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Preface

The international conferences with the generic title of Integral Methods in
Science and Engineering (IMSE) are a forum where academics -and other re-
searchers who rely significantly on (analytic or numerical) integration methods
in their investigations present their newest results and exchange ideas related
to future projects.

The first two conferences in this series, IMSE1985 and IMSE1990, were
held at the University of Texas at Arlington under the chairmanship of Fred
Payne. At the 1990 meeting, the IMSE consortium was created for the purpose
of organizing these conferences under the guidance of an International Steering
Committee. Subsequently, IMSE1993 took place at Tohoku University, Sendai,
Japan, IMSE1996 at the University of Oulu, Finland, IMSE1998 at Michi-
gan Technological University, Houghton, MI, USA, IMSE2000 in Banff, AB,
Canada, IMSE2002 at the University of Saint-Ftienne, France, and IMSE2004
at the University of Central Florida, Orlando, FL, USA. The IMSE confer-
ences have now become recognized as an important platform for scientists
and engineers working with integral methods to contribute directly to the ex-
pansion and practical application of a general, elegant, and powerful class of
mathematical techniques.

A remarkable feature of all IMSE conferences is their socially enjoy-
able atmosphere of professionalism and camaraderie. Continuing this trend,
IMSE2006, organized at Niagara Falls, ON, Canada, by the Department of
Civil and Environmental Engineering and the Department of Applied Mathe-
matics of the University of Waterloo, was yet another successful event in the
history of the IMSE consortium, for which the participants wish to express
their thanks to the Local Organizing Committee:

Stanislav Potapenko (University of Waterloo), Chairman;
Peter Schiavone (University of Alberta);

Graham Gladwell (University of Waterloo);

Les Sudak (University of Calgary);

Siv Sivaloganathan (University of Waterloo}.




X Preface

The organizers and the participants also wish to acknowledge the financial
support received from the Faculty of Engineering and the Department of Ap-
plied Mathematics, University of Waterloo and the Department of Mechanical
Engineering, University of Alberta.

The next IMSE conference will be held in J uly 2008 in Santander,
Spain. Details concerning this event are posted on the conference web page,
http://www.imse08.unican.es.

This volume contains 2 invited papers and 30 contributed papers accepted

after peer review. The papers are arranged in alphabetical order by (first)
author’s name.

The editors would like to record their thanks to the referees for their will-
ingness to review the papers, and to the staff at Birkhiduser-Boston, who have
handled the publication process with their customary patience and efficiency.

Tulsa, Oklahoma, USA Christian Constanda, IMSE Chairman
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On Quasimodes for Spectral Problems Arising
in Vibrating Systems with Concentrated
Masses |

E. Pérez

Universidad de Cantabria, Santander, Spain; meperez@unican.es

21.1 Introduction

(uasimodes for positive, symmetric, and compact operators on Hilbert spaces
arise often in the literature in the description of behavior at high-frequency
vibrations (see, for example, [Arn72], [BB91], [Laz99], and {Per03|). Roughly
speaking, the quasimodes u can be defined as functions approaching a certain
linear combination of eigenfunctions associated with eigenvalues in “small
intervals” [A — r, A + r|. Their usefulness in describing asymptotics for low
frequency vibrations in certain singularly-perturbed spectral problems has
been made clear recently in many papers (see [LP03], [Per04], [Per05], {Per06],
and [Per07}). :

In this chapter, we consider a vibrating system with concentrated masses.
Namely, we consider the vibrations of a body occupying a domain 2 of R",
n = 2,3, that contains many small regions (B*) of high density—so-called
concentrated masses—-near the boundary. The small parameter £ deals with
the size of the masses, their number, and their densities. The asymptotic
behavior, as £ — 0, of the eigenelements (A%, u®) of the corresponding spectral
problem, namely problem (21.3), when A* = O(¢™ %), has been treated in
[Per04] (see [LP03] for a substantial list of references on the subject). Here,
considering the hyperbolic problem (21.15), we provide estimates for the time
t in which certain standing waves approach time-dependent solutions when the
initial data are quasimodes. Also, precise bounds for the discrepancies between
the solutions and standing waves in suitable Hilbert spaces are provided. The
results can be extended to high-frequency vibrations.

