by taking limits in (7) for u= uRi , �= �

R
i and �xed

v=’∈D(R2): First, using an argument of diagonalization we extract the converging subse-
quence, still denoted by R, uRi converging towards some function Ui in H

1(B)-weak, which
we identify with an eigenfunction associated with �0i as in Theorem 2.1 (see (15)–(25)).
Then, on account of the orthogonality condition

∫
B u

R
i u
R
j dx=0 if i �= j, and the normalization

for uRi (see (9)), ‖uRi ‖2L2(B) = (�Ri + 1)−1, we prove that the eigenfunctions Ui are orthogonal
in L2(B) and of norm ‖Ui‖2L2(B) = (�0i + 1)−1. Finally, the fact that they are a basis of L2(B)
holds by contradiction, assuming that there is an eigenfunction U ∗ associated with a certain
�0j , A0U

∗=(1 + �0j )
−1U ∗ which satis�es∫

B
U ∗Ui=0; ∀i=1; 2; : : :

and proceeding as in Section III.1 of Reference [4] (cf. also Section II.9 of Reference [17])
to obtain that U ∗=0, which contradicts our assumption. Therefore, the theorem holds.
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4. SPECTRAL CONVERGENCE FOR n=3

We consider the asymptotic behaviour of the eigenelements of (6), as R→ ∞, for the dimen-
sion of the space n=3. We assume that, for R¿1, �R=R�1 and show that the eigenvalues
of (6) converge, as R→ ∞, towards those of (13), with the only exception of the �rst one
(�R1 = 0), which obviously converge towards 0. Since the technique in Theorems 2.1 and 3.1
cannot be applied (see Remarks 2.1 and 2.2), we are forced to develop an alternative ap-
proach which involves the spaces of functions orthogonal to constants in both spaces L2(B)
and L2(�R). In particular, the eigenfunctions of (6) do not converge towards true eigenfunc-
tions of (13) and, consequently, they have to be suitably modi�ed by means of an extension
operator that we construct (cf. (32)–(34)). In fact, the eigenfunctions of (6) converge in
H 1
loc(R3)-weak, as R→ ∞, towards functions satisfying (17), (18) (see Remark 4.1). The
main convergence results of this section are summarized in Theorem 4.2.
Let us consider the eigenvalue problem (6) in the space WR (cf. (8)) whose eigenelements

{(	Ri ; UR
i )}∞

i=1 coincide with those of (6) in H
1(�R) with the only exception of the �rst one,

that is: �R1 = 0, 	
R
i = �

R
i+1, i=1; 2; 3; : : : ; and the corresponding eigenfunction u

R
1 = 1, U

R
i = u

R
i+1,

where (�Ri ; u
R
i ) satisfy (7). We assume that these eigenfunctions are normalized as follows:

‖∇UR
i ‖2(L2(�R))3 = 1 (31)

For each eigenfunction UR
i , let us de�ne the constant C

R
i such that∫

�R
(UR

i − CRi ) dx=0

that is,

CRi =
1

|�R|
∫
�R
UR
i dx (32)

Also for each UR
i , let us denote by Ũ

R
i the function de�ned by Ũ

R
i =U

R
i −CRi , which obviously

satis�es ∫
�R
Ũ R
i dx=0; and

∫
�R

|∇Ũ R
i |2 dx=1

Considering W̃R= {u∈H 1(�R)=
∫
�R
u dx=0}, we construct an extension operator PR from

the space W̃R in V̂, such that

‖PRu‖V̂= ‖∇PRu‖(L2(R3))36C‖∇u‖(L2(�R))3 ; ∀u∈W̃R (33)

where C is a constant independent of R and u, and V̂ is the space completion of D(Rn) for
the Dirichlet norm (see (13)).
In order to de�ne PR, we consider the extension operator P from H 1(�1) into H 1

0 (�2),
de�ned by Pu= u2 in �2 − ��1, where u2 ∈H 1(�2 − ��1) is a lifting of u|�1 , vanishing on �2.
We have

‖u2‖H 1(�2− ��1)6C‖u‖H 1=2(�1)6C‖u‖H 1(�1)
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Hence, considering u∈W̃1, on account of the Poincar�e inequality on this space, we obtain

‖∇(Pu)‖2(L2(�2))36C‖Pu‖2H 1(�2)6C‖u‖2H 1(�1)6C‖∇u‖2(L2(�1))3 ; ∀u∈W̃1

and

‖Pu‖2L2(�2)6C‖∇u‖2(L2(�1))3 ; ∀u∈W̃1

where C denotes a constant independent of u.
Since we have assumed that �R=R�1 for R¿1, the change of variable z= x=R transforms

�R into �1 and the function wR(z)= u(x) belongs to W̃1, provided u∈W̃R. Therefore, for
u∈W̃R we de�ne PRu(x)= (PwR)(x) which satis�es PRu∈H 1

0 (�2R), and, from the above
inequalities,

‖∇x(PRu)‖2(L2(�2R))3 =R‖∇z(PwR)‖2(L2(�2))36CR‖∇zwR‖2(L2(�1))36C‖∇xu‖2(L2(�R))3
where C is a constant independent of R and u. Then, taking into account that the elements of
H 1
0 (�2R) extended by zero outside �2R are elements of V̂, we have constructed the operator