It should be mentioned that in certain problems arising in spectral per-
turbation theory, the eigenfunctions associated with low frequencies give rise
to vibrations of the system that are concentrated asymptotically in a certain
region, and that it is possible to construct quasimodes associated with high
frequencies that give rise to other kinds of vibrations. This is the case, for in-
stance, with spectral stiff problems [LP97] or vibrating systems with a single
concentrated mass (see [GLP99] and [Per03]).
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Nevertheless, when the low frequencies converge toward the same positive
value p (see {LP03], [Per05], and [Per07)), it can be difficult to describe the
asymptotic behavior, as € — 0, of the individual eigenfunctions and to obtain
asymptotics for the first eigenfunction. In some of these problems, quasimodes
u° that provide an approach to linear combinations of eigenfunctions associ-
ated with all the eigenvalues in intervals [p2 — 6%, u+d¢], with 6 — Qase — 0,
can be constructed. These quasimodes could concentrate asymptotically their
support or their energy at points or thin layers. This happens, for example,
when describing vibrations of systems with many concentrated masses near
the boundary (see [LP03], [Per05], and [Per06]), or in models from geophysics
([BIO6] and [Per07)).

For these vibrating systems, given the quasimode as an initial data, the
solution of the evolution problem behaves as a standing wave affecting only
small regions for a long period of time, which we determine in this chapter.
Here we prove that, when considering the evolution problem (21.15), for a
long time, namely, for ¢ € [0, O((§%)~%)] with some positive 4, the solutions of
(21.15) are approached through standing waves of the type e'V#*3*. It turns
out that the results hold for any eigenvalue p of the local problem (21.4).

We emphasize that the results in this chapter can be stated in a more
general abstract framework and extend to low-frequency and high-frequency
vibrations of other vibrating systems (see [LP01], [LP03], [Per03], [Per04}, and
[Per06]). We also note that these results are very different from those in [LP93]

and [[.P95b], where the evolution problem (21.15) is used to derive results on

spectral convergence for low frequencies, which are much weaker than those
in Theorem 2.

Section 21.2 contains preliminary results on quasimodes for problem (21.3).
Proofs of these results can be found in {Per04], [Per05], and [Per06]. Section
21.3 contains new results on the s-dependent evolution problem (21.15) (see
Theorem 3 and Remark 1). For brevity, we sketch only an idea of the proof.

21.2 The Spectral Problem

Let A: H — H be a linear, self-adjoint, positive, and compact operator on
a separable Hilbert space H. Let {\] 1}, be the set of positive eigenvalues
with the usual convention for repeated eigenvalues, A; — co as ¢ — 0. Let
{u:}52, be the set of eigenfunctions, which form an orthonormal basis for H.

A quasimode with remainder v > 0 for the operator A is a pair (u,p) €
H x R, with ||u||y = 1 and g > 0, such that || Au — pu||g < r. If there is no
ambiguity, u is also referred to as a quasimode.

The following result establishes the closeness in the space H x R of the
eigenelements of the operator A to a given quasimode of A (see, for example,
[0SY92] for a proof, and [Laz99] for a more general statement).
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Theorem 1. Given a quasimode (u, ) with remainder r for A, in each in-
terval [ — 7*, p + r*] containing [u — 7,4 + 7], there are eigenvalues of the
operator A, {A?:_(:.)+k}k=1’2,__.’1(r*) for some index i(r*} and number I{r*} > 1.