PR satisfying (33).
Now, considering the functions Ũ R

i ∈W̃R, (33) and the normalization (31), for any �xed i,
we have that the sequence {PRŨ R

i }R¿1 is uniformly bounded in V̂ by a constant independent
of R. Therefore, taking into account the compact imbedding of V̂ into L2(B), we can extract
a converging sequence, still denoted by R, satisfying

PRŨ R
i →U ∗

i in V̂ −weak and Ũ R
i →U ∗

i in L
2(B); as R→ ∞ (34)

The following proposition allows us to prove that we also have the convergence of the
corresponding eigenfunctions UR

i in H
1
loc(R3)-weak towards U ∗

i +C
∗
i , for C

∗
i a constant de�ned

by (35).

Proposition 4.1
For �xed i, let {UR

i }R¿1 be the eigenfunctions of (6), UR
i ∈WR, with the norm (31). Let

{CRi }R¿1 be a sequence of constants de�ned by (32), and Ũ R
i =U

R
i −CRi such that PRŨ R

i →U ∗
i

in V̂-weak, as R→ ∞. Then, CRi →C∗
i , as R→ ∞, where C∗

i is the constant de�ned by

C∗
i = − 1

|B|
∫
B
U ∗
i dx (35)

Proof
On account of

∫
B U

R
i dx=0, and the de�nition of C

R
i , we can write

CRi =
1

|�R|
∫
�R− �B

UR
i dx=

1
|�R|

∫
�R− �B

(UR
i − CRi ) dx +

1
|�R|

∫
�R− �B

CRi dx

=
1

|�R|
∫
�R
Ũ R
i dx − 1

|�R|
∫
B
Ũ R
i dx +

1
|�R|

∫
�R− �B

CRi dx

Therefore,

CRi

(
1− |�R − �B|

|�R|

)
=− 1

|�R|
∫
B
Ũ R
i dx
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and, multiplying this equality by |�R| and taking limits as R→ ∞, on account of the continuous
imbedding of V̂ in L2(B), the right-hand side converge towards

∫
B U

∗
i dy, and the proposition

is proved.

Theorem 4.1
Each eigenvalue of (14) is an accumulation point of eigenvalues of (7).

Proof
Let 	∗ be an eigenvalue of (14) and U ∗ an eigenfunction associated with 	∗, U ∗ ∈ V̂, U ∗

of norm 1 in L2(B). Let C∗ be de�ned by (36) with U ∗
i ≡U ∗, namely:

C∗= − 1
|B|
∫
B
U ∗ dx (36)

Let H be the Hilbert space H= {u∈L2(B)= ∫B u dx=0}, equipped with the scalar product of
L2(B), and let WR be as in (8), WR= {u∈H 1(�R)=

∫
B u dx=0}.

Let AR be an operator associated with (6) de�ned as follows: For f∈H, ARf= uR if and
only if uR is the unique solution in WR of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�u=f in B

−�u=0 in �R − �B

[u] =
[
@u
@n

]
=0 on �

@u
@nR

=0 on �R

(37)

On account of the Poincar�e inequality in H 1(B)∩H, it is possible to check that AR is a
positive compact self-adjoint operator on H. The eigenvalues of AR are {(	Ri )−1}∞

i=1, with
	Ri the strictly positive eigenvalues of (6). We apply Lemma 2.2 to function u=(U

∗ + C∗)
‖U ∗ + C∗‖−1

L2(B), parameter �=(	
∗)−1 and operator AR acting on the Hilbert space H, and

the statement in the theorem holds from this lemma once that we prove the convergence∣∣∣∣
∣∣∣∣AR(U ∗ + C∗)− 1

	∗ (U
∗ + C∗)

∣∣∣∣
∣∣∣∣
L2(B)

→ 0 as R→ ∞ (38)

Indeed, considering VR=AR(	∗(U ∗ + C∗)), VR ∈WR is the solution of (37) when f is
replaced by 	∗(U ∗ + C∗). That is, VR satis�es∫

�R
∇VR · ∇V dx=	∗

∫
B
(U ∗ + C∗)V dx; ∀V ∈H 1(�R) (39)

Taking V =VR in (39), on account of the Poincar�e inequality in H 1(B)∩H, we have∫
B V

2
R dy6C

∫
B |∇VR|2 dy, and we prove

‖∇VR‖(L2(�R))26C (40)

where C is a constant independent of R.
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Then, we proceed as in (31)–(34) by considering ṼR=VR − CR, ṼR ∈W̃R and CR de�ned
by

CR=
1

|�R|
∫
�R
VR dx

to obtain that, using operator PR, the sequence {PRṼR}R¿1 is bounded in V̂ by a constant
independent of R. Therefore, we can extract a subsequence, still denoted by R, such that
PRṼR converges in the weak topology of V̂, as R→ ∞, towards some function Û ∗ ∈ V̂. We
identify Û ∗ with the solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�U = 	∗
(
U ∗ − 1

|B|
∫
B
U ∗ dx

)
in B

−�U = 0 in R3 − �B

[U ] =
[
@U
@n

]
=0 on �

U (x)→ 0; as |x| → ∞

(41)

writing (39) for V =’, with ’ any �xed element of D(R3). That is, if we consider R
su�ciently large such that supp(’)⊂�R, we can write∫