In addition, there isu* € H, |lu*|lg =1, u* = Zig) QrUi(r)+k for certain
constants oy, and salisfying
Hr")

. 2r
o — e =llu— ) onugypnla < el (21.1)
k=1

From the literature on spectral perturbation problems it appears that,
when Theorem 1 is applied, the spaces and operators under consideration
often depend on a small parameter £ that converges to 0. Also, the function
« and the numbers X and r arising in the definition of a quasimode depend
on this parameter. This is the case of the operators associated with vibrating
systems with concentrated masses, namely, problem (21.3), which we study
in this chapter. For the sake of completeness, in Subsection 21.2.1 we gather
certain results on quasimodes for this problem (21.3), used subsequently in
the proof of the results in Section 21.3.

21.2.1 The Spectral Perturbation Problem

Let §2 be a bounded domain of R", n = 2,3, with a Lipschitz boundary 82
Let X and I'p be nonempty parts of the boundary such that 92 = Y Ulg;
5 is assumed to be in contact with {z, = 0}. Let £ and 5 be two small
parameters such that e € yand 5 =n(e) > 0ase — 0.

For n — 2, let B be the semicircle B = {(y1,y2) / ¥§ + 43 < 1,42 <0}
in the auxiliary space R? with coordinates y,yo. For n = 3, let B be the
half-ball B = {(y1,v2.y3) / y2+y3 +y5 < 1,ys < 0} in the auxiliary space R3
with coordinates ¥4, Y2, ys. Let B be the boundary of B, 8B = TUT, where
T' is the part lying on {y, = 0}. Let B® (and, similarly, T¢, I'®) denote its
homothetic B (¢T, £I'). Let Bf (and, similarly, T, I'Y) denote the domain
obtained by the translation of the previous B (1'%, I'¥) centered at the point
#r of T at distance i between them. Here k is a parameter ranging from 1 to
N(e), k € N. N(¢) denotes the number of Bf, contained in £2; N{¢) is o(nY)
for n = 2 and O(n~2) for n = 3. The parameter o denotes the value

for n =2 and a = lim —EE for n = 3. (21.2)

a = lim
e—=0 nlne e—0 1

We consider the eigenvalue problem
—Au® = pfA*u® in 12,
ut =0 onTpUlJT", (21.3)
%L: =0 onX-—J71%,

where pf = pf(z) is the density function defined by
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pf(z) = —;l-lfxEUBs ps(m)zlif:x:e.!?—UBE,

the symbol | ] is extended, for fixed ¢, to all the regions Bf contained in {2, and
the parameter m is a real number, m > 2 (see [LP93]-[LP95b] for different
values of the parameter m, boundary conditions, and domain shapes).

As is well known, problem (21.3) has a discrete spectrum. For fixed ¢,
let {A$}52, be the sequence of eigenvalues of (21.3), converging to oo, with
the classical convention for repeated eigenvalues. It has been proved (see
[LP93]-[LP95b]) that they satisfy the estimates Ce™ 2 < Af < Cie™ 2,
where C is a constant independent of ¢ and ¢ and C; is a constant inde-

 pendent of . Let {u$}32; be the corresponding sequence of eigenfunctions,

which is an orthogonal basis for the space V*, where V¢ is the completion of
{ueD(2)/u=00nI'ouU|JT*} in the topology of H1(£2).

Convergeuce results for the low frequencies, the eigenvalues of order
O(c™~2) of (21.3), and the associated eigenfunctions can be found in [Per04],
[Per05], and [Per06]. Also, the limit behavior of the eigenelements for se-
quences of eigenvalues of order O(1), the so-called high frequencies, is in
[LP93], [LP95a], [L.P95b], and [LPO1]. As in the case of a single concentrated
mass, in general, low frequencies are associated with the local vibrations of the
concentrated masses, each one independent of the others. We have found only
one exception: For n = 3 and o > 0, these frequencies also give rise to global
vibrations affecting the whole structure {[LP03]). Apart from this exception,
the low frequencies and the corresponding eigenfunctions are asymptotically
described, in a certain way, by a so-called local eigenvalue problem (21.4).