R3
∇VR · ∇’ dx=

∫
R3

∇ṼR · ∇’ dx=	∗
∫
B
(U ∗ + C∗)’ dx; ∀V ∈H 1(�R)

Then, we take limits as R→ ∞ and we obtain∫
R3

∇U ∗ · ∇’ dx=	∗
∫
B
(Û ∗ + C∗)’ dx

By the uniqueness of the solution of (41) in V̂, (36), and the integral identity satis�ed by
(	∗; U ∗) (cf. (14)), we have Û ∗=U ∗ and the whole sequence PRṼR converges weakly in
V̂ (also in H 1

loc(R3)-weak) towards U ∗ as R→ ∞.
Thus, since

∫
B VR dy=0, we proceed also as in Proposition 4.1, where we write VR and

ṼR instead of UR
i and Ũ R

i to obtain CR →C∗ with C∗ given by (36), as R→ ∞. Then,
VR= ṼR + CR →U ∗ + C∗ in L2(B), as R→ ∞, which shows (38).
Lemma 2.2 ensures the existence of a sequence of eigenvalues (	Ri(R))

−1 converging towards
(	∗)−1 as R→ ∞ and the theorem is proved.

Theorem 4.2
For �xed i, i=1; 2; 3; : : :, the sequence of strictly positive eigenvalues of (7) {	Ri }R¿1 con-
verges, as R→ ∞, towards the ith eigenvalue 	∗

i of (14). In addition, for the corresponding
eigenfunctions {UR

i }R¿1, it is possible to extract a subsequence, still denoted by R, such that
UR
i →U ∗

i + C
∗
i in L

2(B) (also in H 1(B)-weak), as R→ ∞, where U ∗
i is an eigenfunction

associated with the ith eigenvalue of (14), and,

C∗
i =− 1

|B|
∫
B
U ∗
i dx
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and the sequence {U ∗
i }∞

i=1 satis�es∫
B
U ∗
i U

∗
j dx − 1

|B|
∫
B
U ∗
i dx

∫
B
U ∗
j dx= �i; j(	

∗
i )

−1

where �i; j is the Kronecker symbol.

Proof
Because of Theorem 2.1, the convergence of 	Ri towards some �

∗
i¿0 as R→ ∞ holds. On

the other hand, convergence (34) allows us to extract a subsequence still denoted by R, in
such a way that for each i=1; 2; : : : ; we have

	Ri → �∗
i ; PRŨ R

i →U ∗
i in V̂ −weak; Ũ R

i →U ∗
i in L

2(B); as R→ ∞ (42)

First, we prove that, assuming that �∗
i �=0 and U ∗

i �=0, (�∗
i ; U

∗
i ) is an eigenelement of (14).

Indeed, let us consider the equation satis�ed by (�Ri ; Ũ
R
i ) (cf. (7))∫

�R
∇Ũ R

i · ∇v dx=	Ri
∫
B
(Ũ R

i + C
R
i )v dx; ∀v∈H 1(�R) (43)

Let us consider v=’(x) with ’ any �xed function ’∈D(R3); for su�ciently large R,
supp(’)⊂�R, and we can write∫

R3
∇(PRŨ R

i ) · ∇’ dx= �Ri
∫
B
(PRŨ R

i + C
R
i )’ dx

Then, we take limits in this equation, as R→ ∞, and on account of Proposition 4.1 and (42),
we have ∫

R3
∇U ∗

i · ∇’ dx= �∗
i

(∫
B
U ∗
i ’ dx − 1

|B|
∫
B
U ∗
i dx

∫
B
’ dx

)
(44)

and the density of D(R3) in V̂ allows us to assert that (�∗
i ; U

∗
i ) satis�es (14).

The fact that �∗
i �=0 and U ∗

i �=0 come from the normalization of the eigenfunctions (31).
Indeed, taking v= Ũ R

i in (43), we can write

	Ri

∫
B
(Ũ R

i + C
R
i ) Ũ

R
i dx=1

and, Proposition 4.1 and (42) lead us to equality

�∗
i

(∫
B
(U ∗

i )
2 dx − 1

|B|
(∫

B
U ∗
i dx

)2)
=1

which shows that �∗
i �=0 and U ∗

i �=0 and consequently (�∗
i ; U

∗
i ) is an eigenelement of (14).

In the same way, the orthogonality condition
∫
�R

∇UR
i · ∇UR

j dx=0; for i �= j, gives the
orthogonality condition for {U ∗

i }∞
i=1:∫

B
U ∗
i U

∗
j dx − 1

|B|
∫
B
U ∗
i dx

∫
B
U ∗
j dx=0 for i �= j (45)

and this allows us to prove that, since the multiplicity of the eigenvalues of (14) is �nite,
�∗
i → ∞ as i→ ∞. That is, because of (45) the eigenfunctions U ∗

i associated with a certain
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	j are linearly independent functions and they can only be a �nite number. Hence, we have
an increasing sequence {�∗

i }∞
i=1, �

∗
i → ∞ as i→ ∞, {�∗

i }∞
i=1 ⊂ {	∗

i }∞
i=1.

Next, we prove that {�∗
i }∞
i=1 ≡ {	∗

i }∞
i=1.

Let us assume that there is a certain 	∗
j , �

∗
p¡	

∗
j¡�

∗
p+1, and because of Theorem 4.1 there

is a sequence �Ri(R) →	∗
j , as R→ ∞. Obviously i(R) must tend to ∞ as R→ ∞ because, other-

wise, i(R) is a �xed integer k for a certain subsequence and then, on account of Theorem 2.1,
	∗
j = �

∗
k , which is in contradiction with our assumption. But, i(R)→ ∞ as R→ ∞ means that

i(R)¿p+ 1 for R su�ciently large and then (cf. Theorem 2.1) �Rp+1¡�
R
i(R). Taking limits

as R→ ∞, again because of Theorem 2.1, �∗
p+16	

∗
j which also contradicts our assumption.

Therefore, {�∗
i }∞
i=1 ≡ {	∗

i }∞
i=1.

Finally, since {�Ri }R¿1 is an increasing sequence, the �rst assertion of the theorem on the
convergence of the positive eigenvalues of (6) towards those of (13) holds. This convergence
of the spectrum along with the convergence for the eigenfunctions proved above and the
orthogonality condition (45) conclude the proof of the theorem.

Remark 4.1
Let us note that, since U∗

i =U
∗
i + Ci in Theorem 4.2 satis�es (18) with �∗=	∗

i , results
in Theorem 4.2 are not in contradiction with those obtained in the proof of Theorem 2.1.
According to Remark 2.1, for n=3, the technique in the present section allows us to identify
the constant in the condition at the in�nity satis�ed by the functions U ∗ in (17), (18) when
the corresponding �∗ is a limit point of eigenvalues of (6) as R→ ∞.
Remark 4.2
We also observe that results and technique in Section 4 cannot be extended to the case where
n=2: as a matter of fact, for n=2, problem (13) needs a condition at the in�nity of the type
U (x)→C as |x| → ∞, for a certain constant C. Thus, in this case, �=0 is an eigenvalue and
all the eigenfunctions of this problem are orthogonal to the constants in L2(B), consequently,
the equation in B of problem (13) must be changed for that of (11).

Remark 4.3
Note that the assumption �R=R�1 performed in this section is only used for the construction
of the extension operator PR satisfying (33).

5. THE CASE OF SUBDOMAINS OF Rn−

As pointed out in Section 1, the results and proofs in Theorems 2.1 and 3.1 extend to the
case where B and �R are domains of the lower half space Rn−= {x∈Rn=xn¡0} and mixed
boundary conditions are imposed on the part of the boundary in contact with {xn=0}. We
state the main convergence results for these domains in Theorems 5.1 and 5.2; we also outline
their proofs.
In contrast, we cannot extend results and proofs in Section 4 for the dimension n=3 of the

space, and in Section 5.1 we give a convergence result for this dimension, n=3, which proves
that those in Theorems 5.1 and 5.2 are sharp (see also Remark 5.1). It is worth mentioning
that the results in this section are very important when describing the asymptotic behaviour
of the low frequencies of certain vibrating systems with many concentrated masses near the
boundary (cf. References [6,18]); we refer to Section 6 for a direct application of the results
in this section.

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:1173–1200



SPECTRAL CONVERGENCE FOR VIBRATING SYSTEMS 1191

Let �R (B, respectively) be any bounded domain of Rn, n=2; 3, with a Lipschitz boundary
@�R (@B, respectively) and �R ⊂ {xn¡0} (B⊂ {xn¡0}, respectively). Let 
R and �R (T and
�, respectively) be non-empty parts of the boundary, such that @�R=
R ∪�R (@B=T ∪�,
respectively), and 
R (T , respectively) is assumed to be in contact with {xn=0}. In addition,
as in Section 2, we assume that diam(�R)→ ∞ as R→ ∞, that �R contains any �xed domain
of Rn−, for su�ciently large R, and that for any R; R′, such that 16R′¡R, we have �B⊂�1,
��R′ ⊂�R.
Let us consider the eigenvalue problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�u= �u in B

−�u=0 in �R − �B

[u] =
[
@u
@n

]
=0 on �

u=0 on T

@u
@xn

=0 on 
R − �T

@u
@nR

=0 on �R

(46)

(46) has a strictly positive discrete spectrum, which we denoted by {�Ri }∞
i=1, with the clas-

sical convention of repeated eigenvalues, �Ri converging to ∞ as i→ ∞. Let {uRi }∞
i=1 be the

corresponding eigenfunctions which are assumed to be a basis of ṼR, which is the space
completion of {u ∈ D( ��R)=u=0 on T} for the norm ‖∇u‖(L2(�R))n .
We consider the eigenvalue problem, posed in lower half space Rn−,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�U = �U in B