The local problem is posed in R™™ = {y € R" / y,, < 0} as follows:

( —A,U = AU in B,

~AU =0in R - B,
[U]=[§%]=Oonf,

. U=0onT , gfgazoon'{ynzo}_i

U(y) »c asfyl > 00 , yo <0 whenn =2,

| U(y) — 0, as lyl 200 , yn <0 whenn =3,

(21.4)

where the brackets denote the jump across I', ﬁ,y'is the unit outward normal

to I, and ¢ is some unknown but well-defined constant. The variable y is the
local variable:

T — E
-

y:

Problem (21.4) can be written as a standard eigenvalue problem with a
discrete spectrum in the space V where V is the completion of {U €

D(R"~) /U = 0 on T} in the Dirichlet norm ||V, U]|| r2(rn-) (see [LP93] and
[LP95b]).
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Theorem 2 allows us to assert that there are at least [pN(g) values
Ade) /e™~2 converging to each eigenvalue A° of (21.4), with [y being the multi-
plicity of A’. The corresponding eigenfunctions U¢ {cf. (21.5)] are approached
in the space V¢ by the eigenfunctions of (21.4) associated with A’, concentrat-
ing their support asymptotically in neighborhoods of the concentrated masses
as stated in Theorem 2.

Also, the results in Theorem 2 along with the results on comparison of
spectra for perturbed domains in {Per05] allow us to obtain an important
difference for the asymptotic behavior of the low frequencies between the
dimensions n = 2 and n = 3 of the space. Namely, for n = 2, and for each
i=1,2,..., A/e™ % - A}, as ¢ — 0, where )} is the first eigenvalue of
(21.4). This does not hold for n = 3 and the value of « in (21.2) strictly
positive (see [Per05] and [Per06] for further explanations). Let us refer to
[GLP99], [OSY92|, and [SS89] to compare with the stronger results on the
approach for the eigenfunctions in the case of a single concentrated mass, the
case where the convergence of the rescaled spectrum of {21.3) to that of (21.4}
with conservation of multiplicity holds.

Let us change the variable in (21.3) by setting y = z/¢. We obtain:

A€
E-m—2

] v,Ue v, Vedy = f BE(UVEdy, VVEe Ve, (21.5)

o, 2.

with 2, being the domain {y /ey € 2} and °(y) in (21.5) defined as
By =1ifye| JnB*, and #(y) =" ifyec 2. —| B, (216)

where 7, B* denote the transformed domains of the regions B to the y vari-

" able. V¢ is the functional space {U = U (y) /U(ey) € V*}. We assume that

the eigenfunctions {U5}32,, in the local variable, satisfy ||U*||¢. = 1.

i=11
Let us introduce the self-adjoint. positive and compact operator A° on V=,
A? defined by the right-hand side of (21.5), namely,

UV dy + amf UV dy, YU,V € V5, (21.7)
2. -\Jr,Be

.

U, B

with eigenelements {(™2/As, UF)}5°,.

Let us consider A° an eigenvalue of (21.4) of multiplicity lo, and let o,
UY,..., UL be the corresponding eigenfunctions, orthogonal in V and satisfy-
ing ||V Udl Loy = 1.

Let us introduce a function $*(y) that depends on n. For n = 2, we consider

R, = /=4 and define 3 (y) = 0 if |y| > R2,

£

_Injy{—InR

W) =1if yl < Re, §(y) =1 - ——— if R <|y| <R (218)
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For n = 3, we consider ¢* as a smooth function that takes the value 1 in
the semi-ball of radius ((c +7/8)/¢), B((c + n/8)/¢), and is 0 outside the
semi-ball of radius ((¢ + 1/4)/¢), B((e + n/4)/¢):

¢ (y)=¢ (2@;—5) : (21.9)

where ¢ € C*°[0,1), 0< ¢ <1, p = 1in [0,1/4], and Supp(y) C 0,1/2].
‘Obviously, the elements of V£ extended by zero in R* — (2, are elements
of V. Moreover, we have (see [LP93] and [LP95b]) that US(EE € V¢, and, as