−�U = 0 in Rn− − �B

[U ] =
[
@U
@n

]
=0 on �

U = 0 on T

@U
@xn

= 0 on {xn=0} − �T

U (x)→ c; as |x| → ∞ when n=2

U (x)→ 0; as |x| → ∞ when n=3

(47)

which can be written as a standard eigenvalue problem in the spaces Ṽ⊂L2(B), where Ṽ is
the space completion of {u∈D(Rn−)=u=0 on T} for the norm ‖∇u‖(L2(Rn−))n . It has a strictly
positive discrete spectrum. Let {�0i }∞

i=1 be the sequence of eigenvalues with the convention of
repeated eigenvalues and corresponding eigenfunctions {Ui}∞

i=1 which are a orthogonal basis
in Ṽ and in L2(B).
We have the following convergence results.
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Theorem 5.1
For each �xed i, i=1; 2; 3; : : : ; the sequence of eigenvalues of (46) {�Ri }R¿1 is an increasing
sequence, bounded by �0i the ith eigenvalue of (47) and, consequently, there is a limit point
�∗
i , �

∗
i = limR→∞ �Ri , satisfying �

∗
i6�

0
i . In addition, in the case where n=2 the limit points

{�∗
i }∞
i=1 are eigenvalues of (47) and, at least, the �rst one satis�es �

∗
1 = �

0
1.

Proof
The proof of the theorem holds by rewriting the proof of Theorem 2.1 with minor modi-
�cations: namely, writing the associated variational formulation for problems (46) and (47)
in spaces ṼR and Ṽ, respectively, we follow the same steps of the proof of Theorem 2.1
where now we use the Poincar�e inequality in {u∈H 1(B)=u=0 on T}, and the fact that a
harmonic function on Rn−− �B with a bounded gradient and satisfying a Neumann condition on
{xn=0} − �T can be extended by re�ection to a harmonic function in Rn − �B with a bounded
gradient (B being the corresponding extended domain of B), to obtain the results stated in
the theorem.

Theorem 5.2
Let n be n=2. Let �Ri be the eigenvalues of (46) and u

R
i the corresponding eigenfunctions

with norm 1 in ṼR. For �xed i, the sequence {�Ri }∞
i=1 converges towards the ith eigenvalue

�0i of (47), when R→ ∞, and there is conservation of the multiplicity. In addition, for each
sequence it is possible to extract a subsequence, still denoted by R, such that the corresponding
eigenfunctions, uRi , converge towards Ui in L

2(B) (also in H 1
loc(R2)-weak), where Ui is an

eigenfunction associated with the ith eigenvalue of (47), and {Ui}∞
i=1 form an orthogonal

basis of L2(B).

Proof
The proof of the theorem holds as that of Theorem 3.1 with minor modi�cations: namely,
we verify properties C1–C4 of Lemma 2.1 for certain operators AR (A0, respectively) acting
on the Hilbert spaces HR=L2(B) (H0 =L2(B), respectively) and having eigenvalues {1=�Ri }∞

i=1
({1=�0i }∞

i=1, respectively), where {�Ri }∞
i=1 are the eigenvalues of (46) ({�0i }∞

i=1 are the eigen-
values of (47)).
These operators AR are de�ned as follows: for f∈L2(B) we de�ne uRf=ARf, where uRf is

the unique solution in ṼR of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�u=f in B

−�u=0 in �R − �B

[u] =
[
@u
@n

]
=0 on �

u=0 on T

@u
@yn

=0 on 
R − �T

@u
@nR

=0 on �R

(48)
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In the same way, for f∈L2(B) we de�ne u0f=A0f, where u0f is the unique solution in Ṽ of
the problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�U = �U in B

−�U = 0 in Rn− − �B

[U ] =
[
@U
@n

]
=0 on �

U = 0 on T

@U
@xn

= 0 on {xn=0} − �T

U (x)→ c; as |x| → ∞ when n=2

U (x)→ 0; as |x| → ∞ when n=3

(49)

Then, considering RR the identity operator in L2(B), and rewriting the proof of Theorem 3.1
with minor modi�cations, we verify properties C1–C4 of Lemma 2.1 and the theorem holds.

Remark 5.1
It should be noted that the proofs of Theorems 5.1–5.2 imply that the limit eigenelements
(�∗; U ∗) of the eigenelements of (46), (�∗; U ∗)∈R×H 1(B), satisfy

�∗
∫
B
U ∗’ dx=

∫
Rn−

∇U ∗ · ∇’ dx (50)

for any �xed ’, ’∈D(Rn−), ’=0 on T , and U ∗ �=0
U ∗ ∈H 1

loc(Rn−); U ∗|T =0; U ∗ ∈ Ṽ1 and ∇U ∗ ∈ (L2(Rn−))n (51)

5.1. Remarks on the spectral convergence for n=3

Let us observe that, on account of the results in Theorem 5.1, {�R1}R¿1 is an increasing
sequence such that �R16�

0
1, and, therefore its limit, as R→ ∞, also satis�es �∗

16�
0
1. On the

other hand, using the minimax principle it is not di�cult to derive that �R1¡�
0
1 for all R¿1.

In this section, we prove that �∗
1¡�

0
1 can also happen. This fact depends, for instance, on

the domain B, and it turns out to be very important for the study of vibrating systems with
concentrated masses (see Section 6).
For n=3, in the case where � is not an eigenvalue of problem (47), let us consider the

function F(�) de�ned by

F(�)=−
〈
@V �

@n

∣∣∣∣
�
; 1
〉
H−1=2(�)×H 1=2(�)

(52)

with V�= Û +W , where Û is the solution of the non-homogeneous problem associated with
(47) when the equation in B is replaced by

−�U = �U + �W in B
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and W is the solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�U = 0 in R3−

U = 0 on T

@U
@x3

= 0 on {x3 = 0} − �T

U (x)→ 1 as |y| → ∞; x3¡0

(53)

We state some properties of function F in the following lemma (cf. Reference [10] for the
proof) which allow to prove Theorem 5.3 below.

Lemma 5.1
The function F(�) de�ned by (52) is a meromorphic function with in�nite positive real poles
{�i}∞

i=1 which are eigenvalues of (47). Moreover, F(�) is negative for negative � and, for
each i∈N and real �, it satis�es

lim
�→�+i

F(�)=−∞ and lim
�→�−i

F(�)= +∞

In addition, in the case where the solution W of (53) is not orthogonal in L2(B) to the
eigenspace associated with �01 (�

0
1 the �rst eigenvalue of (47)), �1 ≡ �01.

Theorem 5.3
In the case where the solution W of (53) is not orthogonal in L2(B) to the eigenspace
associated with �01, �

R
1 converge, as R→ ∞, towards some �∗ which satis�es �∗¡�01.

Proof
The fact that �R1 converge towards some positive �

∗6�01 is a consequence of Theorem 5.1. In
order to prove that they are di�erent numbers we consider the function F(�) in (52), which
is also de�ned by

F(�)= �
∫
B
(U� − 1)2 dx −

∫
R3−

|∇U�|2 dx (54)

(see Reference [10] to prove the equivalence of both de�nitions), where U�=1 − V� is the
solution of ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�U = �U − � in B

−�U = 0 in R3− − �B

[U ] =
[
@U
@n

]
=0 on �

U = 1 on T

@U
@x3

= 0 on {x3 = 0} − �T

U (x)→ 0 as |x| → ∞; x3¡0

(55)

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:1173–1200



SPECTRAL CONVERGENCE FOR VIBRATING SYSTEMS 1195

Then, considering �= �R1 in (54) we can write

F(�R1 )∫
B(V

�R1 )2 dx
6�R1 −

∫
�R

|∇V�R1 |2 dx∫
B(V

�R1 )2 dx

Now, applying the minimax principle, since V�
R
1 ∈ ṼR, we have

�R1 =

∫
�R

|∇UR
1 |2 dx∫

B(U
R
1 )2 dx

6

∫
�R

|∇V�R1 |2 dx∫
B (V

�R1 )2 dx

where U 1
R denotes an eigenfunction of (46) associated with �

R
1 . Therefore,

F(�R1 )∫
B(V

�R1 )2 dx
60

and also F(�R1 )60. Because of Theorem 5.3, the continuity of F(�) for � �= �0i implies
F(�R1 )→F(�∗)60 as �R1 → �∗6�01. That is, F(�

∗)60 and, because of the last assertion in
Lemma 5.1, lim�→ �01

− F(�)= +∞ and �∗ cannot be the �rst eigenvalue of (47).

Remark 5.2
We emphasize that Theorem 5.3 proves that the �rst eigenvalue �R1 converges towards �

0
1 the

�rst eigenvalue of problem (47), as R→ ∞, only for the dimension n=2 of the space.
In contrast, in the case where a Dirichlet condition is considered on �R instead of a

Neumann one, for both problems (6) and (46), and for both dimensions n=2 and 3, the
�rst eigenvalue �R1 converges towards �

0
1, as R→ ∞. This can be proved using the technique

in Section VII.11 of Reference [5], Section III.1 of References [4,10,12], as has already been
noted in Section 1 for the limiting problem of (1), (2) as diam(!)→ ∞.

6. ON VIBRATING SYSTEMS WITH MANY CONCENTRATED
MASSES NEAR THE BOUNDARY

In this section we apply properties in previous sections to derive the convergence of the
spectrum for an eigenvalue problem appearing in the literature involved with the study of
vibrating systems with many concentrated masses. As it has been noted in Section 1, these
vibrating systems have been highly studied by di�erent authors: see Reference [6] for ref-
erences. They consider the asymptotic behaviour, as ”→ 0, of the vibrations of a body that
contains many small regions of diameter O(”) where the density is higher than elsewhere.
The density takes the value O(”−m) in these regions and O(1) outside. The small regions are
the so-called concentrated masses and are placed near the boundary at a distance � between
them. ” and � are parameters converging towards zero, and m¿0. Di�erent results have been
obtained in References [10–14], for di�erent boundary conditions and shapes of the domains
� and B, depending on the dimension of the space n, the value of m and the relation between
” and �.
Here, we consider alternating mixed boundary conditions (cf. problem (56)), n=2; 3, ”��

and m¿2. We prove results in Theorem 6.1, which have been announced in Reference [6]
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without any proof. These results are essential in order to describe the convergence of the
re-scaled eigenvalues �”i ”

2−m of (56) (see Remarks 6.1 and 6.2).
Let � be an open bounded domain of Rn−, n=2; 3, with a Lipschitz boundary @�.