£—0, U3¢ —» UB in V.
Foreach k =1,2,...,N(e), p=1,2,..., 15, we introduce the function

Uy — &)pe(y — &)

Zy (y) = = . 21.10
N A 175 e (21.10)

The following estimates hold (see [Per04] and [Per06] for a proof):

1
”A“:Zg,p - xn' g,p”f;e S O¢ , Vk:p) (2111)
where o, does not depend on & and p and tends to 0 as € — 0,
-1/2
0 = C(ln 52—"'/4) for n =2, (21.12)
o\ V2

0c = C max{ (—6) ,e™?} for n =3, (21.13)

with the constant € independent of ¢.

Theorem 2. Let us consider A° an eigenvalue of (21.4} of multiplicity Iy,
and let UP, Ug,...,Ug) be the corresponding eigenfunctions, assumed to be
orthonormal in V., For any K > 0, there is e*(K) such that, for e < e*(K),
K <lgN(c), and the interval [A® —d=, A0 + d®} contains eigenvalues of (21.5),
Af(e) /e™2, with total multiplicity greater than, or equal to, K; d* is a certain
sequence, d° -+ 0 as € — 0 and the interval [/\0 —dE, A0 + d*| does not contain
other eigenvalues of (21.4) different from X0,

In addition, for any 8 such0 < 8 < 1, and Jord® = (0.)?, there are [y N (e)
functions, {Ug , i:i:f'(\)r(e)' kp € V<, such that 1UE pllge =1, Ui p belongs to
the eigenspace associated with all the eigenvalues in [\0 — d= A0 + dc], and

10k p — Zi pllve < 2(0c) 2. (21.14)

In (21.14), 0.(1) is given by (21.12) when n = 2 ((21.18) when n = 3),
k,p i defined by (21.10), and 3%(y) is defined by (21.8) when n =2 ((21.9)
when n = 3). These functions, {Us, Zzi’fﬁ( e)s Satisfy the property that for

any extracted subset of K functions {vs,Us, ..., Ui, }, they are linearly in-
dependent.
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Let us observe that formula (21.11) shows that (Zg ,, 1/ A% is a quasimode
of remainder o, for the operator A° defined in (21.5)—(21.7). In the same way,
according to (21.1), the width of the interval d* = (0.)? in Theorem 2 and the
bound in (21.14) provide the closeness of these quasimodes and eigenlements
of A°. Theorem 2 has been proved in [Per04] (see also [Per06]) by applying
Theorem 1 and results on almost orthogonality for the quasimodes.

21.3 The Evolution Problem

Let us consider the set of functional spaces V¢ and H*®, where V¢ is introduced
in Subsection 21.2.1 with the norm |V u||g2(c-10) and H* = {U(y) /U(ey) €
L%(£2) with the norm ||(8°)/2u|1a(c-10). 8¢ being defined by (21.6). Let A®
be the operator associated with the form on V¢ arising on the left-hand side
of (21.5). Let (Zf . 1/ A%} be the quasimodes constructed in Subsection 21.2.1,
for k =1,2,...,N(¢), p=1,2,...,lp, from the cigenelement (A%, D) of the
local problem (21.4).
Let us consider the hyperbolic problem associated with (21.5):

dte
AFUS =
g7 + A*U 0
U(0) = ¢* (21.15)
dUe
5 (0) =

For initial data (¢, 1,!15 € V¢ x H¢, problem (21.15) has a unique solution,
Us € L>(0, 00, VE), € L>®(0,00,H?), satisfying U=(0) = ¢°, and, for
any fixed T > 0,