Let 
 and �� be non-empty parts of the boundary, such that @�= �
∪ ���, and 
 is as-
sumed to be in contact with {xn=0}. Let ” and � be two small parameters such that ”��
and �= �(”)→ 0 as ”→ 0. Let us assume that the parameter m is a real number, m¿2.
For n=2, let B be an open bounded domain of the auxiliary space Rn−= {y∈Rn=yn¡0},

Rn with coordinates y1; y2 if n=2 (y1; y2; y3 if n=3). Let @B be the boundary of B, @B a
Lipschitz boundary, @B= �T ∪ ��, where T is the part lying on {yn=0}. Let B” (and similarly
T”, �”) denote its homothetic ”B (”T , ”�). Let B”k (and similarly T

”
k , �

”
k ) denote the domain

obtained by translation of the previous B” (T”, �”) centred at the point x̃k of 
 at distance �
between them. k is a parameter ranging from 1 to N (”), k ∈N. N (”) denotes the number of
B”k contained in �; N (”) is of order O(1=�) when n=2 and O(1=�

2) when n=3.
We consider the eigenvalue problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�u” = �”�”u” in �

u” =0 on �� ∪
⋃
T”

@u”

@n
=0 on 
−

⋃
T”

(56)

where �”=�”(x) is the function de�ned as

�”(x)=

⎧⎪⎪⎨
⎪⎪⎩
1
”m

if x∈
⋃
B”

1 if x∈�−
⋃
B”

(57)

The symbol
⋃
is extended, for �xed ”, to all the regions B”k contained in �.

As is well known, problem (56) has a positive discrete spectrum. For �xed ”, let {�”i }∞
i=1

be the sequence of eigenvalues of (56), converging to ∞, with the classical convention of
repeated eigenvalues. It has been proved (see References [10–12]) that they satisfy the esti-
mates

C”m−26�”i6Ci”
m−2 (58)

where C is a constant independent of ” and i, and, Ci is a constant independent of ”. Let
{u”i }∞

i=1 be the corresponding sequence of eigenfunctions which are assumed to be an orthonor-
mal basis of the space V”, where V” is the completion of {u∈D( ��)=u=0 on �� ∪⋃T”} in
the topology of H 1(�).
We emphasize that problem (47) is the so-called local problem which is involved with

the low frequencies of (56) (i.e. the eigenvalues in (58)) and the local vibrations of the
concentrated masses. See References [6,13,18] for the corresponding eigenfunctions.
From (56) we reach (47) by performing the change of variable in a neighbourhood of each
region B”k

y=
x − x̃k
”

(59)
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where, obviously, the variable x must be replaced by y in formulas of (47). We also observe
that other geometries for B and � could be considered (cf., for instance Reference [6]).
Let us introduce ’̃”(y), a function de�ned depending on the value of n. For n=2, we

consider R”=
√
1 + �=4” and we de�ne

’̃”(y)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if |y|6 R”

1− ln |y| − ln R”
ln R”

if R”6|y|6R2”

0 if |y|¿R2”

(60)

For n=3, we consider ’̃” as a smooth function which takes the value 1 in the semi-ball of
radius ((”+ �=8)=”), B((”+ �=8)=”), and is zero outside the semi-ball of radius ((”+ �=4)=”),
B(”+ �=4)=”):

’̃”(y)=’
(
2
|”y| − ”
�

)
(61)

where ’∈C∞[0; 1], 06’61, ’=1 in [0; 1=4] and supp(’)⊂ [0; 1=2].
Considering {U 0

p}∞
p=1 the set of eigenfunctions of (47), it has been proved in Reference [12]

when n=2 (in Reference [10] when n=3) that �x(U 0
p’̃

”)∈V”, where �x means the change
of variable (59) from y to x, and

U 0
p’̃

” ”→ 0−−−−−−→U 0
p in Ṽ (62)

In order to prove the following theorem, we observe that in the case where n=3 and
lim”→ 0 ”�−2 = 0, function in (61) can be replaced by another one with a shorter support,
namely,

’̃”(y)=’
(
2
|”y| − ”√

”

)
(63)

which also satis�es (62) for the same ’ as in (61).

Theorem 6.1

• For n=2; 3, let �”1 and �01 be the �rst eigenvalues of (56) and (47), respectively.
Then, there exists a constant �∗6�01 and a sequence o”, o” → 0 as ”→ 0, such that
�∗6�”1=”

m−26�01 + o”.
• For n=2, the sequence �”1=”m−2 converges towards the �rst eigenvalue �01 of the local
problem (47) as ”→ 0.

Proof
The minimax principle gives

�”1
”m−2 = min

u∈V”; u �=0

∫
� |∇u|2 dx

”−2 ∫⋃
B” u

2 dx + ”m−2 ∫
�−⋃

B” u
2 dx

(64)

Then, considering the change of variable (59) from x to y, U 0
1 an eigenfunction of (47)

associated with the �rst eigenvalue �01, ’̃
”(y) de�ned by (60) when n=2 and (61) when n=3
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(respectively, (63) when n=3 and lim”→ 0 ”�−2 = 0), the convergence (62), the Poincar�e
inequality on {U ∈H 1(B(0; 1+�=4”))=U=0 on T} (respectively, on {U ∈H 1(B(0; 1+1=4

√
”))=

U =0 on T}), and the integral equality for the eigenelement (�01; U 0
1 ) of (47), we can write

�”1
”m−26

∫
Rn− |∇y(U 0

1 ’̃
”)|2 dy∫

B (U
0
1 ’̃

”)2 dy + ”m
∫
Rn− (U

0
1 ’̃

”)2 dy
6�01 + o” (65)

where o” → 0 as ”→ 0.
For R¿1 we denote by B(0; R) the semi-ball in Rn− of radius R. We use the nota-

tion of Section 5, that is, we consider �R=B(0; R), ṼR denotes the space completion of
{U ∈D(B(0; R))=U =0 on T} for the norm ‖∇yU‖(L2(B(0; R)))n , and we apply the Poincar�e
inequality on ṼR, to obtain∫

B
U 2 dy6(�R1 )

−1
∫
B(0; R)

|∇yU |2 dy; ∀U ∈ ṼR (66)

where (�R1 ) denotes the �rst eigenvalue of problem (46).
Now, considering (64), we perform the change of variable (59) on each B”k , we apply (66)

taking into account that B(0; R”)⊂B(”+ �=4), for su�ciently small ”(”6”R), and we have

1
”2

∫
B”k

u(x)2 dx= ”n−2
∫
B
u(y)2 dy6”n−2(�R1 )

−1
∫
B(0; R)

|∇yu|2 dy

= (�R1 )
−1
∫
B(0; R”)

|∇xu|2 dx6(�R1 )−1
∫
B(”+�=4)

|∇xu|2 dx; ∀v∈V”

Therefore,

1
”2

∫
⋃
B”
u2 dx6(�R1 )

−1
∫
�

|∇xu|2 dx; ∀u∈V” (67)

We also apply the Poincar�e inequality on V”∫
�
u2 dx6C

∫
�

|∇xu|2 dx; ∀u∈V” (68)

Then, from (67), (68) and (64), we obtain

�R1
C”m−2�R1 + 1

6
�”1
”m−2 ; ∀”6”R (69)

and, on account of (65), the �rst statement of the theorem is proved.
In addition, because of (65) and (69), for any �xed R¿1, we have

�R16 lim
”→0

�”1
”m−26lim”→0

�”1
”m−26�

0
1 (70)

As regards the second statement, in the case where n=2, we prove that the sequence
�”1=”

m−2 converges towards �01, as ”→ 0, using (70) and the convergence �R1 → �01 as R→ ∞,
which holds from the last statement in Theorem 5.1.
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Remark 6.1
The result in the second statement of Theorem 6.1 for n=2 can be completed using results on
the total multiplicity of the eigenvalues converging towards �01 (cf. References [6,13,18]); in
fact, it can be proved: For n=2 and for �xed i, i=1; 2; 3; : : :, the sequence �”i =”m−2 converges
towards the �rst eigenvalue �01 of the local problem (52).

Remark 6.2
We observe that the result in the second statement of Theorem 6.1 is sharp. As a matter
of fact, it has been proved in Reference [10] that for n=3, and for the relations between ”
and � such that lim”→ 0 (”=�2)¿0, there are other accumulation points of �”i =”

m−2 that can
be smaller than the �rst eigenvalue �01 of the local problem (47). The previously mentioned
proof in Reference [10] is based on certain properties of the function F de�ned in (52)
(cf. Lemma 5.1), and this result is in good agreement with that in Theorem 5.3.

Remark 6.3
Let us note that in problem (56) a Dirichlet condition is imposed on the boundary �� and (47)
appears as the local problem. The same can be said if we consider the concentrated masses
inside �, a Dirichlet condition on @�, and the resulting local problem (11). Nevertheless, it
should be pointed out that in this case the �rst eigenvalue of (11) is �01 = 0 when n=2, and,
according to Remark 6.1, a further study should be performed on the problem with many
concentrated masses inside �.
On the other hand, results in Section 6 show that the limit behaviour of the spectrum of

(1), (3) is also important when describing spectral convergence for vibrating systems with
concentrated masses, when a Dirichlet condition is prescribed on the boundary of the domain
�, instead of a Neumann condition.

Remark 6.4
The vibrations of a system with one single (or a �xed number) concentrated mass inside �,
and a Neumann condition on the whole boundary of �, has been approached in Reference [19]
for the dimension n=3 of the space, using asymptotic expansions. The limit problem for
the spectrum is (13) for certain values of m. Results and techniques in Reference [19] are
di�erent from those in this paper, and, it seems reasonable to think that the results in this
paper can be used in the case where a Neumann condition is imposed on �� for (56) or on the
whole @�.

Remark 6.5
It should be noted that the �rst eigenvalue �R1 of (46) converges towards some positive �

∗
1 ,

as R→ ∞, and the fact that this value �∗
1 is (or is not, respectively) the �rst eigenvalue of

the local problem (47) seems to be deeply involved with the fact that the low frequencies of
(56) give rise only to local vibrations of the concentrated masses (or they also give rise to
global vibrations, respectively).
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