T
: dU® dd
f ( f v, UV, @ dy — Ot dy) dt =
0 e 102 e—10

f B° ()" B(0) dy
e~ 182

for any test function ® of the form ® = ¢(¢)V, where V ¢ ‘75, and ¢ ¢
CH[0,T))/ $(T) = 0 (cf. [SS89] and [S80], for instance).
Because of the conservation of energy, for each ¥ € R we have

IU@)lo. + ‘ e

ve + 15 .. (21.16)

According to the Fourier expansion of U®(t) in terms of the eigenfunc-
tions of {21.5), for a given ¢° = a.Uf(E) and ¥f = bUt{E , with a and b any

constants and U}, y any eigenfunction of (21.5) associated with the eigenvalue

e
Aje/em” 2| the solution of (21.15) is the standing wave

|
|
|
]
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. /\E.E em—2 Afe
U=(t) = (a cos (V E—;f_%t) +b ,\‘?( ) sin( ETng——)zt) f(s).
F1¢

Similarly, for any given data, the functions U, %,p erising in Theorem 2, namely,

o = NP a; Ug, ; and ye = ThNEy, Ug,) s With a; and b; constants,
the solution of (21.15) is

l()N(EJ

Af
U(t) = Z (aj cos( % t)

j=1

em—2 AS .

+bj4/3z— sin ( ;f:ij t)) ie)+5-
i(e)+j

By contrast, in the case where the initial data are the quasimodes of the op-
erator A® arising in Theorem 2, namely, the Zy, p associated with the eigenele-
ment (A%, US) of (21.4},fork =1,2,... N(e)and p=1,2, ... ylo, approaching
the functions U , (see (21.14)), the solutions of the evolution problem (21.15)
are not standing waves or sums of standing waves. :

Nevertheless, the following theorem establishes the range of ¢ where
the standing wave cos(vA? 8)Zg , (v/(A0)~Tsin(v/ A0 t)Z§ ,,» respectively) ap-
proaches the solution U®(t) of (21.15) for the initial data (¢, 1<) = (25 5+ 0)
((¢%,¥°) = (0, Zf ), respectively).

Theorem 3. Let (A°, UD) be an eigenelement of (21.4), and let Z§ , be defined
by (21.10) fork=1,2,.. . ,N(e) and p=1,2,... 1. Let us consider problem
(21.15) for (p°,v°) = (25 ,,0). Then, for t > 0 and sufficiently small ¢
(namely, € < g9 with g9 independent of t ), the unique solution U*(t) of (21.15)
satisfies

“\/)TO sin(VA0 ) Z§ , + i‘%(t)]

cos(VAC£)ZE , — US(t)

]~ < Ci max ((0.)' 7, (0)?/%),  (21.17)
Ve ‘

< 02 max ((os)l_ﬁ’ ((OE)B/zt + (OE)B/2) ?
HE

(21.18)
where Cy and Cy are constants that may depend on \° but are tndependent of
€ and t, oc is defined by (21.12) when n = 2 and by (21.13) when n = 3, and
3 is the constant appearing in (21 d4),0< 8 <1,

In the same way, for (¢°,¢¥°) = (0, Z%.p)s the following estimates hold:

sin%?t) i,p_Ue(t)HvE < Cy max ((0,)' %, (0)%/%),  (21.19)

cos(VAOt)ZE  — %i(t)“m < Cp max ((0:)'*, ((06)P/%t + (0.)7/?) .
(21.20)
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The proof of Theorem 3 is based on (21.16), on the precise bounds (21.11)-
(21.14), and on the inequality flullue < Cllullg. Yu € V¢, where C is a
constant independent of u and . For the sake of brevity, we omit the proof,
which will be provided in a future publication.

" Remark 1. In fact, approaches (21.17)-(21.20) in Theorem 3 hold uniformly

for t € [0, (0c)~P7"/?] for any constant 3 satisfying 0 < 3 < 1. Then the
bounds on the right-hand side of (21.17)-(21.20) are C* (o, )™n(1- 8, 5(1-67/2)
where C* is a constant independent of £.
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